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Abstract

U-structure has become a foundational approach in medical image segmentation, consistently
demonstrating strong performance across various segmentation tasks. Most current models
are based on this framework, customizing encoder-decoder components to achieve higher
accuracy across various segmentation challenges. However, this often comes at the cost of
increased parameter counts, which inevitably limits their practicality in real-world
applications. In this study, we provide an E-shaped segmentation framework that discards
the traditional step-by-step resolution recovery decoding process, instead directly
aggregating multi-scale features extracted by the encoder at each stage for deep cross-level
integration. Additionally, we propose an innovative multi-scale large-kernel convolution
(MLKConv) module, designed to enhance high-level feature representation by effectively
capturing both local and global contextual information. Compared to U-structure, the
proposed E-structured approach significantly reduces parameters while delivering superior
performance, especially in complex segmentation tasks. Based on this structure, we develop
two segmentation networks specifically for 2D and 3D medical images. 2D E-SegNet is
evaluated on three 2D segmentation benchmark datasets (Synapse multi-organ, ACDC,
Kvasir-Seg, and BUSI), while 3D E-SegNet is assessed on four 3D segmentation benchmark
datasets (Synapse, ACDC, NIH Pancreas, and Lung). Experimental results demonstrate that
our approach outperforms the current leading U-shaped models across multiple datasets,
achieving new state-of-the-art (SOTA) performance with fewer parameters. In summary, our
research introduces a novel approach to medical image segmentation, offering potential
improvements and contributing to ongoing advancements in the field. Our code is publicly
available on https://github.com/zhaoqi106/E-SegNet.

MAIN TEXT
1. Introduction

Image segmentation plays a crucial role in medical image processing and analysis,
effectively assisting healthcare professionals in diagnosis. It significantly reduces the
learning curve and time investment for medical personnel, providing faster and more
precise diagnostic tools that accelerate workflows and enhance the efficiency and
accuracy of clinical work. Traditional medical image segmentation relies on
mathematical methods such as edge detection, thresholding, and machine learning [1],
but these often fall short for complex medical images with diverse types and blurred
boundaries. In recent years, deep learning approaches have gained popularity and
have been widely applied in various fields of bioinformatics. These applications
include prediction of miRNA-IncRNA interactions [2-4], computational toxicology [5-
7], metabolite-disease associations prediction [8, 9], remote health monitoring [10-
13], proteomics identification [14], and histopathological image analysis [15-17].
Thanks to the rapid advancements in deep learning, its performance in medical image
segmentation has now far surpassed traditional methods. However, current
segmentation algorithms often rely on stacking additional modules to enhance
accuracy, leading to model expansion that is challenging to deploy in resource-
constrained environments. Consequently, developing a versatile, lightweight, and
precise segmentation algorithm has been a driving force in our research.

Since the advent of convolutional neural networks (CNNs) in 2010, they have
dominated the field of computer vision. The convolution-based U-Net [18], with its
encoder-decoder structure and skip connection technique, has demonstrated
considerable advantages in semantic segmentation tasks. Influenced by U-Net, models
such as U-Net++ [19], ResUnet [20], Attention U-Net [21], CE-Net [22], Unet3+ [23],
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ii)

and Kiu-Net [24] adopted similar U-structures, leading to significant progress in
various medical segmentation tasks and further validating this architecture’s
effectiveness. With the rise of Vision Transformer (ViT) [25] in 2020, it has gained
widespread recognition in medical image segmentation due to its larger receptive field
and powerful modeling capabilities. Following this trend, SwinUnet [26] and
AgileFormer [27] leveraged various ViT adaptations, using an inverted encoder
structure to construct decoders and forming purely ViT-based U-shaped segmentation
networks. Models like UCTransNet [28], EMCAD [29], 2D D-LKA [30], and MIST [31]
combine ViT encoders with CNN decoders, effectively enhancing both global and local
feature modeling. These studies have promoted the rapid development of U-structure
framework in 2D medical image segmentation. In 3D medical image segmentation, U-
shaped structure is equally widely adopted. Models such as UNETR [32], UNETR++
[33], Swin UNETR [34], nnFormer [35], and D-LKA Net [30] have all utilized this
architecture, achieving remarkable results in their respective segmentation tasks.

However, our research reveals that the symmetric encoder-decoder structure of
U-shaped networks inherently demands a large number of parameters, and deeper
network layers increase the risk of overfitting during training. For instance, leading
models in 2D segmentation tasks on Synapse dataset now exceed 100 million
parameters, nearly five times the parameter count of SOTA models from 2020, yet they
yield only about a 5% improvement in DSC performance. Analyzing the outputs at each
stage of a U-Net on an abdominal CT image, we observe additional phenomena. Figure
1(B) presents stage outputs without skip connections, while Figure 1(C) shows the
standard U-Net output. Without shallow information from skip connections, the
decoder's output becomes overly abstract and lacks detail, prompting further
exploration into the role of progressive stage information and skip connections in the
decoder. In Figure 1(D), we remove the decoder structure and upsample multi-scale
features from each stage of the skip connections to the same resolution, directly
aggregating them. Feature map preserves global details more effectively than the
traditional U-Net. Comparing the output images in Figures 1(C) and (D), the former
exhibits more pronounced edge contours but loses internal organ details. As semantic
segmentation is a pixel-wise classification task, it inherently prioritizes the
preservation of fine-grained details, which is more effectively achieved in the latter.
However, this focus also leads to the introduction of additional noise and irrelevant
pixels. Therefore, a new refinement module is needed after aggregation to extract
critical features and eliminate redundant information.

Based on these findings, we propose an E-shaped segmentation structure without
conventional progressive decoder. This structure upsamples and aggregates multi-
scale features from each encoder stage to the original resolution, and then applies an
MLKConv module for fine feature extraction, improving inter-pixel and inter-channel
associations. This design enhances segmentation accuracy and feature representation,
effectively capturing intricate details in complex scenes. Specifically, our key
contributions are as follows:

We introduce an E-shaped segmentation architecture that removes conventional

step-by-step decoding process, differing from the U-structure and significantly

reducing model parameters. A novel MLKConv module is designed, utilizing
depthwise convolutions with varying scales and dilation rates to efficiently extract
and fuse local and global information with minimal parameters.

Based on this E-structure, we construct an efficient 2D segmentation model, and

evaluate it on four different types of public medical datasets. Our model surpasses
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most current U-structure methods in segmentation accuracy and achieves the
lower parameter count and faster inference speed among models with
comparable performance.

iii) Furthermore, we develop a 3D segmentation model based on this E-structure with
ViT as the encoder, demonstrating the structure's generality across 2D and 3D
segmentation tasks. Testing on four public 3D medical segmentation datasets, we
achieve leading results with fewer parameter count.

iv) We re-design several U-shaped networks, adapting them to E-structure, and
perform comparative analyses with their original U-structure counterparts. This
evaluation validates the extensibility of E-structure by assessing its advantages
and limitations.

2. Results

To comprehensively evaluate our method, we benchmark 2D E-SegNet on
Synapse [36], ACDC [37], Kvasir-SEG [38], and BUSI [39] datasets, and 3D E-SegNet on
Synapse, NIH Pancreas [40], ACDC and the Medical Segmentation Decathlon-Lung [41]
datasets against current leading methods. Additionally, we extend some methods to E-
structure and conduct comparisons with their original structures.

2.1 Datasets and evaluation metrics

Synapse multi-organ dataset contains 30 clinical abdominal CT scans with a total
of 3779 axial images. Each CT volume consists of 85 to 198 slices with a resolution of
512x512, accompanied by segmentation masks of 13 organs. Our model is trained on
18 cases and evaluated on the remaining 12 cases. Consistent with previous work, we
report segmentation performance on eight abdominal organs: spleen, right kidney, left
kidney, gallbladder, liver, stomach, aorta, and pancreas. ACDC dataset consists of MRI
images from various patients, with annotations for left ventricle (LV), right ventricle
(RV), and myocardium (Myo). This dataset is divided into 70 training, 10 validation,
and 20 testing samples. NIH Pancreas-CT dataset comprises 82 contrast-enhanced 3D
abdominal CT scans focusing on the pancreas region, with each scan manually
annotated by experts to delineate pancreatic contours. Among them, 62 scans are used
for training and the rest for testing. Kvasir-SEG dataset focuses on the segmentation of
colorectal polyps in endoscopic images, containing 1000 polyp images along with their
respective segmentation masks. The dataset is split into training, validation, and
testing sets in an 8:1:1 ratio. Lung dataset consists of 63 CT volumes for a two-class
segmentation task, aimed at distinguishing lung cancer from the background. The data
is split into a 4:1 ratio for training and validation. BUSI dataset comprises 780 breast
ultrasound images annotated for binary segmentation tasks involving normal and
tumor regions. These images are collected from 600 female patients, and include
samples of varying quality and diverse lesion characteristics. Due to the lack of a
standardized dataset split or official partitioning protocol, we adopt a five-fold cross-
validation strategy to ensure a fair and robust evaluation. All datasets, except BUS],
follow the official and previously established partitioning protocols.

For the above mentioned datasets, we follow the evaluation metrics used in prior
work, including average Dice Similarity Coefficient (DSC), mean Intersection over
Union (IOU), Jaccard index, average surface distance (ASD), and 95% Hausdorff
Distance (HD95). DSC, I0U, and Jaccard index assess the overlap between
segmentation results and ground truth annotations, where values closer to 1 indicate
greater overlap. ASD and HD95 reflect the closeness between the predicted boundary
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and the true boundary, with smaller values indicating better accuracy. Their formulas
are as follows:

Co 2|XmY|, 0
| X |+]Y|
IOU = Jaccard = M (2)
| XY
1
=———(_d(a,5,)+ )_d(b,Sy)), 3)
| Sy [+]Sy | Zs: ' bZS g
HD9S5 = max{sup inf d(x, y),supinf d( y,x)}. (4)
xeX yeY yeY xeX

In these formulas, X and Y represent the sets of predicted and ground truth
segmentation pixels, respectively, and Sy and Sy denote the sets of points on the
predicted and ground truth segmentation boundaries. The term d(a,Sy) indicates the
shortest distance from a predicted boundary point a to the true boundary Sy, and
d(b,Sx) represents the shortest distance from a ground truth boundary point b to the
predicted boundary Sx. The operators sup and inf denote the supremum (maximum)
and infimum (minimum), respectively. HD95 calculates Hausdorff distance by
excluding the largest 5% of distances, thereby reducing the impact of outliers.

2.2 Training strategies

Our model is implemented in Python 3.8 and PyTorch 2.0.1 and tested on an RTX
3090 GPU. For dataset splitting and evaluation metrics, we adhere strictly to the
standards established in prior studies. 2D E-SegNet is trained for 400 epochs with a
batch size of 8, a base learning rate of le-4, and the AdamW optimizer. The loss
function combines Dice loss Lg;..and cross-entropy L., computed as follows:

L, =0.6xL, +04xL_. )

total

For 3D E-SegNet, we adopt the training strategy used by nnFormer [35], with a
batch size of 2 and a base learning rate of 1e-4, using the AdamW optimizer. 3D E-
SegNet is trained for 1000 epochs using image patches of size 128x128x64, with 250
patches per epoch. The formula for calculating the loss function is as follows:

Ltotal = L + Lce' (6)
These configurations are slightly adjusted across different datasets to
accommodate varying data characteristics. Appendix S1 provides the complete

training configurations and an explanation of the different loss weightings applied in
2D and 3D models.

dice

2.3 2D models comparative experiments

We conduct a comprehensive comparison of the superior performance achieved
by our 2D method against other 2D models on Synapse dataset. As shown in Table 1,
2D E-SegNet achieves DSC of 86.15% and HD95 of 14.60. This result indicates that 2D
E-SegNet demonstrates a clear superiority over previously established leading
models, outperforming AgileFormer by 0.41%. Compared to other methods, it exhibits
a more substantial advantage. Notably, 2D E-SegNet achieves the best results in
segmenting specific anatomical regions, such as the spleen, stomach, aorta, and
pancreas. In particular, it improves pancreas segmentation by impressive 2.64% over
the second-best method. These regions, characterized by blurred boundaries,
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irregular shapes, and large spans, have traditionally been challenging for SOTA
methods. The significant improvements by our model in these complex target areas
indicate its strong advantage in handling intricate segmentations. The qualitative
comparison of different methods is shown in Figure 2(A), in the segmentation of the
pancreas, liver, and stomach, 2D E-SegNet demonstrates cleaner and more accurate
boundaries, significantly reducing misclassifications and better representing the true
shape of organs. In contrast, AgileFormer and MERIT exhibit under-segmentation or
misclassification in large organs such as the liver and stomach, and fail to accurately
delineate small, irregularly shaped organs like the pancreas. SwinUnet performs
noticeably worse, producing jagged and fragmented boundaries, particularly in these
challenging regions.

The segmentation performance on ACDC dataset is shown in Table 2. 2D E-SegNet
achieves DSC of 92.53%, outperforming the second-best method by 0.21%, with the
best performance on RV and MYO segmentations. A qualitative comparison, illustrated
in Figure 2(B), shows that 2D E-SegNet more accurately tracks complex contours. For
RV region, other methods tend to over-segment or under-segment, whereas our
method provides a more precise segmentation.

The comparison with leading methods on Kvasir-SEG dataset is shown in Table 3.
2D E-SegNet achieves DSC of 94.83% and mean 10U of 90.66%, outperforming the
second-best method by 0.38% and 0.92%, respectively. The segmentation
visualization results are shown in Figure 2(C). 2D E-SegNet produces more complete
and accurate segmentation shapes, with sharper boundaries that better preserve the
true morphology of polyps, even when lesion regions closely resemble surrounding
tissues. In contrast, FCB Former and EMCAD display fragmented and noisy predictions
near boundaries. FCB Former tends to under-segment the lesion area, while EMCAD
suffers from both under- and over-segmentation, with predictions occasionally
spilling into adjacent tissue.

The DSC distribution for test samples on Synapse, ACDC, and Kvasir-Seg datasets
is shown in Figure 2(D), (E), and (F), respectively, while the proportions of DSC values
across different intervals are illustrated in Figure 2(G). A significant majority of
samples achieve a DSC above 0.9, with 87% on Synapse, 92% on ACDC, and 93% on
Kvasir-Seg. Notably, for Kvasir-Seg dataset, which focuses on polyp pathology
segmentation, all results are above 65%. This highlights the robustness and stability
of 2D E-SegNet in producing accurate and reliable segmentation results across diverse
datasets. These findings demonstrate the strong generalization ability of 2D E-SegNet,
ensuring consistent and precise segmentation performance across various 2D tasks
and datasets.

The comparison with other methods on BUSI dataset is shown in Table 4. 2D E-

SegNet achieves an average DSC of 81.91 * 1.47% and a mean IOU of 74.45 = 1.56%,
surpassing the second-best method, AgileFormer, which obtains 78.63 * 2.56% in

average DSC and 70.47 £ 2.70% in mean I0U. Moreover, E-SegNet demonstrates

better stability across the five-fold cross-validation, as evidenced by its lower standard
deviation in both metrics.

2.4 3D models comparative experiments

We compare our 3D method with previous SOTA methods on Synapse dataset. As
shown in Table 5, 3D E-SegNet achieves DSC of 87.76% and HD95 of 6.32, ranking first
in both metrics. Compared to D-LKA Net (the previous leading method), it achieves a
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DSC improvement of 0.27% and an HD95 improvement of 3.25. Performance is slightly
improved on left kidney and significantly enhanced on gallbladder and liver. The 3D
segmentation visualizations on Synapse dataset are shown in Figure 3(A). 3D E-SegNet
demonstrates greater spatial consistency and volume fidelity, particularly in the
segmentation of liver, pancreas, and inferior vena cava. In contrast, D-LKA Net and
UNETR++ tend to produce volumetric inflation of liver, with visible over-extension
into surrounding regions. Meanwhile, nnFormer and UNETR++ under-represent
pancreas and inferior vena cava, leading to noticeable discontinuities in the
reconstructed structures. While 3D E-SegNet, like other methods, also exhibits mild
over-segmentation in the spleen, it better preserves the overall anatomical structure
and continuity across adjacent organs.

The comparison of segmentation results on NIH Pancreas dataset is shown in
Table 6. 3D E-SegNet outperforms the current SOTA methods across all four metrics:
DSC, Jaccard, HD95, and ASD. Notably, compared to the previous best results, 3D E-
SegNet achieves remarkable improvements of 4%, 5.56%, 3.31, and 0.89 in these
metrics, respectively. A qualitative comparison of different methods in Figure 3(B)
demonstrates that our model has a clear advantage in capturing the overall structure
of the pancreas, accurately following the highly irregular shape of the organ.

The DSC distribution for test samples on Synapse (3D) and NIH Pancreas datasets
is shown in Figure 3(C) and (D), respectively. All samples achieve a DSC above 60%,
with most values concentrated around 80%-90%, closely aligning with the average
performance on both datasets. This highlights the strong capability of 3D E-SegNet to
deliver accurate segmentation across multiple organs, demonstrating robustness and
stability in handling the diverse anatomical and structural complexities inherent to 3D
medical imaging.

The comparison of the segmentation results with advanced 3D models on larger
datasets is shown in Table 7. On Lung and ACDC datasets. 3D E-SegNet achieved
average DSCs of 81.77% and 92.92%, respectively, outperforming the previous best
method, UNETR++, by 1.09% and 0.09%.

2.5 Computational efficiency

We conduct a comprehensive evaluation of computational performance and
resource utilization of E-SegNet and other advanced methods. As shown in Figure 4, in
2D segmentation tasks, 2D E-SegNet achieves a high inference speed of 74.63 FPS with
30.88M parameters and 15.77 GFLOPs. Compared to SwinUNet, which has similar
computational performance (27.17M parameters, 24.56G FLOPs, 73.71 FPS), 2D E-
SegNet achieves 7.02% and 2.53% higher segmentation accuracy on Synapse and
ACDC datasets, respectively. Compared to AgileFormer, which delivers comparable
segmentation performance, 2D E-SegNet reduces parameters and FLOPs by 73% and
85%), respectively, and improves inference speed by 418%. In 3D segmentation tasks,
3D E-SegNet maintains good parameter efficiency (31.74M) and inference speed
(78.62 FPS), representing improvements of 28.24% and 96.06%, respectively,
compared to D-LKA Net (42.35M parameters, 40.10 FPS). Compared with UNETR
(92.49M parameters, 88.96 FPS), which offers similar computational performance, E-
SegNet achieves 9.41%, 7.8%, 8.48%, and 6.31% higher segmentation accuracy across
four datasets. Nevertheless, its advantage in FLOPs is less pronounced, mainly due to
the high-channel encoder structure and voxel-level operations. Additional details on
computational efficiency and resource usage are provided in Appendix S2.
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2.6 Ablation study

We further investigate the impact of multi-stage feature aggregation on
segmentation performance within the E-structure by conducting additional tests on
both 2D and 3D E-SegNet using the Synapse dataset. As shown in Table 8, stage 1
represents the output of stem layer in 2D E-SegNet and the patch embedding layer in
3D E-SegNet, while stages 2-5 refer to the outputs of each subsequent MobileNet block
or Video Swin Transformer stage, respectively. For example, [1,2,3,4,5] indicates
cross-scale aggregation across all stages, including the stem or patch embedding layer,
whereas [4,5] represents aggregation of only the last two stages. Our evaluation
reveals that aggregating all stages achieves the highest DSC in 2D E-SegNet model,
while aggregating only Stages 3, 4, and 5 results in the lowest HD95. In 3D E-SegNet,
the best results for DSC and HD95 are achieved by aggregating all stages except for the
patch embedding layer. However, when the patch embedding layer is included in the
aggregation, segmentation performance significantly declines. This performance drop
can be attributed to the fact that the initial feature representations from the patch
embedding layer are relatively coarse and superficial, lacking the rich spatial details
and semantic context learned in the later stages of the network. Therefore, including
these early-stage features introduces noise into the aggregation, and their alignment
with the outputs from the subsequent layers of the Transformer network is typically
poor. This misalignment interferes with the finer, more advanced features from the
later stages, weakening the model's ability to capture fine-grained details, particularly
in complex anatomical structures, thereby reducing segmentation performance.

The effect of different refinement strategies on the modeling capacity of
aggregated features is also examined through a set of ablation experiments, where the
default MLKConv module is replaced with alternative designs. The compared
configurations include: (1) the proposed MLKConv module; (2) a DoubleConv block
consisting of two consecutive blocks of convolution (3%3), batch normalization, and
ReLU; (3) an SE-enhanced convolutional block (SE+BasicConv), consisting of an SE
module and a 3%3 convolution with batch normalization and ReLU; and (4) removal of
the refinement module entirely (None). These replacements are applied only to the
refinement path while maintaining a consistent backbone across all models. For 3D
tasks, the modules are implemented using their corresponding 3D counterparts.

As shown in Table 9, removing the refinement module leads to a significant
decline in model performance. Specifically, in 2D task, DSC drops by 15.8% and HD95
increases by 22.75; in 3D task, DSC drops by 2.44% and HD95 increases by 2.69. These
results indicate that further modeling of aggregated features is critical for accurate
detail restoration. Compared with conventional convolutional and attention-enhanced
modules, MLKConv achieves superior performance in both 2D and 3D tasks,
demonstrating its effective contribution to the model.

2.7 Scalability of E-structure

To validate the applicability of E-structure across different scenarios, we compare
the segmentation performance of five models using both U-structure and E-structure
variants on Synapse dataset. Specifically, we select the most lightweight and effective
EMCAD [29] and DConv decoders (the latter is a modification of UNet decoder and is
still widely used) to extend 2D E-SegNet into U-shaped structures. Additionally, we
adapt four well-known U-structure models (UNet, SwinUnet, EMCAD, and
AgileFormer) to E-structure using our approach. As shown in Figure 5, models with an
"E" prefix indicate E-structure adaptation, such as E-UNet, representing UNet
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extended to E-structure. The results show that the adapted UNet, EMCAD, and
SwinUnet have a reduction in parameters of 33%, 5%, and 22%, respectively,
compared to their original versions, while their DSC improves by 1.75%, 0.43%, and
0.94%. Although AgileFormer shows a performance drop with a 1.77% decrease in
DSC, 40% reduction in parameters makes this trade-off acceptable given the
substantial reduction in model size. For 2D E-SegNet, U-structure configurations
incorporating EMCAD and DConv decoders result in parameter increases of 4% and
12%, respectively, compared to E-structure configuration, with DSC values decreasing
by 1.09% and 1.5%, respectively.

Discussion
3.1 Model performance and clinical applicability

Deep learning has significantly improved the accuracy of medical image
segmentation, yet more efficient, compact, and faster models remain highly
advantageous for practical applications. This study proposes a novel architecture, E-
SegNet, which establishes new SOTA benchmarks across multiple 2D and 3D medical
image segmentation tasks. E-SegNet exhibits strong robustness in challenging
scenarios, including blurred boundaries, substantial size variation, and complex
anatomical shapes. It achieves lower parameter counts, faster inference speed, and
stable performance under most common medical image disturbances (Appendix S3),
demonstrating a well-balanced trade-off between performance, efficiency, and model
complexity.

The outstanding performance of E-SegNet can be attributed to its innovative E-
structured design. Unlike the conventional U-shaped paradigm, E-SegNet removes the
progressive resolution recovery process in the decoder, which effectively reduces
information loss during cross-layer feature propagation. The introduction of a multi-
scale feature aggregation mechanism further enhances feature representation and
retains more detailed information. Moreover, the novel MLKConv module, combining
multi-scale depthwise separable convolutions and dilated convolutions, addresses the
trade-off between parameter size and receptive field in conventional convolutions
while optimizing inter-channel feature similarity and associations to significantly
enhance segmentation accuracy and boundary detail fidelity. Experimental results
show that the E-shaped framework adapts well to both 2D and 3D segmentation tasks.
Applying the E-structure to conventional U-shaped models further demonstrates its
potential as a general design for medical image segmentation and provides valuable
insights for future model development.

The performance of E-SegNet suggests broad translational potential in precision
medicine. For example, in tumor detection, its accurate delineation of lesions with
blurred boundaries can enhance the sensitivity and specificity of early recognition,
thereby improving patient prognosis. In pathological biomarker assessment, its fine
modeling capability for complex tissue structures helps improve the accuracy of
quantitative analysis. In tissue morphology analysis, E-SegNet can assist pathologists
in efficient morphological evaluations, significantly reducing the workload of manual
annotation. To enable broader clinical applications, our model also needs to adapt to
more imaging modalities (such as PET and X-ray) to cope with their differing
characteristics (e.g., high noise in PET, low contrast in X-ray). This diversity in imaging
characteristics not only demands architectural flexibility but also imposes constraints
on computational resources and real-time processing requirements in clinical
environments. The inference speed and structural simplicity of E-SegNet provide a
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solid foundation for further model compression, hardware acceleration, and edge
deployment. Translating E-SegNet into clinical practice also necessitates careful
attention to ethical and regulatory constraints. Ensuring patient data privacy and
compliance with medical data protection standards (such as HIPAA and GDPR) is
fundamental, particularly when deploying Al models in cross-institutional or cloud-
based settings. Additionally, potential biases introduced by imbalanced training data
could impact model generalizability and fairness across patient populations. To foster
responsible adoption, interpretability and human oversight are essential, especially in
high-stakes diagnostic scenarios. Continuously advancing in these directions will help
translate laboratory research into clinical practice, thereby improving diagnostic
efficiency and patient care quality.

3.2 Challenges and future perspectives

Despite these advancements, E-SegNet still has certain limitations and areas for
improvement. 3D E-SegNet uses a video Swin Transformer encoder, which faces high
memory consumption and computational overhead during training. Although it
achieves high throughput during inference, FLOPs and memory usage remain
relatively large. Compared to its 2D counterpart, it processes voxel-level inputs with
much higher dimensionality, resulting in reduced batch size and slower convergence,
especially when combined with the self-attention operations in ViT-based encoders.
This window-based attention lacks sufficient capacity for long-range spatial modeling.
Although E-shaped structure alleviates this limitation through multi-scale feature
aggregation, it may still affect global contextual representation in high-resolution
scenarios. This could be particularly relevant in segmenting large-area anatomical
regions, where maintaining spatial continuity across distant slices is often beneficial
for accurate reconstruction. The performance of E-shaped structure heavily relies on
the encoder quality and the effectiveness of feature aggregation module. When the
encoder design is too simple or the feature fusion is insufficient, segmentation
accuracy may decrease in low-contrast or noisy images. Most current 3D segmentation
models focus more on the overall architecture rather than optimizing individual
encoder-decoder components. As a result, features extracted by the encoder are often
not sufficiently refined, leading to little improvement in segmentation performance
when applying E-structure to existing U-shaped 3D models. Moreover, the current
convolutional upsampling module is relatively basic in terms of feature alignment, and

the use of fixed-size kernels in MLKConv module may limit model's focus on extremely

small or large features.

To further enhance the generality and efficiency of E-SegNet, future research can
proceed in multiple directions. Small organ segmentation (such as pancreas and
gallbladder) remains a persistent challenge in medical image segmentation due to
small voxel proportions. Small targets are highly sensitive to positional information
and boundary details, while the current E-SegNet has not introduced dedicated
mechanisms for such structures. Future improvements could involve multi-scale
context guidance, object-aware loss functions, or saliency learning strategies based on
structural priors to enhance the model’s ability to recognize and model small
structures. In terms of encoder selection, more lightweight and hardware-friendly
architectures can be explored, along with techniques such as model quantization and
knowledge distillation to optimize training and deployment efficiency. To further
address the limited long-range modeling capacity of encoders, attention mechanisms
such as MaxViT or deformable attention could be considered, as they offer enhanced
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spatial dependency modeling across distant regions. For the upsampling strategy,
stronger alignment methods such as attention mechanisms or feature offset strategies
could be employed to improve feature fusion accuracy. Regarding MLKConv module,
deformable or dynamically-sized multi-scale convolution mechanisms could be
explored to enable a more adaptive receptive field. In addition, training efficiency
could be improved through techniques such as mixed-precision training and gradient
checkpointing, which help reduce memory usage and speed up convergence during 3D
model optimization. Exploring hybrid forms combining E-SegNet with other
architectures also holds significant potential. For example, incorporating graph neural
networks to model the topological relationships of anatomical structures could
improve the modeling of connected regions such as vessels and nerves. Integrating
diffusion models could enhance robustness against high-noise images by generating
more reliable feature representations. The Kolmogorov-Arnold networks, through
learnable activation functions, can improve nonlinear representation capability, which
is suitable for complex tissue modeling. Fast Fourier transform can be used to capture
texture information in the frequency domain, improving recognition of periodic
structures such as myocardium. The Mamba architecture, with its linear-complexity
state-space model, enables long-range dependency modeling while maintaining
efficiency, making it suitable for high-resolution medical images.

In addition, the lack of publicly available cross-modal datasets currently restricts
our ability to comprehensively evaluate the cross-modal generalization of E-SegNet
(e.g., training on MRI and testing on ultrasound). To address this, constructing
benchmark multi-modal datasets and developing cross-modal feature alignment
mechanisms will be key to enabling reliable knowledge transfer across imaging
domains. Other critical aspects of clinical translation include validating model
robustness on multi-center datasets with heterogeneous imaging protocols, and
ensuring system-level compatibility with real-time clinical workflows and deployment
hardware.

In conclusion, the structural concept and experimental validation of E-SegNet
provide not only a new solution for medical image segmentation tasks but also a
foundation for building practical and scalable medical image models. We hope this
study can offer theoretical reference and practical value for future work, further
promoting the integration and application of medical Al models in clinical settings.

. Materials and methods
4.1 Related work

4.1.1 2D Medical image segmentation

Over the past decade, with the advent of U-Net [18], CNN-based U-shaped
networks have demonstrated significant potential in medical image segmentation. To
address feature misalignment issues in skip connections, Attention U-Net [21] and
UCTransNet [28] introduced attention mechanisms into the skip connections, while U-
Net++ [19] and U-Net3+ [23] employed denser skip connections. Additionally,
modifications to the original convolutional module were proposed, such as
incorporating residual connections [20, 42] and deformable convolutions [43], and
KiU-Net [24] added an auxiliary branch to generate richer detail information to
supplement U-Net.

Since the introduction of ViT in 2020, it has gained popularity in medical image
segmentation due to its unrestricted receptive field and superior ability to capture
long-range dependencies between image patches through multi-head self-attention
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mechanism, surpassing conventional convolutions. TransUNet [44] and TransBTS [45]
adopted ViT to replace CNN encoder and bottleneck layer, but the high parameter
count and computational overhead of ViT led to significant overfitting issues. With
further exploration of ViT variants, models like SwinUnet [26], AgileFormer [27] and
MISSFormer [46] have integrated and optimized these ViT modules, to construct pure
ViT-based U-shaped segmentation models. Additionally, hybrid models combining ViT
and CNN (e.g., HiFormer [47, 48]) have been progressively refined, while EMCAD [29]
and MIST [31] introduced more efficient convolutional decoders paired with ViT
encoders, effectively enhancing global information capture and local feature modeling
capabilities. Furthermore, cascaded structures have proven particularly effective in
refining multi-level features. DS-TransUNet [49] achieved cross-scale feature fusion
through parallel Swin Transformer encoders [50] of different scales, enabling better
multi-level information capture in medical images. MERIT [51], G-CASCADE [52], and
PVT-CASCADE [53] introduced efficient cascaded decoders, achieving higher
segmentation accuracy and finer detail restoration for complex images by
progressively decoding and layer-wise feature refinement. Additionally, some studies
have taken alternative approaches, optimizing loss functions [54] to improve
boundary and multi-scale feature capture, and incorporating adaptive pruning
strategies [55] to reduce computational costs, thereby better addressing the
complexity and resource constraints inherent in medical image segmentation.

4.1.2 3D Medical image segmentation

Medical images from MRI or CT scans are typically stored in 3D format. Compared
to 2D models, 3D models can more comprehensively capture contextual information
and maintain spatial coherence between slices, achieving a cohesive representation of
overall structures.

3D U-Net [56], H-DenseUNet [57], and 3D Attention U-Net [58] extended 2D
models into three-dimensional space, enabling the capture of spatial information in
medical images. Building on this, V-Net [59] introduced residual structures to enhance
feature propagation, while LKAU-Net [60] incorporated large convolutional kernels to
increase the spatial receptive field. nnFormer [35] designed a pure Transformer-based
3D segmentation architecture, focusing on global modeling of 3D volumetric data.
Hybrid architectures like UNETR [32], Swin UNETR [34], and CoTr [61] adopted
ViT+CNN combinations, effectively capturing long-range dependencies while
preserving local detail. SegFormer3D [62] used a lightweight Transformer structure
combined with convolutional layers to avoid the high computational complexity
typically associated with traditional Transformers. nnU-Net [63] optimized model
structure and training processes through an adaptive configuration mechanism,
enhancing compatibility across various medical image segmentation tasks. UNETR++
[33] further improved upon UNETR by incorporating a lightweight Transformer
encoder, multi-scale feature fusion, and an enhanced decoder design, achieving more
efficient and accurate segmentation. D-LKA Net [30] introduced deformable large-
kernel attention mechanisms to strengthen segmentation performance for complex
anatomical structures.

Current research predominantly focuses on innovations at module level, often
overlooking the impact of overall architecture design. In fact, an optimized model
architecture can fundamentally address many persistent issues in medical image
segmentation. Our experimental results suggest that the proposed E-structured
segmentation network may offer advantages over conventional U-shaped
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architectures, particularly in capturing targets with diverse sizes and shapes in
complex segmentation scenarios.
4.2 Overview of E-SegNet
4.2.1 Multi-scale large-kernel convolution

Multi-scale large-kernel convolution (MLKConv) comprises multi-scale
depthwise separable convolutions (GConv) and dilated depthwise separable
convolutions (DConv). This design enables efficient extraction and fusion of features
across different receptive fields with minimal parameters and computation, enhancing
the model’s ability to capture targets of irregular shapes and sizes, which is a crucial
aspect in medical imaging. As shown in MLKConv of Figure 6(A), the input features
(dimension HxWx(), first pass through four GConv modules with kernel sizes of 3, 5,
7,and 11, producing four feature maps of dimension H x W x C/4. These maps are then
concatenated along the channel dimension to restore the original size, followed by a
GConv module with kernel size of 1 to reinforce channel dependencies. Finally, a
residual connection ensures effective feature propagation at deeper layers. Each
GConv module consists of a 1x1 convolution (pointwise convolution, PWConv), a kxk
group convolution (here, using depthwise convolution, DWConv), a batch
normalization (BN) layer, and a ReLU activation function. This process can be
represented as:

GConv, (f)=ReLUBN(DWConv, (PWConv(f)))), (7
/, = concat(GConv,( f),GConv.(f),GConv,(f),GConv,,(f)), (8)
1, =f +GConv,(f)), (9)

where GConvy denotes a GConv module in which the depthwise convolution uses a
kernel size of k. frepresents the input feature. Specifically, f; and f; denote the feature
concatenation captured under different receptive fields and the feature channel
regularization with residual connections, respectively. In equation (2), 1x1
convolution in each GConv reduces the number of channels to 1/4 of the original, while
in equation (3), 1x1 convolution in GConv maintains the number of channels
unchanged.

To enhance the model’s long-range modeling capability for large targets in
medical images, we introduce group convolutions with varying dilation rates in DConv
module to replace standard depthwise convolutions. This approach, processed
similarly to GConv, enables the capture of global information over a larger range.
Notably, to maintain higher resolution and finer feature representation in the model
output, we omit ReLU activation function in the final layer of GConv module. This
process can be represented as:

DConv,,(f,) =ReLU(BN(DWConv, ,(PWConv(f,)))), (10)
/3 = concat(DConv,,( f,),DConv,(f,),DConv,,(f,),DConv,,,(f;)),
(11)
output = £, + GConv,(f;), (12)

where DConvy, denotes a DConv module in which the depthwise convolution uses a
kernel size of k and a dilation rate of r. Specifically, f; denotes the feature concatenation
captured under different, larger receptive fields via dilated convolutions, and output
represents the final feature output of MLKConv module. In equation (5), 1x1
convolution in each DConv reduces the number of channels to 1/4 of the original, while
in equation (6), 1x1 convolution in GConv maintains the number of channels
unchanged.
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The parameter requirements for GConv and DConv can be expressed as follows:

P(GConv,)=C,C, , +(k>+2)C,,, (13)
P(DConv,,)=C,C,, +11C,,, (14)

where C;, and C,,; denote the input and output channels, respectively. Thus, the total
parameter count for MLKConv is approximately 4C? +70C, which is notably lower than
a conventional 3x3 convolution (with 9C? parameters) in practical applications.

4.2.2 2D E-SegNet architecture

The 2D network structure is shown in Figure 6(B). We use MobileNet V4 as the
encoder to achieve efficient and precise feature extraction. Formally, the encoder
generates five multi-scale feature maps at each stage, progressively reducing the

image resolution from HxW to H/32 X W/32. Each stage’s resolution is half of the

previous one, with the shallow stages having higher resolution to capture local
structures and edge details, while the deeper stages provide lower resolution but
richer channel information, capturing global features such as semantics and overall
object shape. These multi-scale features from each stage are adjusted to a uniform size
using a convolutional upsampling (UpConv) module. This module first compresses the
features with a 3x3 convolution, ReLU layer, and BN layer to remove redundant
semantic information, preventing mismatch during feature aggregation. Next, nearest-
neighbor interpolation restores the features to the original image resolution. The five
processed features of the same size are then summed element-wise. To further
enhance feature representation, we apply MLKConv module to strengthen inter-pixel
relationships, followed by a 1x1 convolution to output the final segmentation map.
This process can be represented as:
U(x,) = NNIBN(Relu(Conv, , (x,)))), (15)
X, =Conv,,(MLK(U(x,) + U(x)) + U(x,) + U(x;) + U(x,))), (16)
where Convy., denotes a kxk convolution operation, NNI denotes nearest-neighbor
interpolation, U(x;) denotes convolutional upsampling operation applied to the output
feature from the i-th stage of encoder, and MLK denotes the MLKConv operation.

4.2.3 3D E-SegNet architecture

As shown in Figure 6(C), 3D E-SegNet uses video Swin Transformer as its encoder.
Unlike 2D E-SegNet, 3D E-SegNet divides the input image into multiple 3D patches
through a 3D patch embedding layer, mapping these patches into a lower-dimensional

feature space, directly reducing the original spatial resolution from HxWxD to H/4 X

W/4 X D/2. In the following four stages, the first stage keeps the feature shape
constant, while the in-plane spatial resolution is progressively halved at each
subsequent stage, with the slice-axis dimension remaining unchanged (from H/4 X

W/4 X D/2 to H/32 X W/32 X D/2), effectively preserving inter-slice information,
especially in medical images with limited slice counts. The multi-scale spatial features
from the encoder’s four stages are restored to the original resolution HxWxD, using a
3D convolutional upsampling (3D UpConv) module and aggregated through element-
wise addition. This is followed by a 3D MLKConv to further enhance feature
representation. Notably, 3D UpConv and 3D MLKConv are three-dimensional
extensions of 2D UpConv and 2D MLKConv, adapted for the characteristics of 3D
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medical imaging. Finally, a 1x1x1 3D convolution transforms the features into the
segmentation map format. This process can be represented as:

T(x,) = TNNI(BN,; (Relu(Conv,,,.;(x,)))), (17)
X, =Conv, (MLK,, (T(x,) + T(x,) + T(x;) + T(x,))), (18)

where TNNI represents 3D nearest-neighbor interpolation, BN3p denotes a 3D batch
normalization layer, and T(x;) indicates 3D convolutional upsampling operation
applied to the output feature from the i-th stage of encoder, and MLK3p denotes the 3D
MLKConv operation.

4.3 List of abbreviations and key terms

U-shaped models: A class of encoder-decoder architectures (e.g., U-Net) designed for
image segmentation tasks, characterized by symmetric downsampling and
upsampling paths with skip connections to recover spatial resolution.

CNN (convolutional neural network): Convolution-based neural networks are
widely used in visual recognition and segmentation tasks, capable of learning
hierarchical spatial features through stacked convolutional layers and local receptive
fields.

VIiT (vision Transformer): A transformer-based architecture that models image
patches as sequences, enables effective global context capture without relying on
convolutional operations.

SOTA (state-of-the-art): Refers to the best performance or most advanced approach
reported in the literature for a given task at the time of evaluation.

Encoder: The downsampling path of a segmentation model, is used to extract
increasingly abstract and semantic features by reducing spatial dimensions and
increasing receptive fields.

Decoder: The upsampling path of a segmentation model, is responsible for
progressively recovering spatial resolution and reconstructing the segmentation mask
from encoded features.

Skip connections: Lateral links between corresponding encoder and decoder stages
in U-shaped architectures, are designed to fuse low-level spatial features with high-
level semantic information.

Cascade structure: A parallel multi-branch design within the encoder or decoder,
where each branch models features in different ways (e.g., using different resolutions
or network architectures), enables richer feature representation in medical image
segmentation.

2D medical image segmentation: Segmentation tasks perform on individual image
slices (e.g., CT or MRI), treating each 2D slice independently.

3D medical image segmentation: Volumetric segmentation tasks consider spatial
context across multiple slices (e.g., using 3D convolution or attention across depth,
height, and width dimensions).

FPS (frames per second): Indicates the speed at which a model processes input
images or volumes, commonly used to evaluate inference efficiency in real-time or
clinical settings.

Five-fold cross-validation: A model validation strategy divides the dataset into five
subsets, using four for training and one for testing in rotation, thereby improving the
robustness of performance estimates.

Backbone: The core feature extractor in a deep learning model, often composes of
pre-trained architectures (e.g., ResNet, Swin Transformer), which generates multi-
level feature representations for downstream tasks like segmentation.
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Stem (stem layer): The initial convolutional block of a neural network is responsible
for basic spatial feature extraction from input images, typically before entering deeper
stages of the encoder.

Video Swin Transformer: A hierarchical transformer-based backbone is originally
designed for video action recognition, adapted here to capture long-range
dependencies and spatiotemporal context in 3D medical volumes via shifted window
self-attention.

Stages of aggregation: Refers to the module where multi-scale features (from all
encoder levels) are spatially aligned (e.g., by upsampling) and fused to produce
enhanced representations for segmentation. In E-SegNet, this replaces traditional
decoder stages.

MaxVit: Combines convolutional operations with both block-wise and grid-wise
attention to effectively capture spatial dependencies across scales, offering a unified
and efficient architecture for vision tasks.
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Figure 1. Comparison of feature visualizations between E-structure and traditional U-
shaped network [12] at each stage. (A) Visualization of outputs at each layer during
the encoding (feature extraction) phase. (B) Visualization of outputs at each layer
during the decoding phase of traditional U-shaped network without skip connections.
(C) Visualization of outputs at each layer during the decoding phase of traditional U-
shaped network with skip connections (U-Net). (D) Visualization of E-structure
outputs, where features from all encoding layers are aggregated directly without a
decoding phase. Note that (B), (C), and (D) all use the same encoder (A) for feature
extraction to enable a qualitative comparison across stages.
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Figure 2. Qualitative and quantitative evaluation of 2D segmentation results. (A)
Visualization of multi-organ segmentation on Synapse dataset, comparing the
performance of 2D E-SegNet, AgileFormer, MERIT, and SwinUNet across eight organs.
Different organs are color-coded, and red dashed boxes indicate regions of
segmentation failure. White arrows highlight representative areas that are prone to
segmentation errors. (B) Visualization of cardiac segmentation on ACDC dataset,
comparing the results of 2D E-SegNet, EMCAD, and SwinUNet for the right ventricle
(RV), left ventricle (LV), and myocardium (Myo). (C) Visualization of polyp
segmentation results on Kvasir-Seg dataset, comparing the performance of 2D E-
SegNet, FCB Former, and EMCAD. (D-F) show scatter plots of DSC values for test
samples on Synapse, ACDC, and Kvasir-Seg datasets, respectively. (G) Proportion of
samples within different DSC ranges (0-0.8, 0.8-0.9, 0.9-1) for Synapse, ACDC, and
Kvasir-Seg datasets. Due to the presence of samples with missing target region masks
in Synapse and ACDC datasets, the background is included in DSC calculation for each
sample in (D) and (E).
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Figure 3. Qualitative and quantitative evaluation of 3D segmentation results. (A)
Visualization of multi-organ segmentation on Synapse (3D) dataset, comparing the
performance of 3D E-SegNet, D-LKA Net, UNETR++, and nnFormer across 13 organs.
Different organs are color-coded, and white dashed boxes indicate regions of
segmentation failure. White arrows highlight representative areas that are prone to
segmentation errors. (B) Visualization of pancreas segmentation on NIH Pancreas
dataset, comparing the performance of 3D E-SegNet, D-LKA Net, UNETR++. (C) and (D)
show scatter plots of DSC values for test samples on the Synapse and NIH Pancreas
datasets, respectively.
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Figure 4. Computational efficiency comparison of 2D (A) and 3D (B) segmentation
models in terms of inference speed (FPS), computational complexity (FLOPs), and
parameter count (Params). The size of markers represents FLOPs.
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Figure 5. Comparison of E-structure and U-structure on Synapse dataset, with darker
colors indicating E-structure modifications. Larger points in the left figure represent
models with greater numbers of parameters.
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Figure 6. The network architecture of (A) MLKConv, (B) 2d E-SegNet, (C) 3d E-SegNet.

Tables

Table 1. Comparison with 2D models on Synapse dataset. Bold indicates the best
result, and underline represents the second-best result. DSC and HD95 values are
averaged across all organs, with individual DSC scores provided for abdominal organs:
spleen (Spl), right kidney (Rkid), left kidney (Lkid), gallbladder (Gal), liver (Liv),
stomach (Sto), aorta (Aor), and pancreas (Pan).

Methods | Dsc(%)r HD95!L | Spl  Rkid Lkid Gal Liv  Sto  Aor  Pan

2D E-SegNet 86.15 1460 |92.32 8489 8785 7451 9604 86.75 91.37 75.48
AgileFormer [27] | 8574  7.81 | 9220 85.00 88.83 77.89 9564 85.63 89.11 7162
MERIT [51] 8490 1322 |9201 8485 8779 7440 9526 8538 8771 7181
2DD-LKANet[30] | 8427 2004 |9122 8492 8838 7379 9488 8494 8834 67.71
AL-SAM [64] 8421 1211 [90.32 8501 8656 7453 96.30 79.24 8889 7284
EMCAD [29] 83.63 1568 |9217 8410 8808 6887 9526 8392 8814 6851
MISSFormer [46] | 8196 1820 [91.92 8200 8521 6865 9441 80.81 8699 65.67
SwinUnet [26] 7913 2155 |90.66 79.61 8328 6653 9429 7660 8547 56.58
MaskDINO [65] 77.64 2212 |8838 7040 79.60 6802 9420 7317 87.77 59.61
TransUnet [44] 7749 3169 |85.07 77.02 8187 6316 9408 7562 87.23 5586
U-Net [18] 7685 3970 |86.67 6860 7777 69.72 9343 7558 89.07 53.98

Table 2. Comparative analysis of 2D E-SegNet and other leading methods on ACDC
dataset, showing the average DSC for segmentation and DSC values for the right
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ventricle (RV), myocardium (Myo), and left ventricle (LV). Bold indicates the best

result.

Methods | Avg.DSC(%)1 RV Myo LV

2D E-SegNet 92.53 91.26 90.29  96.03
MERIT [51] 92.32 90.87  90.00  96.08
MERIT-GCASCADE [52] 92.23 90.64  89.96 96.08
EMCAD [29] 92.12 90.65  89.68 96.02
AI-SAM [64] 92.06 90.18  89.94 96.05
PVT-GCASCADE [52] 91.95 90.31  89.63 95.91
TransCASCADE [53] 91.63 89.14  90.25 95.50
MaskDINO [65] 90.08 87.28  87.79 95.17
SwinUnet [26] 90.00 88.55  85.62 95.83
TransUNet [44] 89.71 88.86  84.53 95.73
MISSFormer [46] 87.90 86.36 85.75 91.59

Table 3. Comparative analysis of 2D E-SegNet and other leading methods on Kvasir-
SEG dataset, showing the average DSC and average IOU. Bold indicates the best result.
The evaluation metrics that are missing in the original paper are denoted by a
horizontal line.

Methods | DSC(%)?  mIOoU(%)?
2D E-SegNet 94.83 90.66
FCB Former [54] 94.45 89.74
SEP [66] 94.11 90.02
SSFormer-L [67] 93.57 89.05
EMCAD [29] 92.8 -
PVT-GCASCADE [52] 92.74 87.90
PVT-CASCADE [53] 92.58 87.76
TransFuse-L [68] 91.80 86.80
U-Net++ [69] 82.10 -
U-Net [18] 81.80 -

Table 4. Comparative analysis of 2D E-SegNet and other methods on BUSI dataset,
showing the average DSC and average 10U across five-fold cross-validation. Results

are reported as mean * standard deviation. Bold indicates the best result.

G20z ‘6T 1snbny uo Bioaousios' [ds//:sdny wouy papeojumoq

Methods DSC(%)T mIOU(%)
T
2D E-SegNet 81.91+1.47 74.45+1.56
AgileFormer [27] | 78.63+256 70.47+2.70
2D D-LKA Net [30] [ 77.62+1.45 70.35+1.87
EMCAD [29] 76.63+1.18  69.25+1.43
FPN [70] 75.58+2.15  68.32+2.34
MISSFormer [46] 72.36+1.73  65.32+1.59
SwinUnet [26] 71.23x112  64.50+1.56
TransUNet [44] 70.58+095 64.96+0.99
U-Net++ [69] 68.73+1.66 63.46+1.89
U-Net [18] 69.75+1.71  64.37+1.92
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Table 5. Comparison with 3D models on Synapse dataset. Bold indicates the best

result, and underline represents the second-best result.

Methods | Dsc(%)t HD95L | Spl  Rkid Lkid Gal  Liv  Sto  Aor  Pan
3D E-SegNet 8776 632 | 9550 8691 87.66 73.94 97.26 8643 9273 8166
D-LKA Net [30] 87.49 957 |95.88 8850 87.64 7214 9625 8503 9287 81.64
UNETR++ [33] 87.22 753 | 9577 8718 87.54 7125 9642 8601 92.52 81.10
nnU-Net [63] 8699  10.78 |91.86 8818 8557 7177 97.23 8526 93.01 83.01
nnFormer [35] 86.57  10.63 | 9051 86.25 86.57 70.17 96.84 86.83 92.04 83.35
Swin UNETR[34] | 8348 1055 | 9537 8626 8699 6654 9572 77.01 91.12 68.80
UNETR [32] 7835 1859 | 8500 84.52 8560 5630 94.57 7046 89.80 60.47

Table 6. Comparative analysis of 3D E-SegNet and other leading methods on NIH
Pancreas dataset, with DSC, Jaccard, HD95, and ASD metrics reported. Bold indicates
the best result.

Methods | DSC(%)T Jaccard(%)T HD95!  ASDI
3D E-SegNet 85.22 74.46 4.28 1.10
D-LKA Net [30] 81.22 68.90 7.59 1.99
UNETR++ [33] 80.59 68.08 8.63 2.25
UNETR [32] 77.42 63.95 1507  5.09

Table 7. Comparison with leading 3D models on Lung and ACDC dataset. The
horizontal line indicates evaluations that were not recorded.

Vethod |  Lung | ACDC (3D)
ethods

| Dsc(w)t | AvgDsct RV Myo LV
3D E-SegNet 81.77 92.92 91.29 90.58 96.90
UNETR++ [33] 80.68 92.83 91.89 90.61 96.00
nnFormer [35] 77.95 92.06 90.94 89.58 95.65
UNETR [32] 73.29 86.61 85.29 86.52 94.02
nnUNet [63] 74.31 91.61 90.24 89.28 95.36
SwinUNETR [34] 75.55 - - - -

Table 8. Performance metrics (average DSC and HD95) of 2D E-SegNet and 3D E-
SegNet across different stages of polymerization. Numbers in brackets represent the
stages of polymerization (e.g., [1,2,3,4,5] includes all feature extraction stages). Bold
indicates the best result.

Stage of polymerization 2D E-SegNet 3D E-SegNet
DSC(%)T HD95! DSC(%)7T HD95!
[1,2,3,4,5] 86.15 14.60 43.03 58.76
[2,3,4,5] 85.54 13.01 87.76 6.32
[1,2,3,4] 84.68 15.40 40.88 60.34
[3,4,5] 85.48 9.65 86.88 6.94
[4,5] 85.59 17.38 85.67 8.45
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Table 9. Impact of different refinement modules on segmentation performance.
Comparison of MLKConv, DoubleConv, SE+BasicConv, and without refinement module
(None) in both 2D and 3D E-SegNet models.

Refinement module 2D E-SegNet 3D E-SegNet
DSC(%)T HD95! DSC(%)T HD95!
MLKConv 86.15 14.60 87.76 6.32
DoubleConv 84.86 18.16 86.55 7.64
SE+BasicConv 7191 26.84 86.72 7.04
None 70.35 37.35 85.32 9.01
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