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XBound-Former: Toward Cross-scale Boundary
Modeling in Transformers
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Abstract— Skin lesion segmentation from dermoscopy
images is of great significance in the quantitative analysis
of skin cancers, which is yet challenging even for der-
matologists due to the inherent issues, i.e., considerable
size, shape and color variation, and ambiguous bound-
aries. Recent vision transformers have shown promising
performance in handling the variation through global con-
text modeling. Still, they have not thoroughly solved the
problem of ambiguous boundaries as they ignore the com-
plementary usage of the boundary knowledge and global
contexts. In this paper, we propose a novel cross-scale
boundary-aware transformer, XBound-Former, to simulta-
neously address the variation and boundary problems
of skin lesion segmentation. XBound-Former is a purely
attention-based network and catches boundary knowledge
via three specially designed learners. First, we propose
an implicit boundary learner (im-Bound) to constrain the
network attention on the points with noticeable bound-
ary variation, enhancing the local context modeling while
maintaining the global context. Second, we propose an ex-
plicit boundary learner (ex-Bound) to extract the boundary
knowledge at multiple scales and convert it into embed-
dings explicitly. Third, based on the learned multi-scale
boundary embeddings, we propose a cross-scale bound-
ary learner (X-Bound) to simultaneously address the prob-
lem of ambiguous and multi-scale boundaries by using
learned boundary embedding from one scale to guide the
boundary-aware attention on the other scales. We evaluate
the model on two skin lesion datasets and one polyp lesion
dataset, where our model consistently outperforms other
convolution- and transformer-based models, especially on
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I. INTRODUCTION

Melanoma is one of the most rapidly increasing cancers over
the world, consistently leading to about 100,000 new cases and
7000 deaths per year [1], [2]. Segmenting skin lesions from
dermoscopy images is critical in the diagnosis and treatment
planning, which is usually tedious, time-consuming, and error-
prone for human beings. In this regard, automated segmen-
tation methods are highly demanded in clinical practice to
improve clinical workflow in terms of accuracy and efficiency.
It remains a very challenging task because (1) skin lesions
have large size, shape and color variance (see Fig. 1 (a-b)),
(2) the hair will partially cover the lesions destroying the local
context (see Fig. 1 (c-d)), (3) sometimes, the contrast between
lesions to normal skin is relatively low, resulting in ambiguous
boundaries (see Fig. 1 (e-h)).

Many efforts have been dedicated to overcoming these
challenges. Hand-crafted features are adopted in the early
years, which are usually not stable and robust, leading to
poor segmentation performance when facing lesions with large
variations [3]. To solve this problem, deep learning models
based on convolutional neural networks (CNN) have been
proposed and achieved remarkable performance gains [4],
[5]. However, due to the lack of global context modeling,
these models are still insufficient to counteract the large
variation of skin lesion segmentation. To enlarge the receptive
fields, researchers propose various approaches inspired by the
advancement of residual convolution [6], recurrent design [7],
and dilated convolution [8], [9]. Lee et al. [10] extensively
incorporate the dilated attention module with boundary prior
so that the network predicts boundary key-points maps to guide
the attention module.

Nevertheless, the receptive field of convolution is inevitably
limited and the length of recurrent design can not be large.
Therefore, these solutions are still incapable of effectively
capturing sufficient global context to deal with the chal-
lenges mentioned above. Recently, vision transformers have
been proposed to regard an image as a sequence of patches
and aggregate features in a global manner by self-attention
mechanisms [11]–[13]. It is also verified that transformers
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Fig. 1. The challenges of automatic skin lesion segmentation from der-
moscopy images: (a)-(b) large skin lesion variations in size, shape, and
color, (c)-(d) partial occlusion by hair, and (e)-(h) ambiguous boundaries.

can be used to handle medical image segmentation tasks,
i.e., TransUNet [14] and TransFuse [15]. In the field of
skin lesion segmentation, studies improve the transformer-
based networks with boundary information [16], [17], while
they have not thoroughly explored the potential usefulness
of boundary information and global context in a multi-scale
manner. Furthermore, these transformers still contain convo-
lutional modules that may decrease the performance thanks to
the inductive bias.

In this paper, we propose a novel cross-scale boundary-
aware transformer (XBound-Former) to ably handle the prob-
lems mentioned above by holistically leveraging the advance-
ment of boundary-wise prior knowledge and self-attention
mechanism. This method is inspired by the intuition that hu-
man beings perceive lesions in vision, i.e., considering global
context to coarsely locate lesion areas and paying particular
attention to the ambiguous area to specify the exact boundary.
Concretely, we enhance the boundary modeling ability of
the transformer-based network via three key learners: implicit
boundary learner (im-Bound), explicit boundary learner (ex-
Bound), and cross-scale boundary learner (X-Bound).

• Im-Bound is recommended to explore local contexts for
accurate boundary modeling implicitly. As the points with
large boundary variation contribute more to the segmen-
tation result than other boundary points, we constrain
the network attention on such boundary key points. It
enhances the local boundary modeling while maintaining
the global context.

• Ex-Bound is proposed to explicitly extract the boundary
knowledge as multiple embeddings where each embed-
ding represents the boundary knowledge at a unique scale.
They are used to further enhance the local boundary
modeling and boost the cross-scale communication.

• X-Bound is suggested as a cross-scale attention mech-
anism for simultaneously addressing the problems of
ambiguous boundaries and size variation. Acting like
human beings that determine the accurate boundaries
by zooming in and zooming out, we use the learned
boundary embedding at one scale to guide the boundary-
aware attention at the other scales to enhance the cross-
scale knowledge communication.

We evaluate our model on two skin lesion datasets, ISIS-
2016&PH2 and ISIC-2018, following the standard experimen-
tal setup [10], [16], [17]. To evaluate the generalization, we
perform an extensive experiment on the polyp lesion which has
closed characteristics. Our model has achieved superior perfor-

mance in all experiments compared to state-of-the-art CNN-
based and transformer-based models, indicating the advanced
power in addressing object segmentation with ambiguous
boundaries, especially for skin lesion segmentation.

II. RELATED WORK

A. Skin Lesion Segmentation
In the early years, traditional methods apply various hand-

crafted features to learn lesion segmentation that are not robust
and stable. It leads to poor segmentation performance when
facing large lesions with large variations [3]. Later, a fully
convolutional network (FCN) [18] brings the deep learning
model to skin lesion segmentation and achieves a much better
result. Several improved networks following its direction are
proposed to solve the imbalance between foreground and
background pixels [4], multi-scale feature representations [6],
and limited receptive fields [7]. With the widespread use of
the attention-based mechanism, channel and spatial attention-
based methods are applied to enhance the lesion model-
ing [19], [20]. The performance indeed reaches a higher
score, but skin lesions’ ambiguous boundaries are still hard to
recognize. To address this issue, [21] propose adaptive dual
attention modules to let the network focus on lesion boundaries
while it fails to cope with blurry boundaries owing to poor
use of boundary-aware prior knowledge. More recently, seeing
the excellent success achieved by vision transformers, several
studies employ transformer-based networks in the field of skin
lesion segmentation [16], [17]. It works to solve the problem
of large lesion variation by capturing the global context. How-
ever, they are still unable to handle the problem of ambiguous
boundaries, especially the ones with size variation. Instead,
our proposed XBound-Former exploits multi-scale boundary
information through the advanced self-attention blocks and
utilizes the boundary-aware prior knowledge to supervise the
transformer training. Thus it can outperform the State-of-the-
Arts and the latest vision transformers.

B. Vision Transformers
Transformer, as a standard model in natural language pro-

cess [22], has made great progress in the field of computer
vision recently. The first vision transformer, ViT [23], proposes
to split an image into a certain number of patches and utilize
self-attention blocks to embed the features, achieving compet-
itive performance in image classification tasks compared to
the latest convolution-based neural networks. Later work [24]
introduces a series of strategies to increase the training effi-
ciency and improve the accuracy on small datasets. Although
the transformers are originally proposed to explore global
dependency, recent studies find that the transformers also need
local communication [13], [25], [26], which can be achieved
through the local window shift or pyramid architecture [13],
especially for the tasks requiring dense representations [25],
[27], [28]. As for medical image segmentation, the effective-
ness of vision transformers is verified by TransUNet [14] and
TransFuse [15]. In the field of skin lesion segmentation, vision
transformers also boost the performance to reach new higher
scores [16], [17]. Despite their success, these models have
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Fig. 2. An overview of the proposed cross-scale boundary-aware transformer (XBound-Former). Briefly, it enhances the boundary modeling of
transformers via in- and cross-scale boundary aggregation. Given coarsely extracted features ({f0

l }
4
l=1, gray cuboids), (1) the in-scale boundary

aggregation implicitly (im-Bound) and explicitly (ex-Bound) explores boundary knowledge, enhancing features ({f1
l }

4
l=1, red cuboids) and obtaining

boundary embeddings ({ξ}4
l=1, green cuboids) at each scale, and (2) the cross-scale boundary aggregation further exploits boundary information

by fusing learned boundary embeddings from different scales and yielding final enhanced features ({f2
l }

4
l=1). After that, several classification

heads are used to predict the segmentation maps. Note that the MSA takes the query/key/value vectors (from left to right) as the input. Since the
MSA in ex-Bound learners utilizes boundary embeddings to refine the features while the MSA in im-Bound learners refines the features through the
self-attention, their inputs are different.

not considered the complementary knowledge of boundary
knowledge and global context in a multi-scale manner, which
may help segment the extremely challenging lesions. XBound-
Former aims to mitigate this issue through cross-scale bound-
ary learners and, besides, builds a pure attention-based network
instead of the fusion of transformer and convolution to prevent
the inductive bias.

C. Boundary-aware Prior Knowledge

The accurate recognition of ambiguous boundaries is one
of the most tricky problems in medical image segmentation.
There are plenty of works to address this issue by taking
full advantage of the boundary-aware prior knowledge. The
earliest works propose to modify the loss function to give
boundary-aware supervision for network optimization, i.e., HD
loss [29], Boundary loss [30], etc. Later, multi-task learning
is applied in this direction where manually designed tasks
are used to provide extra supervision on the boundaries [31],
[32]. Apart from the boundary-aware supervision, several
networks propose to utilize spatial attention mechanisms to
enhance the representation of boundaries [21]. By contrast, we
not only introduce the boundary-aware prior knowledge into
vision transformers but also present a novel key-patch map
generator that can select the most ambiguous points among
the boundaries and convert them to the key-patch map to give
supervision to the transformers.

III. METHOD

An overview of the cross-scale boundary-aware transformer
(XBound-Former) is presented in Fig. 2, where we show
the details about how to leverage boundary prior knowledge
and global dependency across different scales. It first utilizes
a pyramid vision transformer [13] to coarsely extract the
features of an input dermoscopy skin image. As a pyramid

feature extractor, the backbone yield features at four different
scales, {f0l }4l=1, where l denotes the layer number. Here,
f01 denotes the lowest feature with the largest scale and
f04 denotes the deepest feature with the smallest scale, as
f0l ∈ RCl× H

2l+1 × W

2l+1 , where H,W is the size of input images
and Cl is the channel number. Each feature will be enhanced
through the in-scale and cross-scale boundary aggregation to
strengthen the boundary representation. Finally, several linear
classification heads are used to predict the segmentation maps
({Ŝ}4l=1), and the map with the largest size (Ŝ1) will be
upsampled to the original size by bi-linear interpolation.

A. In-scale Boundary Modeling
As an attention-based mechanism, transformers treat each

image as a sequence of patches and explore the global depen-
dency to represent them. The global view is precisely helpful
for the vision tasks, while recent studies have shown that they
also require local context modeling in the dense-level vision
tasks [13], [25]. For the segmentation tasks, especially for
skin lesions with ambiguous boundaries, global dependency
can help locate coarse boundary but lacks local contexts to
segment accurate boundaries. Therefore, we propose to fuse
boundary information in the transformers to explore the local
context of boundaries. It is achieved by using a sequence of
Nim implicit boundary learners (im-Bound) and Nex explicit
boundary learners (ex-Bound) to refine the feature at each
scale as {f1l }4l=1, where f1l ∈ RCl× H

2l+1 × W

2l+1 . The process
is denoted as,

f1, ξ ←− F1...Nex

ex-Bound (F1...Nim

im-Bound (f0)), (1)

where we simplify the notation l. As the in-scale boundary
modeling module takes the sequential features instead of 2-
D maps as inputs and outputs, we re-define the inputted
features as zl ∈ RCl×H∗W

4l+1 . They are the encoded features after
sequentialization and are added with position embeddings [33].
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Fig. 4. The pipeline of the boundary key-point map generation. It aims
to transform the ground-truth segmentation map into the key-point map
for supervising boundary learners.

1) Implicitly Boundary-wise Attention: The im-Bound aims
to constrain the model’s attention on the points with large
boundary variation as they contribute more to the final seg-
mentation result. With this inspiration, we propose to utilize
the self-attention module to find such points in the manner
of predicting boundary key-point map. The map is used
for the feature refinement and offering a boundary-aware
constraint. Specifically, it contains Nim cascaded blocks in
total. Assumed that at the i-th block, given the inputted
feature as zi−1, where z0 ← z, we firstly feed it into a
sequence of multi-head self-attention (MSA) and multi-layer
perception (MLP) to gather the global dependency for coarsely
locating the boundaries [23]. After each part, there is a Layer
Normalization with residual short connection for a stable
training process [22]. We denote this intermediate feature as,

ρi = FMSA(z
i−1)⊕FMLP (FMSA(z

i−1)), (2)

where ⊕ denotes the element-wise addition and
FMSA(query, key, value) denotes the MSA operation.
As the self-attention modules embed query, key and value
together from zi−1, we simplify the equation. Additionally,
the LayerNorm operation is also simplified to save space.
Then, a linear predictor with Sigmoid activation is utilized
to classify each patch whether it is the point with large
boundary variation, supervised by the boundary key-point
map pre-produced by our boundary key-point map generation
algorithm (see Sec. III-C). We denote the predicted key-point
map as M̂ i so that we could obtain the enhanced feature as,

zi = ρi ⊕ ( ρi ⊗ M̂ i ), (3)

where ⊕ denotes the element-wise multiplication. After Nim

cascaded blocks, the resulted feature zNim will be sent to ex-
Bound for further refinement.

2) Learn Explicit Boundary Embedding: The ex-Bound is
proposed to embed boundary information into a set of feature

vectors explicitly {ξl}4l=1, where each embedding contains the
high-level boundary semantics at a unique scale. This learner
is different from the im-Bound regarding the implementation,
as well as the motivation that it not only refines the features
but also provides the explicit expression for subsequent cross-
scale communication. To achieve this goal, we treat the
boundary key points as query objects and employ a transformer
decoder [27], [34] to learn the boundary embeddings. The
decoder contains a sequence of the Masked MSA module,
MSA module, and the MLP module, each after which there
is a LayerNorm layer and the short connection [27]. It is
noteworthy that the Masked MSA is equal to the MSA module
here since the boundary embeddings have a fixed length.
Thanks to the global context modeling, it refines the inputted
randomly initialized vector into the boundary embedding that
contains abundant boundary knowledge. After that, we send
the feature and boundary embedding into the MSA module and
the boundary key-point prediction part for the consideration of
refining features and, of more importance, obtaining a preciser
boundary embedding.

We repeat the ex-Bound Nex times to guarantee the ade-
quate boundary learning. For the j-th block, it takes feature
zNim+j−1 and current embedding ξj−1 as input and output the
aggregated feature zNim+j , the embedding ξj , and predicted
key-point map M̂Nim+j . After Nex blocks, the resulted feature
zNim+Nex is reshaped as f1 and sent to the cross-scale bound-
ary aggregation along with the learned boundary embedding.

B. Attention-based Cross-scale Boundary Fusion

Automatic skin lesion segmentation suffers from the signif-
icant variance in lesion size and ambiguous boundaries. We
take the first attempt to address these two issues simultane-
ously through the attention-based mechanism, our cross-scale
boundary learners (X-Bound). It is inspired by the human
beings that determine the accurate boundaries by zooming in
and zooming out boundaries and combining multi-perspective
information across different scales to make the final decision.

Generally, we visualize the details in Fig. 3 where fea-
tures and boundary embeddings at low scale (f1low ∈
RC×Hlow×Wlow , ξlow ∈ R1×C) and high scale (f1high ∈
RC×Hhigh×Whigh , ξhigh ∈ R1×C) are inputted and the en-
hanced feature at low scale (f2low) is outputted. (Hlow,Wlow)
denotes the size larger than (Hhigh,Whigh). Theoretically,
the boundary embedding at a lower scale focuses on more
local details and the boundary embedding at a larger scale
focuses more on the high-level semantics. Thus, utilizing the
embedding at one scale to attentively refine the features at
another scale provides complementary boundary knowledge.

In detail, we compare ξhigh to each point in the lower
feature f1low and compute the distance matrix, which is then
used to transfer boundary knowledge in ξhigh to each point in
the feature f1low. It means that the intermediate features can
be calculated as:

γlow = f1low ⊕FMSA (f1low , ξhigh, ξhigh), (4)

γhigh = f1high ⊕FMSA (f1high , ξlow , ξlow), (5)
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where FMSA is the multi-head attention module used in Equa-
tion 2. After that, the intermediate features are concatenated
after the up-sample operation of f1high, which is fed into a
linear projection head to reduce the feature dimension and
refine the fusion. The resulted feature is denoted as f2low.

Totally, except the deepest feature f14 , we perform the
cross-scale boundary learning on {f1l }3l=1 to obtain {f2l }3l=1

and {f24 } is straightly set as {f14 }. For the consideration of
multi-scale model learning, we feed each feature into a linear
classification head to predict the segmentation maps {Ŝl}4l=1.

C. Boundary Key-point Generation Algorithm

As the boundary learners do not naturally know which
points can best represent the ambiguous boundaries, we pro-
pose a novel generation algorithm to pre-produce a ground-
truth key-point map supervising the boundary point map
prediction and boundary embedding learning, as shown in
Fig. 4. The first step is to calculate all points on the boundary
using a conventional contour detection algorithm [35]. After
that we could obtain a set of coordinates of the boundary
points. Then, as points with larger boundary deviation should
be paid more attention to than those with smoother deviation,
we propose filtering the points by scoring the deviation. For
each point in this set, we draw a circle of radius r and calculate
the proportion p of the lesion area in this circle region, where
the larger or smaller p indicates that the boundary is not
smooth in this circle region. Hence, we score each point as
|p − 0.5| to representation its deviation. To find the most
valuable points, non-maximum suppression is performed in
which the points with larger p than neighbor k points are
selected. Specifically, given the sorted boundary point list, we
denote the neighborhoods of each point as the k points before
the point and the k points after the point, totally resulting
in 2k points. Note that points at the beginning and the end
of the list are connected. If one point’s score is larger than
that the neighbour 2k points’ scores, it will be saved in the
list, otherwise it will be removed from the list. Next, selected
points’ 2D locations are mapped into the binary key-point
map M , where points at the selected location are set to one
and others are set to zero. By minimizing the error between
M and M̂ , the supervision helps the boundary learners focus
on the ambiguous boundary regions and helps the boundary
embeddings learn correct boundary knowledge.

D. Objective Function

We design a joint objective to train the entire network,
including the lesion segmentation loss LSeg for predicted
segmentation maps and the key-point map loss LMap for
predicted boundary key-point maps, as

LSeg =
1

4

4∑
l=1

ϕDice(Ŝl, Sl), (6)

LMap =
1

Nim +Nex

4∑
l=1

ϕCE(M̂l,Ml), (7)

LTotal = LSeg + λLMap, (8)

where ϕDICE , ϕCE denote Dice loss function and Cross En-
tropy function and {Sl}4l=1, {Ml}4l=1 are the ground-truth seg-
mentation and boundary key-point maps pre-produced. λ is the
weight to balance the two objectives. Moreover, we computed
the averaged loss of segmentation maps and boundary maps
for better controlling the weight and intuitively indicating the
performance. The detailed calculation is described as,

ϕDice(Ŝ, S) = 1 − 2 ∗ |S| ∗ |Ŝ| / (|S|+ |Ŝ|),
ϕCE(M̂,M) = −M̂ log(M)− (1− M̂) log(1−M).

(9)

For deeply multi-scale supervision, given the original seg-
mentation label, S ∈ R1×H×W , we repeat the down-sample
operation with different rates to obtain the set of ground-truth
segmentation maps {Sl}4l=1, where Sl ∈ R1× H

2l+1 × W

2l+1 . For
the key-point maps, we also repeat the down-sample operation
and obtain {Ml}4l=1 where Ml ∈ R1× H

2l+1 × W

2l+1 .

IV. EXPERIMENTS

A. Dataset

Following the classical experimental setting in the previous
studies [10], we evaluate our model on two skin lesions
segmentation datasets, ISIC-2016&PH2 and ISIC-2018. To
further evaluate the model generalization, we evaluate it on
the polyp lesion segmentation using five public polyp image
datasets, named Polyp-seg.

• The ISIC-2016&PH2 contains samples from two centers
to evaluate the accuracy and generalization ability of skin
lesion segmentation. One is the ISIC-2016 dataset that
contains a total number of 900 samples for training and
379 samples for validation. The other one is the PH2

dataset [36], containing 200 samples in total. Here, we
use samples in the ISIC-2016 dataset for model learning
through the official train-validation split and test the
model on the 200 samples from the PH2 dataset.

• The ISIC-2018 dataset was also collected by ISIC in
2018, which contains 2594 images and labels. The resolu-
tion of each image varies from 720×540 to 6708×4439.
As the public test set has not been released, we perform
a 5-fold cross-validation for a fair comparison.

• The Polyp-seg dataset is collected following the most
popular setting [37], which contains five public datasets:
Kvasir-SEG [38], ClinicDB [39], ColonDB [40], En-
doscene [41], and ETIS [42]. The Kvasir-SEG and Clin-
icDB contain 612 and 1000 samples, respectively, of
which 548 and 900 samples are used for training and
the rest samples are used for testing. To evaluate the
generalization ability, samples from the rest three datasets
are also used for testing.

B. Evaluation Metrics

We employ four widely-used metrics to quantitatively evalu-
ate the skin lesion segmentation performances, including Dice
coefficient, IoU score, Average symmetric surface distance
(ASSD), and Hausdorff distance of boundaries (95th per-
centile; HD95). Generally, a better segmentation performance
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TABLE I
COMPARISON OF SKIN LESION SEGMENTATION WITH DIFFERENT APPROACHES ON THE ISIC-2016&PH2 DATASET. WE REPORT THE AVERAGED

SCORES OF THE ISIC-2016 VALIDATION SET AND THE SCORES OF THE PH2 TEST SET.

Method validation-ISIC-2016 [43] test-PH2 [36]
IoU↑ Dice↑ ASSD↓ HD95↓ IoU↑ Dice↑ ASSD↓ HD95↓

U-Net [44] 80.25 87.81 15.51 45.88 73.91 83.66 21.50 60.12
U-Net++ [45] 81.84 88.93 15.01 44.83 81.26 88.99 15.97 46.66

Polar Res-UNet++ [46] 69.21 80.25 20.35 46.24 75.23 85.36 18.55 42.96
Attention U-Net [47] 79.70 87.43 16.41 48.78 69.52 80.52 26.73 74.51

DeepLabV3+ [48] 85.62 91.76 9.85 26.66 82.03 89.56 14.93 37.81
CE-Net [49] 84.39 90.74 11.77 31.01 83.48 90.44 13.48 33.97
CA-Net [20] 80.73 88.10 15.67 44.98 75.18 84.66 21.06 64.53

TransFuse [15] 86.19 92.03 10.04 30.33 82.32 89.75 15.00 39.98
TransUNet [14] 84.89 91.26 10.63 28.51 83.99 90.96 12.65 33.30

XBound-Former (Ours) 87.69 93.08 8.21 21.83 85.38 91.80 10.72 26.00

TABLE II
COMPARISON OF SKIN LESION SEGMENTATION WITH DIFFERENT APPROACHES WITH 5-FOLD CROSS-VALIDATION ON ISIC-2018 DATASET. WE

PRESENT THE AVERAGED RESULT AND THE STANDARD ERROR OF ALL FOLDS.

Method
Overall Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

IoU↑ Dice↑ ASSD↓ HD95↓ IoU↑ Dice↑ ASSD↓ HD95↓ IoU↑ Dice↑ ASSD↓ HD95↓ IoU↑ Dice↑ ASSD↓ HD95↓ IoU↑ Dice↑ ASSD↓ HD95↓ IoU↑ Dice↑ ASSD↓ HD95↓
U-Net [44] 75.40 83.53 17.74 53.98 76.50 84.64 16.66 51.35 77.84 85.44 15.43 46.79 73.90 82.32 19.76 60.87 74.38 82.54 18.36 55.77 74.40 82.72 18.50 55.11

U-Net++ [45] 77.92 85.77 16.13 49.90 79.22 86.96 13.83 42.00 79.28 86.76 14.72 44.99 76.30 84.46 19.24 60.40 77.07 84.92 15.70 48.20 77.72 85.74 17.14 53.93
Polar Res-UNet++ [46] 60.50 72.61 21.06 47.55 61.48 73.45 19.51 43.13 61.30 73.18 20.84 47.27 60.32 72.60 22.12 50.63 59.15 71.37 21.59 48.54 60.28 72.45 21.27 48.17
Attention U-Net [47] 75.94 83.88 17.24 52.56 78.01 85.93 15.13 48.86 77.31 85.05 16.04 50.51 73.78 81.98 19.16 58.00 75.58 83.43 17.15 51.89 75.01 82.99 18.73 53.56

DeepLabV3+ [48] 82.49 89.38 10.75 28.64 84.33 90.79 8.57 23.38 84.05 90.44 9.81 27.30 82.01 89.18 10.90 29.28 82.57 89.42 10.50 27.63 79.49 87.10 14.00 35.64
CE-Net [49] 82.86 89.62 10.59 28.69 84.10 90.70 8.83 23.77 83.75 90.16 10.38 28.46 81.45 88.60 12.12 32.80 82.81 89.62 10.34 28.20 82.18 89.02 11.26 30.24
CA-Net [20] 78.94 86.56 13.52 39.90 80.56 87.76 11.70 33.61 79.53 86.94 13.21 37.75 77.88 85.85 14.09 42.77 78.55 86.32 14.06 44.04 78.20 85.94 14.54 41.31

TransFuse [15] 83.59 90.13 10.21 28.33 85.05 91.23 8.80 25.61 84.45 90.74 10.05 28.52 82.52 89.46 11.07 30.10 83.29 89.81 10.01 27.46 82.66 89.42 11.13 29.97
TransUNet [14] 82.61 89.50 10.88 29.05 83.53 90.10 9.72 25.31 83.90 90.41 10.00 27.77 81.67 88.84 11.86 31.15 82.37 89.29 10.77 29.32 81.58 88.84 12.06 31.71

XBound-Former (Ours) 84.51 90.89 8.61 22.47 85.31 91.47 7.67 20.05 85.22 91.33 8.48 22.29 84.12 90.64 8.92 23.31 84.00 90.43 8.87 23.14 83.88 90.56 9.13 23.56

TABLE III
COMPARISON OF POLYP LESION SEGMENTATION. WE REPORT THE OVERALL IoU AND Fw

β SCORES AND THE SCORES OF EACH DATASET.

Method Overall Kvasir-SEG ClinicDB ColonDB ETIS Endoscene
IoU↑ Fw

β ↑ IoU↑ Fw
β ↑ IoU↑ Fw

β ↑ IoU↑ Fw
β ↑ IoU↑ Fw

β ↑ IoU↑ Fw
β ↑

ACSNet [50] 65.07 69.08 83.80 88.20 82.60 87.30 63.10 68.40 49.60 50.60 78.80 83.00
PraNet [37] 67.52 72.41 84.00 88.50 84.90 89.60 64.00 69.90 56.70 60.00 79.70 84.30

TGANet [51] 64.16 71.40 81.60 87.79 81.09 86.71 60.08 67.94 52.33 59.36 82.18 89.47
MSEG [52] 66.68 70.75 83.90 88.50 86.40 90.70 64.90 69.70 50.90 53.00 80.40 85.20

DCRNet [53] 70.00 74.95 82.50 86.80 84.40 89.00 66.60 72.40 63.00 67.10 78.70 82.50
EU-Net [54] 70.41 74.55 85.40 89.30 84.60 89.10 68.10 73.00 60.90 63.60 76.50 80.50
SANet [55] 71.38 76.09 84.70 89.20 85.90 90.90 67.00 72.60 65.40 68.50 81.50 85.90

Polyp-PVT [56] 76.00 81.60 86.40 91.10 88.90 93.60 72.70 79.50 70.60 75.00 83.30 88.40
XBound-Former (Ours) 77.50 84.30 87.10 89.70 91.10 94.40 73.20 81.40 75.10 82.00 83.60 90.10

shall have higher area-based metrics (Dice, IoU ) and lower
boundary-based metrics (ASSD,HD95).

The area-based similarity of predicted segmentation map Ŝ
and the ground-truth S are computed as:

ψDice(Ŝ, S) = 2 ∗ |Ŝ ∗ S|
|Ŝ|+ |S|

,

ψIoU (Ŝ, S) =
|Ŝ ∗ S|

|Ŝ|+ |S| − |Ŝ ∗ S|
.

(10)

To better evaluate the segmentation performance of bound-
aries, we employ another two boundary-based metrics, as

ψASSD(Ŝ, S) =

∑
a∈Pb

d (a,Gb) +
∑

b∈Gb
d (b, Pb)

|Pb|+ |Gb|
,

ψHD95(Ŝ, S) = max {h(Pb, Gb), h(Gb, Pb)} ,
(11)

where Pb and Gb denote the predicted boundary points and

the ground-truth boundary points in the Ŝ and S, and d(·)
denotes the minimum Euclidean distance function. Moreover,

h(Pb, Gb) = m̂ax
a∈Pb

{
min
b∈Gb

∥a− b∥
}

denotes the one-way haus-

dorff distance from Pb to Gb, and m̂ax {·} refers to the
calculation of the 95th percentile of the distances.

As for the polyp segmentation, we adopt the same metrics
as the latest work, Polyp-PVT [56], including the area-based
metric, IoU, and the boundary-based metric, Fw

β .

C. Implementation Details
All methods are implemented on the Pytorch with a single

NVIDIA Geforce GTX 3090 GPU with a memory of 24 GB.
We empirically resize all images to (512 × 512) considering
the computation efficiency and don’t keep the original ratio
as it will not break the lesion appearance [10], [16], [17],
[57]. A series of data augmentations are implemented to
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increase the data diversity, including vertical flip, horizontal
flip, and random scale change (limited 0.9-1.1). Each mini-
batch includes eight images, and the AdamW [58] optimizer
with an initial learning rate of 0.0003 is used to optimize the
parameters. We train the network for 200 epochs and save the
model parameters with the best performance during validation.
We adopt the pyramid vision transformer, PVTv2 [13], as the
backbone and pre-train it on the ImageNet dataset. As for
the hype-parameters, we set Nim and Nex to 2 by default
and discuss it in Section IV-F.3. In the boundary key-point
generation algorithm, considering the image size and lesion
size, we set r = 2 and k = 30 by default.

D. Comparisons with state-of-the-art Methods

1) Quantitative results for skin lesion segmentation:
We compare our model to several popular segmentation
models, including the CNN-based models, U-Net [44],
U-Net++ [45], Polar Res-UNet++ [46], Attention U-
Net [47], DeepLabV3+ [48], CE-Net [49], CA-Net [20],
and the transformer-based models, TransFuse [15] and Tran-
sUNet [14]. All compared models are trained under the same
experimental setting as our model. For the models using their
special training manners, i.e., transformed data [46], we re-
implement them using their official resources and follow the
best hyper-parameters claimed in their manuscripts.

For the ISIC-2016&PH2 dataset, it is found that our model
has achieved the best performance on whatever the validation
set or the test set. Since the samples from the PH2 dataset are
unseen during the model learning, our superior performance
indicates the satisfactory generalization ability, which is owing
to the learning of boundaries that are the general features
among different distributions. In comparison to us, TransFuse
generalize poorly to the test set and TranUNet has poor
segmentation accuracy on the validation set. Furthermore, it
is seen that our model has obviously lower ASSD (−1.83
and −1.93) and HD95 (−6.68 and −7.30), demonstrating
the promising advantage in handling boundary segmentation.

To extensively evaluate the models, we perform the 5-
fold cross-validation in the ISIC-2018 dataset and show the
evaluated scores of each fold as well as the overall scores
in Table II. The results illustrate that our model achieves the
highest IoU score and the shortest ASSD distance on all sets.
In addition to this, although the improvement on the IoU score
is not as large as that on the ISIC-2016&PH2 dataset, the
ASSD score has decreased a lot compared to the other models.
It means that our model has superior accuracy in reducing the
false positives away from the boundaries and detecting the
ambiguous boundaries that are ignored by other models.

2) Visualized Comparison for Skin Lesion Segmentation:
We visualize the predictions of some representative images
in Fig. 5, including the lesions with hair occlusion, various
sizes, and ambiguous boundaries. The first row shows that
our model can detect the lesion covered by the hair with the
largest accuracy. The second and third rows prove that our
model consistently yields stable and the best prediction on the
smallest or largest lesions. For all rows, particularly the last
two rows where lesions show an extremely close appearance

to neighbor tissues, our model is still able to give accurate
segmentation.

3) Evaluation for Model Generalization: In order to further
study the generalization of our proposed model and show our
potentials in other similar targets with ambiguous boundaries,
we conduct experiments on the polyp image segmentation
and compare our model to the most popular models in this
field, including ACSNet [50], PraNet [37], TGANet [51],
MSEG [52], DCRNet [53], EUNet [54], SANet [55] and
Polyp-PVT [56]. Since we follow the experiment setting in
Polyp-PVT [56] and the results of compared methods are
all presented in it, we straightly show the publicly presented
scores. In difference, as TGANet is not included in Polyp-
PVT, we re-implement TGANet using its official resources and
adopt the best hyper-parameters claimed in its manuscript.

We show the compared results in Table III, where the
overall scores and the scores of each dataset are presented.
We highlight the best score in bold, and it is found that our
model nearly achieves the best scores on all metrics. For
overall performance, compared to the latest model, Polyp-
PVT, which has also used PVTv2 as the backbone, our model
yields obvious performance improvement, i.e., 1.5% on the
IoU score and 2.7% on the Fw

β score. As Fw
β demonstrates the

ability of accurate boundary segmentation, the result indicates
that our boundary learners are genuinely able to enhance
the determination of boundary points. The results on each
dataset also support the conclusion, especially for the ETIS
dataset. Samples from the ETIS dataset are more challenging
to segment, leading to relatively poorer performance in all
experiments. On such a difficult sampler, our model has a 4.5%
improvement on the IoU score and 7.0% improvement on the
Fw
β score, indicating its superior ability to handle challenging

boundaries.

E. Analytical Ablation Study

We conduct extensive ablation experiments on the ISIC-
2016&PH2 and ISIC-2018 datasets to demonstrate the effec-
tiveness of the three bound learners in our proposed method.
We analyze the performance of the validation and test sets
for the ISIC-2016&PH2 dataset and discuss the results of all
folds for the ISIC-2018 dataset. For the baseline comparison,
we remove the learners of XBound-Former and maintain the
same linear prediction and up-sampling fusion as U-Net. Then,
we add the im-Bound learners, ex-Bound learners, and X-
Bound learners step by step and obtain three models that are
the imBound-Former, exBound-Former, and XBound-Former.

1) Quantitative Analysis: The results of the ablation ex-
periment are shown in Fig. 6(a) using bar plots, and the
evaluated IoU scores are highlighted by red scores. Com-
pared to the baseline model, imBound-Former has gained a
0.76% improvement on the ISIC-2016 validation set, 1.12%
improvement on the PH2 test set, 0.57% improvement on
the ISIC-2018 dataset, verifying that the implicit boundary
modeling and attention truly benefit the segmentation accuracy
and generalization. In addition, exBound-Former gains further
improvements on the ISIC-2016 validation set (0.78%), the
PH2 test set (0.24%), and the ISIC-2018 dataset (0.53%).
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Image GT U-Net++ DeepLabV3+ CE-Net TranFuse TransUNet Ours

hair
various size

am
biguous 

boundaries

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Fig. 5. Visual comparison on some representative and challenging images (Samples 1,3,5 are from the ISIC-2016&PH2 dataset and the rest are
from the ISIC-2018 dataset). It includes the tricky lesions caused by hair occlusion, size variance, and especially the ambiguous boundaries. We
show the specific IoU and ASSD scores in each visualized imag e at the right-bottom corner.

Image GT baseline imBound-
Former

exBound-
Former

XBound-
Former

(a) (b)

Fig. 6. Ablation analysis of the boundary learners through adding the im-Bound learners, ex-Bound learners, and X-Bound learners step by step to
the baseline model. (a) Quantitative analysis of the ISIC-2016 validation set, PH2 test set, and ISIC-2018 dataset. The specific IoU score on each
set is shown upper the plotted bar. (b) Visual comparison of some representative images. The first two rows are selected from the PH2 test set and
the last two rows are from the ISIC-2018 dataset. We show the specific IoU and ASSD scores at the right-bottom corner of the visualized image.

Since the ex-Bound learnders majorly aim to learn explicit
embeddings for boundary knowledge which are used for the
cross-scale boundary learning, the improvement is slight yet
not important. The complete version, XBound-Former, shows
obvious and consistent improvements on all sets, verifying the
usefulness of our attention-based cross-scale boundary fusion.

2) Visual Comparison on Lesion Boundaries: We also visu-
ally analyze the effectiveness of each component in Fig. 6,
including two samples from the PH2 test set (the first two
rows) and two samples from the ISIC-2018 dataset (the last
two rows). As it shows, the baseline model lacks sufficient
ability to address lesions with ambiguous boundaries as there
are a lot of false positives. This issue has decreased signif-
icantly in the predictions of imBound-Former and exBound-

Former, while the determination is still not accurate enough.
By combining the multi-scale boundary knowledge, XBound-
Former achieves the best performance on the small lesion (the
third row) and the large lesions (the second and last rows).

F. Detailed Analysis of Bound Learners

1) Boundary Supervision: As shown in Equation 6, we
utilize the factor (λ) to balance the segmentation map loss
and boundary key-point map loss. The smaller λ may fail to
provide strong enough supervision, while the larger λ may
sometimes bring the noise to the model learning. Hence, we
have a discussion about how it affects the final segmentation
performance. The results are shown in Fig. 7, where λ is set to
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(a) (b)

Image GT � = �. � � = �.0

Fig. 7. Analysis of how the boundary key-point supervises segmentation learning. (a) Evaluated scores with different controlling weight, λ. (b)
Visual comparison of using key-point supervision or not.

ISIC-2016 ���

Fig. 8. Inference speed analysis for models with different Nim, Nex on
the ISIC-2016 validation set (left) and PH2 test set (right). We measure
the speed by calculating the inference time per image.

TABLE IV
THE IOU SCORES OF USING NMS OPERATOR TO FILTER THE

BOUNDARY POINTS OR NOT. WE SHOW THE AVERAGED SCORES AND

STANDARD ERRORS ON THE ISIC-2016 VALIDATION SET AND PH2

TEST SET.

Method ISIC-2016 PH2

w/o NMS 87.19 ± 10.37 85.06 ± 10.04
with NMS 87.69 ± 9.97 85.38 ± 9.46

{0, 0.1, 1, 2, 10} and all models adopt the same architecture as
XBound-Former. As the plot shows in Fig. 7(a), the evaluated
scores increase on both sets when enlarging the λ from 0.0
to 2.0. However, they decrease when the λ reaches 10.0. It
verifies the assumption that the small λ limits the improvement
and the large one will harm the segmentation training. We
additionally visualize the predicted segmentation map along
with the point map in Fig. 7(b). As it shows, the model
without boundary supervision is still able to predict coarse
lesion regions for spatial attention while it lacks the ability
to recognize the most challenging regions of the boundaries.
In comparison, our predicted point map concentrates on the
ambiguous boundaries so that it can boost the challenging
lesion’s segmentation.

2) Non-Maximum Suppression: In the boundary key-point
map generation algorithm, the Non-Maximum Suppression
aims to filter the boundary points and find the most valuable
points on the most ambiguous regions. To study the effec-
tiveness of filtering points, we remove the NMS operator in
our XBoundFormer and show the results in Table IV. As

the statistics show, using NMS to filter the most ambiguous
boundary points can improve the IoU scores on both sets. The
results support the assumption that models should focus their
attention on the most ambiguous regions.

3) Statistics of the Efficiency: We set Nim, Nex to control
the number of im-Bound and ex-Bound learners. Enlarging
them leads to more computation, while few learners may not
be able to learn the correct boundary knowledge. Fig. 8 shows
the evaluated IoU scores and inference time of the models with
different Nim, Nex. For the validation set, the evaluated IoU
score increase obviously with more boundary learners, and the
score changes a few when Nim = 2, Nex = 2. The IoU score
also increases with increasing Nim = 1, Nex = 1 to Nim =
2, Nex = 2 but it also drops with Nim = 3. The underlying
reason may be that more learners bring larger hardness to
model optimization. Considering both the efficiency, accuracy
and generalization ability, we take Nim = 2, Nex = 2 as our
final setting.

V. DISCUSSION

Skin lesion segmentation plays a vital role in the quantitative
analysis of skin cancers, i.e., lesion size and shape analy-
sis. Existing studies adopt attention-based networks to catch
global context, and boundary-aware supervision is proved to
be effective for object segmentation in other fields. In this
work, we exploit the complementary advantage of global
context and boundary knowledge at multi-scale, proposing a
cross-scale boundary-aware transformer, XBound-Former, for
precise segmentation of skin lesions with ambiguous bound-
aries. The main contribution is our three boundary learners
to explore in-scale and cross-scale boundary knowledge. The
experiment is conducted on two skin lesion datasets and an
external polyp lesion dataset. The results have shown that our
model has the best segmentation performance, especially in the
determination of challenging boundaries. The generalization
ability on unseen images and different tasks has also been
verified.

In the medical field, targets usually have ambiguous bound-
aries that are hard to determine, even for human beings.
The challenges majorly come from the limitation of imaging
techniques and would be solved in the future by the new
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evolution of advanced imaging techniques. However, in the
current community, how to segment these challenging objects
has huge significance for the diagnosis, quality control, and
treatment planning of patients. Therefore, we thoroughly in-
vestigate and aim to solve the challenges in the skin lesion
segmentation and preliminarily discuss the potential users on
the other targets with similar characteristics.

How to fuse boundary information into the segmentation
tasks is one of the most well-known topics in object seg-
mentation. It can be achieved through designing boundary-
aware loss objectives like HD loss. Recent studies show
that it is more effective to transfer the boundary loss as
boundary key-point map loss. In addition to the supervision,
the predicted boundary key-point map can also be used as the
spatial attention map. Following this direction, we propose
XBound-Former, which takes the complementary usage of the
attention-based network and boundary supervision. Based on
this theory, we further explore the potential help in exploring
cross-scale boundary knowledge. All our proposals are proved
to be effective in our ablation experiment and the detailed
discussion.

Our model still has some limitations that will further im-
prove the segmentation if broken. First, in some extremely
challenging images, the boundary key points are still unable
to detect clearly. The false point detection may bring harmful
guidance to the branch of lesion segmentation. Although they
have the complementary advantage in most cases, we should
consider the potential harm in some noisy cases. Second,
boundary key-point detection is a different task that requires
unique representations compared to lesion segmentation. In
future work, utilizing different models for the two branches
instead of sharing the same architecture may be helpful to
guarantee the accuracy of the two branches.

VI. CONCLUSION

In this paper, we present a novel cross-scale boundary-
aware transformer (XBound-Former) to handle the large lesion
variance and ambiguous boundaries in skin lesion segmenta-
tion, by holistically perceiving the advantage of boundary-wise
prior knowledge and long-range dependency modeling. Based
on the pyramid features extracted by transformers, we propose
three boundary learners (im-Bound, ex-Bound, X-Bound) to
explore the in-scale and cross-scale boundary knowledge to
enhance the boundary segmentation accuracy. We perform
comparison experiments on two skin lesion datasets where the
results clearly verify the advantage of our method. The detailed
ablation study proves that each boundary learner contributes to
the performance boost and the learners can be fused to further
improve the accuracy. The extensive experiments conducted
on the polyp segmentation also indicate our potentials in the
similar targets with ambiguous boundaries. However, it is also
found that our model still fails on some extremely low-contrast
lesions, which may be solved by fusing a deep learning-based
model and low-level feature extractor in future work.
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