
Hongyan Gao is a graduate student in University of Science and Technology Liaoning. Her research interests include bioinformatics and deep learning.
Jianqiang Sun is an associate professor in Linyi University. His research interests include bioinformatics and deep learning.
Yukun Wang is an associate professor in University of Science and Technology Liaoning. His research interests include machine learning and QSAR modeling.
Yuer Lu is a research assistant in Wenzhou Institute, University of Chinese Academy of Sciences. Her research interests include deep learning and bioinformatics.
Liyu Liu is a professor in Chongqing University. His main research interests include the application of swarm robotics in the field of active matter, as well as
interdisciplinary research on the fusion of biointelligence, artificial intelligence and mechanical intelligence.
Qi Zhao is a professor in University of Science and Technology Liaoning. His research interests include bioinformatics, complex network and machine learning.
Jianwei Shuai is a professor and the director of biomedical physics center in Wenzhou Institute, University of Chinese Academy of Sciences. His research interests
include biophysics, deep learning and bioinformatics.
Received: April 25, 2023. Revised: June 18, 2023. Accepted: June 27, 2023
© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 1–13

https://doi.org/10.1093/bib/bbad259

Problem Solving Protocol

Predicting metabolite–disease associations based on
auto-encoder and non-negative matrix factorization
Hongyan Gao, Jianqiang Sun, Yukun Wang, Yuer Lu, Liyu Liu, Qi Zhao and Jianwei Shuai
Corresponding authors. Q. Zhao, School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
Tel:/Fax: 0086412889818; E-mail: zhaoqi@lnu.edu.cn; J.W. Shuai, Wenzhou Institute and Wenzhou Key Laboratory of Physics, University of Chinese Academy of
Sciences, Wenzhou 325001, China. Tel:/Fax: 008657788017501; E-mail: jianweishuai@xmu.edu.cn

Abstract

Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals,
metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites,
causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional
biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To
address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-
AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then
acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics
from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite
and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After
obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each
metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The
experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of
0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most
of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting
the potential relationships between metabolites and diseases.
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INTRODUCTION
With the advancement of medicine, there has been an increasing
focus on the connection between metabolites and diseases. The
metabolism is the vital process within the organism, and disease
is a life process that can cause various physical symptoms, includ-
ing metabolic process disorders [1]. The occurrence of diseases is
accompanied by changes in metabolites. We can determine the
progression of diseases through certain metabolites. For instance,
fasting blood glucose, blood glucose in the second hour after meal
and glycosylated hemoglobin can be checked in diabetes. If the
fasting blood glucose is more than 7.0 mmol/l, the blood glucose
in the second hour after meal is more than 11.1 mmol/l and the
glycosylated hemoglobin is more than 6.5%, diabetes is highly
probable. In addition, intestinal microbiota and its metabolites
also play a crucial role in the development of many metabolic
diseases, including obesity [2], nonalcoholic fatty liver [3] and
cardiovascular disease [4]. Microbes in the gastrointestinal tract
are abundant and can metabolize dietary nutrients into a variety

of bioactive substances. The metabolic and immune potential of
intestinal microbiota determines its importance in host health
and disease [5]. Analyzing the relationship between maternal
metabolites derived from mass spectrometry during pregnancy
and congenital heart disease in offspring, it is observed that amino
acid metabolism during pregnancy, androgen steroid lipid and
succinyl carnitine level may be significant contributing factors to
coronary heart disease [6]. In addition, piperine and its metabo-
lites may be potential substances for the treatment of heart and
liver diseases, chronic inflammation, neurodegenerative diseases
and cancer [7]. Moreover, in identifying metabolites related to
the etiology of Alzheimer’s disease, glutamine and free choles-
terol in ultra-high density lipoprotein have a protective effect on
Alzheimer’s disease [8].

It is a meaningful endeavor to devote to metabonomics to study
the pathogenesis of diseases, but traditional biological experi-
ment methods can be time consuming and laborious, and may
not yield optimal results. During recent years, many kinds of
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researches such as computational toxicology [9], miRNA–lncRNA
interaction prediction [10–12], miRNA–disease association pre-
diction [13–15] and circRNA–disease association prediction [16–
18] have been carried out in bioinformatics. These studies have
promoted the development of computational methods for pre-
dicting metabolite–disease associations to a certain extent. For
example, in 2018, Hu et al. used random walk to identify disease-
related metabolites [19]. Later, Lei et al. developed a calculation
method based on KATZ to predict the metabolite–disease asso-
ciations [20]. This is also the first application of KATZ algorithm
in the field of metabolomics. In 2020, Lei et al. proposed a linear
neighborhood similarity with improved bipartite network projec-
tion algorithm to predict associations between metabolites and
diseases [21]. Furthermore, Zhao et al. introduced a Deep-DRM
model in 2021 [22], employing graph convolution networks and
principal component analysis (PCA) for identifying metabolite–
disease associations. In the same year, Zhang et al. proposed
LGBMMDA [23], a method that extracts features from various
measurements, applies PCA for noise reduction and utilizes the
LGBM classifier for analysis. In 2022, Tie et al. proposed a metabo-
lite–disease association prediction algorithm based on DeepWalk
and random forest [24]. During the same period, Sun et al. came
up with a graph neural network with attention mechanisms to
predict the associations between metabolites and diseases [25].
Although many computational models have been proposed to
predict the potential associations between metabolites and dis-
eases, the application of deep learning methods is relatively few,
and the accuracy of the predictive results still requires further
improvement.

Based on the situation described previously, we develop a pow-
erful deep learning method called MDA-AENMF to accurately
predict the relationships between metabolites and diseases. We
integrate multiple similarity networks of diseases or metabolites
and apply three distinct modules to acquire meaningful features
respectively. First, the five-layer auto-encoder module is applied
to obtain the features of diseases. Second, non-negative matrix
factorization (NMF) module is used to extract the features of both
metabolites and diseases. Third, we employ the graph attention
auto-encoder (GAE) module to get the features of metabolites.
The features obtained from three module are then combined into
a long feature vector for each metabolite–disease pair, and this
feature vector and corresponding tag are sent to the multi-layer
perceptron (MLP) classifier for training. To evaluate the perfor-
mance of MDA-AENMF, we employ 5-fold cross-validation (5-fold
CV) and compare our results with those of five state-of-the-art
models. Our results demonstrate that MDA-AENMF outperforms
these other models in terms of area under the receiver operating
characteristic curve (AUC). Moreover, we conduct case studies
based on MDA-AENMF, and it is found that most of the predicted
top 20 metabolite disease pairs (MDPs) are verified, which further
demonstrates the reliability and superiority of MDA-AENMF in
predicting potential metabolite–disease associations.

MATERIALS AND METHODS
Datasets
Human Metabolome Database (HMDB, https://hmdb.ca/) is
the most comprehensive database on biologically specific
metabolism. There are 4536 metabolite–disease pairs sourced
from HMDB in our datasets, including 2262 metabolites and 216
diseases. The selected 216 diseases such as uremia, leukemia and
hepatitis are common diseases in our life.

We transform these associations into an adjacency matrix
A (nm ∗ nd) to describe the relationships between metabolites and
diseases. nm represents the amount of metabolites and ndis the
number of diseases. If metabolite mi is associated with disease dj,
then the value of A(i, j) is equal to 1, otherwise 0.

MDA-AENMF
The workflow chart of MDA-AENMF is presented in Figure 1. The
process begins with the construction of similarity networks for
diseases and metabolites, which are then integrated using a non-
linear approach. After that, we employ three modules to perform
feature extraction. We obtain disease characteristics from five-
layer auto-encoder module. In NMF module, we acquire both
metabolites and disease characteristics. Finally, GAE module is
used to extract metabolite characteristics. These features are
combined for each metabolite–disease pair into a feature vector,
which is then sent, along with the corresponding label, to MLP
classifier for training.

Similarity network construction
Disease semantic similarity
In order to measure the semantic similarity between diseases,
we utilize a directed acyclic graph (DAG) constructed from the
Medical Subject Headings (MeSH) as descriptors of diseases.
Those descriptors can be obtained from MeSH database of
the National Medical Library, which provides a comprehensive
resource for medical terminology (https://meshb.nlm.nih.gov/).
The constructed DAG of disease d can be expressed as DAG(d) = (d,
T(d), E(d)), where d represents disease d, T(d) is a disease set
including disease d and its ancestors, and E(d) manifests a set
of edges of disease d. The semantic contribution of disease n to
disease d in DAG(d) can be calculated as

{
Dd(n) = 1 if n = d
Dd(n) = max

{
Δ ∗ Dd

(
n′) |n′ ∈ children of d

}
if n �= d

(1)

where � is the semantic contribution decay factor, which is
generally set to 0.5 [26], and disease n∈T(d).

Then, we sum the contribution value of each ancestor with the
contribution value of the disease itself to get the semantic score
for disease d as follows:

DV(d) =
∑

n∈N(d)

Dd(n) (2)

Our analysis reveals that diseases that share a larger propor-
tion of DAGs tend to exhibit greater similarity. Therefore, we can
calculate the disease semantic similarity (DSS) between disease di

and disease dj by the following formula:

DSS
(
di, dj

) =

∑
t∈T(i)∩T(j)

Di(t) + Dj(t)

DV(i) + DV(j)
(3)

Metabolite structural similarity
Chemical properties are the most important properties for
metabolites to participate in biochemical reactions. Each
metabolite has its own unique chemical structure that can
be described using the simplified molecular input line entry
system (SMILES), an internationally recognized notation. To
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Figure 1. The workflow of MDA-AENMF.

obtain information about the structure of metabolites, we input
SMILES of the metabolites into the software PaDEL-Descriptor
to calculate the descriptors and fingerprints of the metabolites.
Molecular descriptors are symbols used to describe the structural
or experimental information about chemical molecules. 1D and
2D descriptors provide information about chemical composition

and topology, respectively. Pubchem fingerprint is a widely used
chemical molecular fingerprint for drug screening and similarity
searching, which has high information richness and sensitivity.
This fingerprint utilizes 881 fixed-length substructures that can
cover most functional groups and ring structures in chemical
molecules. Each substructure is encoded as a binary digit, where
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1 represents its existence and 0 represents its absence. By
using PaDEL-Descriptor, each metabolite can be assigned a 2209
dimensional vector, consisting of 1328 for 1D and 2D descriptors
and 881 for fingerprints, to describe its chemical properties.
Since the dimensions have different scales, we standardize each
dimension. The standardization of Z score [22] is introduced as
follows:

m̂k
i = mk

i − mean
(
mk

)
std

(
mk

) (4)

Here, mi denotes the metabolite i and mk is the vector made up of
kth dimension of all metabolites. mk

i represents the kth dimension
of metabolite i. m̂k

i is the value of mk
i after standardization.

Through the characteristic vectors of these metabolites, we can
calculate metabolite structural similarity (MSS) between metabo-
lite mi and metabolite mj.

MSS
(
m̂i, m̂j

) =
∑2209

k=1 m̂k
i × m̂k

j√∑2209
k=1

(
m̂k

i

)2 ×
√∑2209

k=1

(
m̂k

j

)2
(5)

Disease or metabolite Gaussian kernel similarity
The Gaussian kernel similarity of diseases is based on the Gaus-
sian kernel function to calculate the similarity score between two
diseases. In the network of diseases, diseases that are similar
in nature tend to be closely associated with each other. We use
the following Gaussian kernel formula to compute the disease
Gaussian interaction profile kernel similarity (DGIP) for disease
di and disease dj.

DGIP
(
di, dj

) = exp
(
−ωd

∥∥IP
(
di

) − IP
(
dj

)∥∥2
)

(6)

ωd = ωd
′ ∗ nd∑nd

i=1 IP
(
di

)2 (7)

Here, nd represents the number of diseases, and IP(di) and IP(dj)
refer to the vectors related to the disease di and disease dj, respec-
tively. ωd is the normalized kernel bandwidth, which determines
the density of samples in the feature space and controls the
width of the similarity function in terms of similarity. Selecting
an appropriate bandwidth value can achieve a balance between
the smoothness and sharpness of the similarity function, which
leads to better classification results. ωd can be updated by the new
normalized bandwidth ω′

d. ω′
d usually is set to 1.

Similarly, we also calculate the metabolite Gaussian interac-
tion profile kernel similarity (MGIP) for metabolite mi and metabo-
lite mj by the above approach as follows:

MGIP
(
mi, mj

) = exp
(
−ωm

∥∥IP (mi) − IP
(
mj

)∥∥2
)

(8)

ωm = ωm
′ ∗ nm∑nm

i=1 IP(mi)
2 (9)

where nm indicates the quantity of metabolites, IP(mi) and IP(mj)
denote the vectors related to the metabolite mi and metabolite mj,
respectively. ωm is the normalized kernel bandwidth, which can be
updated by the new normalized bandwidth ω′

m. ω′
m is usually set

to 1.

Disease or metabolite similarity based on information
entropy
In 1948, Shannon introduced the concept of entropy in thermo-
dynamics into information theory and proposed the concept of
‘information entropy’. In the previous study, information entropy
was also used to calculate the similarity between miRNA and
disease [27]. In this work, we utilize information entropy and com-
mon information from both metabolites and diseases to deter-
mine the disease or metabolite similarity. Taking the calcula-
tion of metabolite similarity based on information entropy as an
example: TA

m represents the disease set associated with metabolite
A, TA

m={TA
m(1), TA

m(2), . . . , TA
m(nna)}. Similarly, TB

m denotes the disease
set associated with metabolite B, TB

m={TB
m(1), TB

m(2), . . . , TB
m(nnb)}.

nna and nnb correspond to the number of diseases associated with
metabolite A and metabolite B, respectively.

H
(
TA

m

) = −
nma∑
i=1

p
(
TA

m(i)
)

log2

(
p

(
TA

m(i)
))

(10)

p
(
TA

m(i)
) = n

(
TA

m(i)
)

N
(11)

N is the correlation number of all metabolites and diseases,
n(TA

m(i)) is the count of known associations between the ith disease
and all metabolites in the disease set linked with metabolite A.
The metabolite similarity based on information entropy (MSIE)
between metabolite A and metabolite B is calculated as follows:

MSIE (A, B) = 2 × H
(
TA

m ∩ TB
m

)
H

(
TA

m

) + H
(
TB

m

) (12)

TA
m ∩ TB

m refers to the associated diseases shared by metabolite A
and metabolite B.

Similarly, we can get the disease similarity based on informa-
tion entropy (DSIE) by computing information entropy and mutual
information from diseases and metabolites.

Integration of similarity networks for metabolites
or diseases
In contrast to the traditional linear integration method [12], we
employ a nonlinear approach to integrate distinct similarity net-
works for metabolites or diseases [28], which could better capture
the shared and complementary information of each data source
and reduce noise. Also, these noises may originate from the
data itself, such as measurement errors and sample collection
bias, or from the feature extraction process, such as bias in
feature selection or noise introduced by feature reduction. After
integration, we obtain a comprehensive similarity network for
either metabolites or diseases. In this subsection, we illustrate the
integration process for metabolite similarity networks in details.

To begin, we need to normalize each network of metabolites.
When we take MSS as an example, the normalization process is
as follows:

SMMSS
(
i, j

) =
{ MSS(i,j)

2∗∑
k �=i MSS(i,k)

, j �= i
1
2 , j = i

(13)

All diagonal elements are set to 1/2, and the sum of elements
in each line is equal to 1. We obtain SMMSS after performing
normalization of MSS. We can also acquire SMMGIP and SMMSIE in
the same way. Then, we employ K nearest neighbors (KNNs) to
compute the local affinity S_knMSS for MSS between metabolite i
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and metabolite j as follows:

S_knMSS
(
i, j

) =
⎧⎨
⎩

MSS(i,j)∑
k∈Ni

MSS(i,k)
, j ∈ Ni

0, otherwise
(14)

Ni is the set of KNNs of the given node, where Ni is equal to the
total number of metabolites divided by 10. This operation is based
on the principle that closer distances imply higher similarity.
To ensure accuracy, we assign a similarity score of 0 to remote
nodes that are far away from the given node. Similarly, we can get
S_knMGIP and S_knMSIE by the above way.

Then, we iterate to update each of similarity networks as below:

SM(t)
MSS = S_knMSS ×

(∑
k �=MSS SM(t−1)

k

m − 1

)
× (

S_knMSS
)T (15)

SM(t)
MGIP = S_knMGIP ×

(∑
k �=MGIP SM(t−1)

k

m − 1

)
× (

S_knMGIP
)T (16)

SM(t)
MSIE = S_knMSIE ×

(∑
k �=MSIE SM(t−1)

k

m − 1

)
× (

S_knMSIE
)T (17)

Here, m represents the number of distinct similarity networks
of metabolites. There are three kinds of metabolite similarity
networks, so m is equal to 3. k represents the current selected
metabolite similarity network, which can take values of MSS or
MGIP or MSIE. t refers to the number of iterations performed.
SM(t)

MSS, SM(t)
MGIP and SM(t)

MSIE denote the status matrix of SMMSS,
SMMGIP and SMMSIE after t iterations, respectively. Renormalizing
and calculating the comprehensive similarity network is needed
after each iteration. The comprehensive similarity network SM is
indicated as follows:

SM = SM(t)
MSS + SM(t)

MGIP + SM(t)
MSIE

3
(18)

Once the condition

∥∥∥SM(t)
k −SM(t−1)

k

∥∥∥∥∥∥SM(t−1)

k

∥∥∥ < 10−6 is met, the iteration is

terminated, and then we convert SM into a symmetric matrix
through SM′ = SM+SMT

2 . The final symmetric matrix SM′ represents
the outcome of our integration. In the similar way, we can also
apply the above rule to get the disease integration network SD′.

Features extraction process
Disease features extraction from five-layer auto-encoder
Auto-encoder is composed of two components, an encoder and
a decoder. Encoder maps data from D dimensions to M dimen-
sions, while decoder maps data from M dimensions back to D
dimensions. Encoding can be viewed as a process of compressing
data, while decoding is the process of decompressing it back to
its original size. The goal of auto-encoder is to learn and extract
the relevant information from the training data by minimizing the
reconstruction error [29].

There are five layers in both the encoder and the decoder in
five-layer auto-encoder module. The reason for using five layers
is that after evaluating the effects of using two, three, four, five
and six layers, it is determined that using five layers produces the
best AUC and area under the precision–recall curve (AUPR) values.
The encoder has five layers with neuron counts of 350, 250, 150,
100 and 64, while the decoder has five layers with neuron counts

of 64, 100, 150, 250 and 350. We take the output of encoder layer
as the characteristics of the disease.

Metabolite features extraction from GAE
GAE module is a tool used to get metabolite features, composed
of an encoder and a decoder. The encoder has two layers, with
128 and 64 neurons, while the decoder also has two layers with
64 and 128 neurons. To enhance the ability of network to learn
correlations between inputs, each layer is equipped with a self-
attention mechanism [30].

The neural network takes in many different-sized vectors as
input, and these vectors have some degree of interdependence
among them. However, during the actual training, the relation-
ship between these inputs cannot be given with full consider-
ation, leading to poor training effect. Self-attention mechanism
can address this limitation by allowing the network to identify
connections among the different components of the input. This
mechanism enables every input vector to output a new vector that
incorporates the effects of all the other input vectors.

We obtain the attention matrix ATTN0 of the first encoder layer
as follows:

ATTN0 = SM′ (
(AW0) V[0]

) + SM′(
(AW0) V[1]

)T (19)

A stands for metabolite and disease correlation matrix. W0 is
trainable weight matrix of the first encoder layer. V represents
the trainable parameter and SM′ denotes the integration similar-
ity matrix of metabolites. At last, we get ATTN0 with a size of
2262∗2262. Then, the attention matrix is normalized by Softmax.

Finally, the output H0 of the first encoder layer is

H0 = ATTN0 ∗ (AW0) (20)

H0 serves as the input of the second encoder layer. With the
same method, we can calculate the attention value ATTN1 and
output results H1 for the second encoder layer as follows. W1 is
the weight matrix of the second encoder layer. Then, we take H1

as the metabolite characteristics.

ATTN1 = SM′ (
(H0W1) V[0]

) + SM′(
(H0W1) V[1]

)T (21)

H1 = ATTN1 ∗ (H0W1) (22)

When it comes to the decoder, it is worth noting that it shares its
parameters with the encoder. For instance, the first decoder layer
utilizes the same attention value ATTN1 with the second encoder
layer, and also shares weight matrix W1 with the second encoder
layer. H1 acts as the input of the first decoder layer. As a result,
the output H2 of the first decoder layer is as follows:

H2 = ATTN1 ∗ (H1W1) (23)

Metabolite and disease features extraction from NMF
NMF, a matrix factorization method proposed by Lee and Seung
et al. in 1999 [31], has been successfully applied in various fields. In
previous studies, Ding et al. utilized NMF to extract the character-
istics of miRNA and disease [28]. Here, we extend the application
of NMF to obtain characteristics of metabolites and diseases. The
core idea of NMF is to decompose a non-negative matrix Am∗n into
two non-negative matrices, Um∗k and Vk∗n, where Am∗n ≈ Um∗kVk∗n,
such that the product of Um∗k and Vk∗n approximates the original
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matrix Am∗n as closely as possible. Specifically, Um∗k and Vk∗n are
referred to as the basis matrix and coefficient matrix, respectively.

Before and after factorization, the column vector of A is the
weighted sum of all column vectors in U, and the weight coef-
ficient is the element of the corresponding column vector of
V. In general, m denotes the number of metabolites while n is
the amount of diseases. k is smaller than m, and (m + n) ∗ k <

mn is met. Tikhonov regularizationL2 is used here to ensure the
smoothness of U and V.

minU≥0,V≥0||W 	 (A − UV) ||2F + λ1‖U‖2
F + λ2‖V‖2

F (24)

A is the adjacency matrix between metabolites and diseases, with
a size of 2262∗216. W takes the same value as A. λ1andλ2are
the regularization coefficients, where λ1 = λ2 = 0.01 and k = 90.
	 represents Hadamard product, which means multiplying the
corresponding elements of two matrices. ‖·‖F is to the matrix
Frobenius norm.

NMF is a non-deterministic polynomial problem, which can be
classified as an optimization problem and solved alternately by
iterative methods. NMF algorithm provides a method of solving
U and V based on simple iterations, which can help reduce the
dimensions of high-dimensional data and is suitable for process-
ing large-scale data.

Assuming that ψ = (ϕik) and Φ = (
φkj

)
are Lagrange multipliers,

then the Lagrange function J of the optimization problem can be
constructed as follows:

J (U, V) = ∣∣|W 	 (A − UV) |∣∣2F + λ1Tr
(
UUT

) + λ2Tr
(
VVT

) +
Tr

(
ψUT

) + Tr
(
φVT

)
(25)

Then, we calculate the partial derivatives of U and V:

∂J
∂U = −2

(
W 	 (A − UV)

(
VT

)) + 2λ1U + ψ

= −2
(
(W 	 A) VT

) + 2
(
W 	 (UV)VT

) + 2λ1U + ψ
(26)

∂J
∂V = −2

(
UT (W 	 (A − UV))

) + 2λ2V + φ

= −2
(
UT (W 	 A)

) + 2
(
UT (W 	 (UV))

) + 2λ2V + φ
(27)

Due to the Karush–Kuhn–Tucker conditions ϕikuik = 0 and
φkjvkj = 0, the updating rule of U and V is further obtained:

u(t+1)

ik ← u(t)
ik

(
(W 	 A) VT

)
ik(

W 	 (UV)VT + λ1U
)

ik

(28)

v(t+1)

kj ← v(t)
kj

(
UT (W 	 A)

)
kj(

UT (W 	 (UV)) + λ2V
)

kj

(29)

U and V are updated 1000 times iteratively to obtain U2262∗90

and V90∗216. Here, 2262 represents the number of metabolites,
while 216 denotes the number of diseases. U2262∗90 is used as the
characteristic matrix of metabolites, while VT

216∗90 is taken as the
characteristic matrix of diseases.

Feature splicing
In summary, our approach leverages three modules to extract a
total of 308 disease and metabolite features. A total of 64 disease
features are extracted from five-layer auto-encoder module, 64
metabolite features are gained from GAE module, and 90 dis-
ease features and 90 metabolite features are obtained from NMF

module. At last, we get 64 + 90 + 90 + 64 = 308 features. Then, we
splice the features obtained from these three modules into a
long feature vector, so each of the metabolite–disease associations
(MDAs) has a 308-dimensional feature vector. If the metabolite
is associated with the disease in the dataset, the corresponding
label is set to 1, otherwise 0. Finally, we send these feature vectors
and corresponding labels to MLP training. Our approach thus
integrates multiple modules and achieves a high-dimensional
representation of MDAs, which enables more accurate classifica-
tion.

MLP classifier
MLP, also named as artificial neural network [32], is a powerful
tool used in data analysis. In addition to the input–output layer, it
includes hidden layers, allowing it to make complex connections
between data points. MDA-AENMF uses a fully connected MLP
with three layers, each with a different number of neurons: 128,
64 and 1.

Since the ratio between positive and negative samples is imbal-
anced, we adopt 1:1 sampling strategy, selecting all positive sam-
ples and an equal number of randomly chosen negative samples.
The features and corresponding labels of the training set are
trained through MLP, and we take the results of the test set in MLP
as the final predictive consequences.

RESULTS
Performance evaluation
To assess the performance of MDA-AENMF, we employ 5-fold CV.
The dataset is divided into five equal parts, where each part is
used once as the test set, while the remaining four parts are used
as the training set. By repeating this process five times, we obtain a
comprehensive evaluation of MDA-AENMF. We use some metrics
to assess the efficacy of MDA-AENMF. The details of these metrics
are defined as follows:

TPR = TP
TP + FN

(30)

FPR = FP
TN + FP

(31)

Precision = TP
TP + FP

(32)

Recall = TP
TP + FN

(33)

In binary classification, a model may predict a sample as either
positive or negative. TP represents a positive sample predicted
to be positive, while FP is the negative sample predicted to be
positive. Conversely, FN denotes the positive sample predicted
to be negative, and TN is the negative sample predicted to be
negative. Precision measures the probability that all the predicted
positive samples are indeed positive, while Recall is the probability
that a positive sample is predicted as positive.

The receiver operating characteristic (ROC) curve, also known
as the susceptibility curve, is a graphical representation of binary
classification performance. It plots FPR on the x-axis, which is
the proportion of negative samples predicted to be positive in all
negative samples, and TPR on the y-axis, which is the proportion
of positive samples predicted to be positive in all positive samples.
The AUC measures the classification effect, with a larger AUC
indicating better performance. The AUPR is another measure of
model performance, especially for unbalanced datasets. In the
precision–recall diagram, the horizontal axis represents Recall,
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Table 1. The main parameters of MDA-AENMF

Structure Parameters Value

KNNs for disease k1 21
KNNs for metabolite k2 226
Five-layer auto-encoder Encoder/decoder layer number 5

Neuron numbers of encoder layer 350, 250, 150, 100, 64
Neuron numbers of decoder layer 64, 100, 150, 250, 350
Optimizer Adam
Loss Mse
Epochs 20
Batch_size 100

GAE Encoder/decoder layer number 2
Neuron numbers of encoder layer 128, 64
Neuron numbers of decoder layer 64, 128
Learning rate Max: 0.005

NMF λ1 0.01
λ2 0.01
k 90

MLP classifier Layer number 3
Neuron numbers of three layers 128, 64, 1
Optimizer Rmsprop
Loss Binary_crossentropy

and the vertical axis denotes Precision. A larger AUPR indicates
that the model has better ability to correctly identify positive
instances and to retrieve all positive instances.

We carefully select and set our parameters in Table 1 for our
experiment. During the integration of disease similarity networks,
we set k1 to 21, which is the number of all diseases divided by 10.
Similarly, during the integration of metabolite similarity networks,
we set k2 to 226, which is the number of all metabolites divided
by 10. For five-layer auto-encoder module, we chose Adam as the
optimizer and Mse as the loss function. In GAE module, we set the
learning rate to a maximum of 0.005. For NMF module, we chose
λ1 = λ2 = 0.01 and k = 90 as the regularization coefficients. For more
detailed hyperparameters of MDA-AENMF, please refer to Table 1.

Comparison with other classifiers
To evaluate the effectiveness of MLP classifier, we conduct a com-
parison analysis with other popular classifiers including Bagging,
Random Forest, AdaBoost, Gradient boosting (GBDT), XGBoost and
LightGBM. The results of this analysis are presented in Table 2.
Impressively, MLP classifier outperforms all other classifiers with
the highest AUC and AUPR scores of 0.975 and 0.973, respectively.
This indicates that MLP can better distinguish between posi-
tive and negative samples and has higher precision for positive
samples. In contrast, Bagging classifier comes in second place
with AUC of 0.941 and AUPR of 0.955. In comparison, AdaBoost
classifier shows the poorest performance, with the lowest AUC
and AUPR scores of 0.904 and 0.928, respectively. The best results
of MLP on AUC and AUPR may be attributed to the application of
neural networks to train features, while other classifiers employ
machine learning ensemble classification algorithms to train fea-
tures. MLP classifier can deal with various complex nonlinear
problems, can adaptively learn features, and has robustness to
a certain degree of noise and outliers. However, Bagging classifier
requires training multiple base classifiers, which may lead to bias
in model prediction due to the possibility of some samples not
being sampled in the random subset used to train base classifiers.
Random Forest classifier requires training multiple decision trees,
which may lead to overfitting. In addition, the performance of

Table 2. Comparison analysis between MLP classifier and other
popular classifiers on the same dataset

Classifier AUPR AUC

MLP 0.973 0.975
Bagging 0.955 0.941
RandomForest 0.952 0.937
AdaBoost 0.928 0.904
GBDT 0.952 0.936
XGBoost 0.931 0.919
LightGBM 0.948 0.931

The bold values are the AUC and AUPR scores when MLP classifier is
adopted in MDAAENMF.

Random Forest classifier may be affected if there is noise or
outliers in the data. GBDT classifier is prone to overfitting because
each tree is built on the basis of the residual of the previous
tree. In addition, it is susceptible to the influence of noise and
outliers, which can result in poor performance. Taking the above
into consideration, we adopt MLP classifier to improve predictive
performance of our model.

Comparison with previous methods
To evaluate the performance of MDA-AENMF, we conduct compar-
ative experiments with five state-of-the-art binary classification
models in the field of bioinformatics, namely, RWR [19], PageRank
[33], KATZ [20], EKRR [34] and GCNAT [25]. In order to enhance the
persuasiveness of the comparative experiments, our comparative
models cover network-based methods, machine learning-based
methods and deep learning-based methods.

(i) RWR calculates pairwise metabolite similarity based on dis-
ease sets, constructs a weighted metabolite association net-
work and uses random walk to predict novel metabolic
markers of diseases.

(ii) PageRank is an algorithm based on graph theory. Each node
in the network has a PageRank value, indicating the impor-
tance of the node.
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Figure 2. ROC curves of MDA-AENMF and comparison methods by 5-fold
CV under the same dataset.

(iii) KATZ is the first model to apply the KATZ algorithm to the
field of metabolomics. The KATZ index can distinguish the
different influence of distinct neighbor nodes.

(iv) EKRR obtains features by integrating multiple similarity net-
works. Multiple base classifiers are obtained by combining
two Kernel Ridge Regression classifiers from the miRNA and
disease sides, respectively, based on random selection of
features. Then, average strategy for these base classifiers is
adopted to obtain final association scores.

(v) GCNAT is an algorithm based on graph neural network, and
each layer of the network is added attention mechanism to
better extract features.

To ensure the authenticity and accuracy of the comparison,
we evaluate all six models on the same dataset. As illustrated in
Figure 2, MDA-AENMF achieves the highest AUC value of 0.974,
surpassing the other models by a significant margin. Specifi-
cally, MDA-AENMF outperforms RWR, EKRR, PageRank, KATZ and
GCNAT by 30.8%, 29.6%, 17.8%, 8.8% and 4.9% in terms of AUC,
respectively. The observed discrepancy between PageRank and
MDA-AENMF may stem from the former lack of consideration
for biological similarity, which results in lower evaluation scores.
Although other models incorporate similarity measures, their
similarity networks are fewer than those used by MDA-AENMF,
which employs a nonlinear integration method. In contrast, the
other models, except for GCNAT, rely on optimization and com-
plex network algorithms, without incorporating neural networks
and attention mechanisms, thereby resulting in lower perfor-
mance. As depicted in Figure 3, MDA-AENMF demonstrates a
remarkable improvement compared to other algorithms in terms
of AUPR, exhibiting 84.5%, 74.7%, 69%, 57.5% and 56.8% higher per-
formance than that of RWR, PageRank, KATZ, EKRR and GCNAT,
respectively. This impressive performance can be attributed to
our adoption of a 1:1 sampling strategy for positive and negative
samples. By comparing MDA-AENMF to these state-of-the-art
models, we can demonstrate its superior performance in binary
classification tasks in the field of bioinformatics.

External validation
To further demonstrate the impressive generalization ability of
MDA-AENMF, we conduct a comparison by using the same dataset
with Deep-DRM [22]. As shown in Figure 4, the AUC and AUPR
achieved by Deep-DRM are 0.952 and 0.939, respectively. However,
the AUC and AUPR obtained by MDA-AENMF are 1.7% and 2.7%
higher than those of Deep-DRM, indicating that MDA-AENMF
outperforms Deep-DRM to a certain extent. This superiority may
be attributed to the utilization of multiple metabolite and disease

Figure 3. PR curves of MDA-AENMF and comparison methods by 5-fold
CV under the same dataset.

Figure 4. Comparison results between MDA-AENMF and Deep-DRM.

similarity networks and incorporation of attention mechanisms
during feature extraction.

Case studies
To further analyze the performance of MDA-AENMF and the
accuracy of predictive results, we conduct case studies on four
diseases, namely, leukemia, uremia, obesity and hepatitis. Our
objective is to identify associations present in the prediction
results that are not present in the original dataset and then vali-
date the top 20 ranked new associations. Leukemia is a malignant
tumor disease of hematopoietic stem cells in the hematopoietic
system [35]. There are four main symptoms of leukemia including
fever, bleeding in gums and nose, bone pain and anemia [36].
Through a case study of leukemia, we examine the top 20 new
associations and the validated results are shown in Table 3. For
instance, hypoxanthine and its nucleoside enhance differentia-
tion induction properties of HL-60 promyelocytic leukemia cells
[37]. Choline-magnesium trisalicylate regulates gene expression
in acute myeloid leukemia during induction chemotherapy [38].
In addition, the apoptotic effect of lactic acid bacteria on human
T leukemia cell line is related to the activity of arginine deiminase
and/or sphingomyelin enzyme [39].

Uremia is a chronic renal failure end-stage syndrome that
can cause a range of distressing symptoms, including nausea,
vomiting, edema, bleeding and arrhythmia [40]. Through case
analysis of uremia, 18 of 20 new associations have been verified
as shown in Table 4. For example, in patients with chronic renal
failure, intracellular concentrations of valine, threonine, lysine
and carnosine are lower. In addition, serine, tyrosine and taurine
are also usually low on low protein diets and hemodialysis [41].
There is an increased production and release of alanine and
glutamine in skeletal muscle of rats with chronic uremia, and
this increase appears to be due in part to enhanced net protein
degradation [42].
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Table 3. Top 20 potential metabolites associated with leukemia

Leukemia

Rank Metabolite name Evidences Confirmed PMID

1 Citrulline HMDB0000904 Yes 32115690
2 Hypoxanthine HMDB0000157 Yes 3855287
3 l-Aspartic acid HMDB0000191 Yes 22356135
4 Choline HMDB0000097 Yes 27659510
5 Creatinine HMDB0000562 Yes 13684930
6 Creatine HMDB0000064 Yes 13684930
7 p-Hydroxyphenylacetic acid HMDB0000020 No –
8 l-Lactic acid HMDB0000190 Yes 11962255
9 Betaine HMDB0000043 Yes 14950203
10 Trimethylamine N-oxide HMDB0000925 No –
11 Citric acid HMDB0000094 No –
12 Homovanillic acid HMDB0000118 No –
13 Pyruvic acid HMDB0000243 Yes 13778379
14 l-Proline HMDB0000162 Yes 29307398
15 Homocysteine HMDB0000742 Yes 1988122
16 Hippuric acid HMDB0000714 No –
17 gamma-Aminobutyric acid HMDB0000112 No –
18 Succinic acid HMDB0000254 Yes 33199038
19 Testosterone HMDB0000234 Yes 9783810
20 Bilirubin HMDB0000054 Yes 35658244

Table 4. Top 20 potential metabolites associated with uremia

Uremia

Rank Metabolite name Evidences Confirmed PMID

1 l-Tyrosine HMDB0000158 Yes 237643
2 Taurine HMDB0000251 Yes 2674259
3 l-Arginine HMDB0000517 Yes 12883450
4 Homovanillic acid HMDB0000118 No –
5 l-Lysine HMDB0000182 Yes 2674258
6 l-Glutamine HMDB0000641 Yes 690188
7 l-Phenylalanine HMDB0000159 Yes 2674258
8 l-Serine HMDB0000187 Yes 2674259
9 Glycine HMDB0000123 Yes 237643
10 l-Tryptophan HMDB0000929 Yes 11867954
11 Vanylglycol HMDB0001490 No –
12 l-Histidine HMDB0000177 Yes 4753036
13 Citric acid HMDB0000094 Yes 13475172
14 l-Isoleucine HMDB0000172 Yes 2674258
15 l-Valine HMDB0000883 Yes 685880
16 Creatinine HMDB0000562 Yes 14799499
17 l-Alanine HMDB0000161 Yes 690188
18 Citrulline HMDB0000904 Yes 2079537
19 Betaine HMDB0000043 Yes 7301006
20 l-Threonine HMDB0000167 Yes 2674258

Obesity is a chronic metabolic disease that is characterized
by the accumulation of excess weight and fat in the body
[43]. Severe obesity can have serious consequences for overall
health, leading to abnormal metabolism and placing a burden
on various organs. We investigate the top 20 new associations
through case studies of obesity, and the results are presented
in Table 5. For example, obese women typically have higher
average serum creatinine and creatinine clearance rates than
normal healthy women [44]. In addition, research has shown
that dietary supplementation with l-leucine and l-alanine can

have an acute effect in preventing obesity caused by a high-fat
diet [45].

Hepatitis is an inflammation caused by damage to liver cells.
Clinical symptoms include fatigue, bloating, anorexia, emaciation,
yellowish face, and even nausea and vomiting [46]. Through case
analysis of hepatitis, we examine the top 20 new associations, 15
of which have been validated in Table 6. For example, research
has shown that calcium phosphate nanoparticles can provide
some immunity against hepatitis B virus genes in vitro and in
vivo [47]. Furthermore, in more severe cases of cholestasis or liver
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Table 5. Top 20 potential metabolites associated with obesity

Obesity

Rank Metabolite name Evidences Confirmed PMID

1 Cholesterol HMDB0000067 Yes 20025694
2 Creatinine HMDB0000562 Yes 34605468
3 Dopamine HMDB0000073 Yes 26514168
4 5-Hydroxyindoleacetic

acid
HMDB0000763 Yes 6184736

5 Cortisol HMDB0000063 Yes 27345309
6 Glycerol HMDB0000131 Yes 1607071
7 l-Alanine HMDB0000161 Yes 22847780
8 Iron HMDB0015531 Yes 35466128
9 Trimethylamine N-oxide HMDB0000925 Yes 32017391
10 1-Methyladenosine HMDB0003331 No –
11 l-Lysine HMDB0000182 No –
12 Androstenedione HMDB0000053 No –
13 Creatine HMDB0000064 Yes 28885625
14 l-Lactic acid HMDB0000190 Yes 24232731
15 Epinephrine HMDB0000068 Yes 11229419
16 Testosterone HMDB0000234 Yes 25982085
17 d-Glucose HMDB0000122 Yes 5040914
18 Homovanillic acid HMDB0000118 No –
19 24-Hydroxycholesterol HMDB0001419 No –
20 Uracil HMDB0000300 No –

dysfunction, the excretion of cobioline I in the biliary tract is
reduced [48]. Finally, neuropeptide Y and substance P released
by nerve fibers and immune cells are believed to play a role
in inflammation and elimination of inflammation in hepatitis
[49].

In addition to the above four diseases, we have also done case
studies of other nine diseases, and we have selected the top 20
new associations to verify for each of those diseases. For details,
please refer to the Supplementary Materials.

Ablation experiments
To further evaluate the generalization and robustness of MDA-
AENMF, we conduct a series of ablation experiments on the three
feature extraction modules to confirm the contribution of each
module. In the ablation experiments, we remove one module at a
time while keeping the other two modules unchanged. To ensure
the accuracy of our results, we perform these experiments on the
same data samples.

(i) Del-DAE: five-layer auto-encoder is deleted from MDA-
AENMF.

(ii) Del-NMF: the application of NMF is abandoned.
(iii) Del-MAE: GAE is no longer in use.

As shown in Figure 5, we can see that MDA-AENMF achieves
the highest AUC and AUPR values of 0.975 and 0.973, respectively.
The AUC and AUPR of Del-DAE are 0.947 and 0.945, respec-
tively. Compared with MDA-AENMF, AUC decreases by 2.8% and
AUPR reduces by 2.8%, indicating that the disease characteris-
tics extracted by the five-layer auto-encoder are significant for
our training. When we perform Del-NMF, it produces inferior
results, with AUC and AUPR values of 0.834 and 0.806, respec-
tively. This underscores the importance of both the 90 disease
features and 90 metabolite features obtained by NMF, which
are critical components of MDA-AENMF. Finally, when we train
Del-MAE, we could see that the value of each index is slightly
lower than that of MDA-AENMF, revealing that GAE also plays

Figure 5. Comparison analysis between MDA-AENMF and its ablation
experiments.

its role in our characteristic training. To sum up, one of these
three modules is indispensable, and all features are crucial for
predicting the potential associations between metabolites and
diseases.

DISCUSSION AND CONCLUSION
With the rapid advancement of medical technology, it is
increasingly apparent that the relationship between diseases
and metabolites is becoming closer. The occurrence of each
disease will be accompanied by specific changes in the level of
some metabolites in the human body. Accurately identifying and
quantifying these changes can help in assessing the severity of the
disease and determining appropriate treatment options. However,
the traditional research methods can be time consuming and
expensive. In response to this challenge, researchers have
started to explore the application of optimization algorithms
and complex network algorithms to predict the relationship
between metabolites and diseases. In past studies, Hu et al. used
random walk to identify disease-related metabolites in 2018
[19]. Weighted metabolite association network is constructed
by using the similarity of all metabolite pairs. This network is
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Table 6. Top 20 potential metabolites associated with hepatitis

Hepatitis

Rank Metabolite name Evidences Confirmed PMID

1 Cholesterol HMDB0000067 Yes 35409259
2 d-Glucose HMDB0000122 Yes 23347806
3 Homocysteine HMDB0000742 Yes 17483780
4 Phosphate HMDB0001429 Yes 32344172
5 Dopamine HMDB0000073 Yes –
6 1-Methyladenosine HMDB0003331 No –
7 Coproporphyrin I HMDB0000643 Yes 10735544
8 Quinolinic acid HMDB0000232 Yes –
9 Bilirubin HMDB0000054 Yes 33516950
10 Substance P HMDB0001897 Yes 26568102
11 Cortisol HMDB0000063 Yes 20848846
12 Androstenedione HMDB0000053 Yes 25912488
13 Heptacarboxylporphyrin I HMDB0000737 No –
14 Glycine HMDB0000123 Yes 31966360
15 24-Hydroxycholesterol HMDB0001419 No –
16 Uric acid HMDB0000289 Yes 33978375
17 Leukotriene C4 HMDB0001198 Yes 10770113
18 Calcium HMDB0000464 Yes 29307794
19 Coproporphyrin III HMDB0000570 Yes 29856826
20 Iron HMDB0015531 Yes 24251712

then used to predict new metabolic markers of disease using
random walks. Later, Lei et al. developed a calculation method
based on KATZ to predict the metabolite–disease association
[20]. More reliable disease similarity is obtained by integrating
disease semantic similarity and improved disease Gaussian
Interaction profile kernel similarity. In 2020, Lei et al. proposed
a linear neighborhood similarity with improved bipartite network
projection algorithm [21]. The linear neighborhood similarity
matrix of metabolites (diseases) is reconstructed based on
the new characteristics obtained from the known metabolite–
disease associations and the combined similarity. Then, an
improved bipartite network projection method is used to predict
associations between metabolites and diseases. Furthermore,
Zhao et al. introduced a Deep-DRM model in 2021 [22], which
codes metabolites and disease similarity networks, respectively,
by using graph convolution network to obtain corresponding
characteristics. Then, PCA is used to reduce the dimensions of
features. Finally, based on these features, a deep neural network
is constructed to identify MDAs. In the same year, Zhang et al.
proposed a calculation method called LGBMMDA [23]. This
method extracts features from statistical measurements, graph
theory measurements and matrix factorization results, uses PCA
to remove noise or redundancy, and finally sends these features
to the classifier LGBM for prediction. In 2022, Tie et al. proposed
a metabolite–disease association prediction algorithm based on
DeepWalk and random forest [24]. DeepWalk is used to extract
metabolite characteristics based on metabolite–gene association
network, and random forest is used to predict the association
between metabolite and disease. During the same period, Sun et al.
came up with a graph neural network to predict the associations
between metabolites and diseases [25]. A heterogeneous network
is constructed based on the metabolite–disease associations,
metabolite similarities and disease similarities. Each layer of
graph neural network is added attention mechanism to precisely
concentrate on crucial information within the input data. While
these methods have shown some promise, there have been few
instances where neural networks and attention mechanisms are

simultaneously employed. The number of established networks
for metabolite and disease similarities is also limited, and the
integration of these networks often relies on linear methods,
which fail to effectively combine various features. In addition,
there is room for further improvement in the accuracy of their
predictions. To address those issues, we propose a novel deep
learning method named MDA-AENMF to predict the potential
correlations between metabolites and diseases. This method
integrates multiple similarities for diseases and metabolites, and
employs a variety of feature extraction techniques, including five-
layer auto-encoder for disease features, NMF for metabolite and
disease features, and GAE for metabolite features. These features
are then combined into a long vector and fed into MLP classifier
for training. Our method has achieved a remarkable AUC of 0.975
and an AUPR of 0.973 by 5-fold CV, demonstrating its superiority
over previous methods. We also conduct case studies on four
diseases, including leukemia, uremia, obesity and hepatitis, which
further confirm the effectiveness and predictive power of MDA-
AENMF.

The good performance of MDA-AENMF can be attributed
to several key factors. First, we compute DSS, DGIP and DSIE
for diseases, and MSS, MGIP and MSIE for metabolites. The
computation of these similarity networks greatly increases
biological information and leads to more illustrative predic-
tive results. Second, the application of nonlinear integration
method to combine these similarity networks improves the
accuracy of similarity measurements compared with tradi-
tional linear integration methods. Third, we employ three
feature extraction modules for both metabolites and diseases,
which are indispensable to achieving our excellent predictive
results. At last, we combine all of the extracted features for
each metabolite–disease pair to form a more comprehensive
vector of high-quality feature information, and then send
this feature vector and corresponding tag to the classifier for
training. The impressive performance of MDA-AENMF also
confirms that the features we extract are meaningful and
high-quality..
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However, MDA-AENMF still has a few shortcomings. First, the
obtained metabolite and disease association matrix is a sparse
matrix, with a significant imbalance between positive and nega-
tive samples, where positive samples are outnumbered by neg-
ative samples by a ratio of almost 1:100. Second, although we
have calculated a variety of similar networks for metabolites or
diseases, the increased biological information results in noise, and
some features extracted from multiple modules are redundant.
Third, further optimization of certain parameters may be neces-
sary to achieve better results. How to overcome these problems
is also a challenge in our future study. Nevertheless, we are
confident that with the confirmation of more metabolite–disease
associations and the development of more efficient parameter
optimization algorithms, we can enhance the predictive perfor-
mance of MDA-AENMF.

Key Points

• We calculate multiple similarity networks for diseases
and metabolites, and integrate them in a nonlinear way.

• We leverage advanced techniques such as five-layer
auto-encoder, NMF and GAE to extract dimension reduc-
tion features for metabolites and diseases.

• We construct a long feature vector for each metabo-
lite–disease pair by splicing together their respective
features. These feature vectors, along with their corre-
sponding tags, are used to train MLP classifier.
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