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ABSTRACT

The high-resolution three-dimensional (3D) images generated with digital breast tomosynthesis (DBT) in the screening of breast
cancer offer new possibilities for early disease diagnosis. Early detection is especially important as the incidence of breast cancer
increases. However, DBT also presents challenges in terms of poorer results for dense breasts, increased false positive rates, slightly
higher radiation doses, and increased reading times. Deep learning (DL) has been shown to effectively increase the processing
efficiency and diagnostic accuracy of DBT images. This article reviews the application and outlook of DL in DBT-based breast
cancer screening. First, the fundamentals and challenges of DBT technology are introduced. The applications of DL in DBT are
then grouped into three categories: diagnostic classification of breast diseases, lesion segmentation and detection, and medical
image generation. Additionally, the current public databases for mammography are summarized in detail. Finally, this paper
analyzes the main challenges in the application of DL techniques in DBT, such as the lack of public datasets and model training
issues, and proposes possible directions for future research, including large language models, multisource domain transfer, and
data augmentation, to encourage innovative applications of DL in medical imaging.
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1 | Introduction

Breast cancer has emerged as the leading malignancy threatening
women’s health worldwide [1-3]. According to the International
Agency for Research on Cancer, by 2022, female breast cancer
(11.6%) was the second most common cancer in the world [4].
Among women, breast cancer is the most common cancer and
is the cause of cancer death, with the highest incidence in 157
countries/areas and the highest mortality in 112 countries/areas
worldwide [5]. The high mortality and morbidity rates of breast
cancer place a heavy burden on global health [6, 7].

The complexity of breast cancer lies in the diversity and dynamics
of its somatic mutations and abnormalities in gene and protein
expression profiles [8, 9]. These changes involve numerous
genetic elements, including mutations and aberrant amplifica-
tion of oncogenes, which collectively contribute to the onset and
progression of breast cancer [10-14]. Additionally, the interplay
among multiple risk factors, such as demographic variables such
as sex and age, hormones such as estrogen, genetic predisposition,
and modifiable lifestyle factors, further increases the risk of
developing breast cancer [15-18].

Therefore, early detection of breast cancer is crucial for reduc-
ing the disease burden, enhancing treatment effectiveness, and
improving patient prognosis [19]. According to Cancer Research
UK, the 5-year survival rate for patients with stage 1 breast cancer
is nearly 100%, whereas for stage 4 disease, it drops sharply to
25% [20]. These data underscore the critical role of early diagnosis
in improving the outcomes and overall survival of patients with
breast cancer. Common imaging modalities for breast cancer
include ultrasonography, X-ray, and breast tissue elastography.
X-ray-based techniques include conventional mammography,
digital mammography (DM), full-field digital mammography
(FFDM), and digital breast tomosynthesis (DBT) [21-24]. While
screening mammography is widely utilized globally, current
mammography techniques have significant limitations, such as
high false-positive and false-negative rates and variability in
clinician proficiency, which can lead to potential delays and
inaccuracies in diagnosis [25]. Additionally, while CT can pro-
vide detailed imaging, its clinical application in breast cancer
screening and diagnosis remains limited.

Compared with conventional mammography, DM offers superior
image quality, faster processing, and more convenient storage
[26]. The subsequently developed FFDM, which projects raw
three-dimensional (3D) breast tissue data and converts it into a
two-dimensional (2D) image, has become widely used in clinical
settings because of its utility in early detection and intervention
[27]. Compared with the DM, the FFDM provides a wider field
of view, results in fewer repeat examination errors, and achieves
higher detection rates [28]. Randomized controlled studies have
shown that FFDM-assisted screening can reduce the associated
mortality rate with breast cancer by approximately 20% [29, 30].
However, FFDM images are 2D and have relatively low specificity
[31, 32]. DBT offers superior detection rates, reduced interference
from overlapping tissues, and improved accuracy in breast cancer
screening with respect to FFDM (Figure 1) [26, 33].

DBT is an innovative advancement in breast imaging based
on FFDM [34]. X-ray receivers acquire a series of low-dose

X-ray images at various angles around the breast [35-37]. These
multiple 2D images are then reconstructed via a computer
algorithm to produce a 3D volumetric image of the breast,
enabling a more detailed view of the breast tissue and facilitating
the detection of abnormalities such as lumps and calcifications
[38-40]. The complex reconstruction algorithm minimizes
the effects of tissue overlap and structural noise, significantly
improving the visualization of lesion edges and thereby the
diagnosis of breast cancer; in turn, this improved visualization
markedly enhances the sensitivity of DBT [10]. Additionally, DBT
reduces diagnostic errors associated with the inherent complexity
of fibroglandular breast tissue, thus lowering the false-negative
rate [41, 42]. The advantages of DBT in terms of detection
efficacy have led to it replacing DM as the imaging modality of
choice over the past decade [30]. However, the large number of
slices per patient who must be acquired to achieve 3D imaging
relative to 2D mammography can influence the efficiency and
accuracy of the physician responsible for diagnosing the patient
[43].

The development of artificial intelligence (AI) has profoundly
impacted the medical field; among the different forms of Al,
deep learning (DL) technology has shown powerful automatic
image feature extraction capabilities [44-46]. This technology can
perform end-to-end feature learning and classification decision-
making directly from raw data, eliminating the need for manual
feature selection [47-49]. DL has been widely used to improve the
early detection and treatment of various types of cancers, leading
to substantial increases in patients’ chances of survival [50-53].
Researchers have also applied DL to assist in the diagnosis of
breast cancer, particularly in detecting and diagnosing lesions
with DBT data, with the aim of improving the speed and
accuracy of radiologists interpretations [30, 54-56]. In recent
years, rapid advances in the field of DL have improved the field of
breast imaging, resulting in better performance than traditional
mammography-assisted detection methods [57]. However, the
application of DL technology in the domain of DBT still faces
numerous difficulties and challenges, indicating substantial room
for improvement.

Numerous authors have reviewed the application of Al, partic-
ularly DL technology, in the field of DBT. For example, Geras
et al. [58] introduced the limitations of classical computer-
aided detection systems in DBT data, demonstrating how DL
systems can enhance the accuracy of malignant tumor detection
through neural networks. However, their summary was neither
comprehensive nor adequate they propose effective solutions
[58]. In 2023, Yoon et al. [59] conducted a systematic review and
meta-analysis to comprehensively evaluate the effectiveness of AI
technology in DM and DBT. Nevertheless, they did not include
sufficient studies assessing the performance of AI systems in
interpreting DBT screening examinations and they neglected the
collection of publicly available data on mammography [59]. In
2021, Bai et al. [60] discussed the specific technical challenges
and solutions faced by DL algorithms in processing DBT data.
However, their discussion did not explore algorithmic inter-
pretability, patient privacy protection, and legal and ethical issues
in practical clinical applications [60]. In 2023, Zhang et al. [61]
provided a comprehensive review of Al in breast cancer imaging
analysis, covering aspects such as data augmentation, image
segmentation, diagnosis, and prognosis assessment. However,
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FIGURE 1 | Breast cancer causes, pathogenesis, and screening methods. The causes of breast cancer include family history, gene mutations,

increased breast density, late childbearing, menstrual abnormalities, hormone replacement therapy, oral contraceptives, and alcohol intake. The

pathogenesis of breast cancer involves mutations in oncogenes within breast cells, leading to abnormal cell proliferation, tumor formation, and invasion
of surrounding tissues. Over time, these cancer cells can break through the basement membrane and metastasize to distant sites via the lymphatic and
circulatory systems. Screening methods for breast cancer include clinical diagnosis, pathological examination, and imaging tests such as US, FFDM, and

DBT.

their review lacked a detailed discussion of DL models in DBT,
making it difficult to fully address their applicability for this
imaging modality [61]. This review aims to provide a more com-
prehensive summary and advanced insights into the application
of DL technology in DBT to help promote the development and
application of Al in this field.

This work reviews the methods, challenges, and future directions
related to the application of DL to DBT data for the early
screening of breast cancer. The manuscript can be divided
into four parts. First, a brief overview of the basic principles,
advantages, and limitations of DBT is provided. Second, based
on the application of DL in medical image processing and
analysis of breast diseases, DL models are classified into three

categories, and their applications in early breast cancer screening
are summarized. Third, the application of DL in other areas of
DBT, along with the application of other AI techniques in early
DBT screening, including the provision of publicly accessible
databases, is explored. Finally, the challenges of applying
DL in DBT are presented, and future research directions are
summarized.

2 | DBT: Basic Knowledge and Importance

Commonly used mammography examinations in clinical practice
include DM, FFDM, and DBT. The DM employs digital sensors
to capture mammographic images; specifically, the acquired
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electronic data are transmitted to a computer for processing,
producing a breast image [62, 63]. DM has played a key role in
reducing breast cancer mortality rates but has faced criticism due
to its high number of false-positive results and limited sensitivity,
and the potential for overdiagnosing clinically unimportant
lesions [64]. FFDM captures X-ray images of the entire breast area
with digital sensors, allowing a wider field of view and resulting
in a more accurate mammogram [65, 66].

FFDM has long been considered the gold standard for breast
cancer screening [67, 68]. However, it exhibits reduced sensi-
tivity and specificity when affected by the “masking effects” of
the upper parenchyma mal tissues [69]. These limitations are
addressed in DBT through the arc motion of the X-ray generator
above the patient, resulting in the emission of low-dose X-rays
at predetermined intervals from different angles and allowing
the capture of images from various perspectives [70]. After
acquisition, the DBT images are reconstructed into slices as thin
as 1 mm in a plane parallel to the detector, and 3D reconstruction
is performed to help determine the position of the lesion relative
to the breast tissue [71, 72].

Studies have shown that for breast lesions, DBT provides better
visibility of the mass, areas of structural distortion, and margin
characterization [73, 74]. Researchers have shown that models
trained on 3D DBT data can help reduce recall rates, improve
biopsy patient selection, and increase cancer detection rates,
particularly for patients with dense breasts [75-77]. Therefore,
DBT is more advantageous for breast cancer screening and
diagnosis than DM and FFDM are, facilitating early treatment
and prognostic assessment of the disease [78].

Despite the many advantages of DBT over conventional mam-
mography, there are some limitations in integrating this emerging
technology into routine clinical practice. DBT, which functions
as a pseudotomographic imaging modality, produces a series of
2D slices of the target breast tissue at varying vertical resolu-
tions. This partial tomosynthesis effect significantly reduces the
masking effect caused by overlapping tissue and is less effective
for women with very dense breasts [79-81]. During screening,
the radiosensitivity of the female breast requires careful attention
to the radiation dose [82-84]. Barufaldi et al. [85] conducted
an empirical assessment using a specialized tracking system to
monitor the radiation doses from the DM and DBT. Their findings
indicated a statistically discernible increase in the radiation dose
associated with DBT in comparison with that associated with DM
(2.21 vs. 1.76 mGy, respectively). While the radiation dose from
DBT is marginally higher than that from DM, it remains within
the acceptable limits prescribed by the Mammography Quality
Standards Act [85].

In addition, the workload is increased by the complexity of
DBT images and the long interpretation time, which leads to
the need for double reading for many screening procedures,
further exacerbating the workload [43, 86, 87]. DBT also faces
challenges in the detection of calcifications and the need for
breast compression during the imaging process, and the long
compression time may affect patient tolerance [88] (Figure 2).
Therefore, a comprehensive review of the use of computational
modeling in DBT to accelerate the diagnostic process is of
particular importance.

3 | DL in DBT for the Early Screening of Breast
Cancer

Developments in AI have led to its implementation in medical
contexts by an increasing number of people to improve the
efficiency and accuracy of diagnosis [43, 89-91]. DL plays an
important role in the clinical diagnosis and treatment of diseases,
covering the fields of serology, imaging, and genomics. In 2023,
Chi et al. [92] identified specific pancreatic cancer biomarkers
by analyzing serum miRNA expression profiles from the GEO
database via machine learning and artificial neural networks
and developed a novel artificial neural network model for early
diagnosis. Li et al. [93] developed and validated a two-stage DL
model based on multichannel MRI for automatic detection and
segmentation of brain metastases, which excelled in improving
the detection sensitivity and segmentation accuracy of tumors
smaller than 5 mm, achieving 90% sensitivity and 56% accuracy
on a test set. In 2024, Hoang et al. [94] developed the ENLIGHT-
DeepPT framework, which effectively predicts cancer treatment
outcomes from pathology images with an overall advantage ratio
of 2.28 and an accuracy of 46.5%.

DBT typically requires nearly twice the acquisition and inter-
pretation time of DM, thus increasing the workload of the
imaging physician [90]. AI algorithms have been shown to
enhance the ability of the imaging physician to recognize cancers
in mammograms without prolonging the reading time. Over
the past decade, DL-based computer-aided diagnostic (CAD)
systems have achieved remarkable success in medical image
diagnostics, especially in early screening tasks involving DBT
[95-98]. DL techniques have also demonstrated broad application
prospects in other medical image analysis fields, such as disease
classification [99], segmentation [100, 101], detection [102], and
image alignment [103].

3.1 | Diagnostic Classification of Breast Diseases
From DBT Data via DL

DL has a wide range of applications in different stages of
DBT, including image reconstruction [104], improving image
quality [105], and reducing noise. Over the years, several DL-
based methods have been developed for performing classification
tasks. In the early days, perceptron and multilayer perceptron
(MLP) methods were developed to address linear and nonlinear
problems [106, 107]. In the 1990s, Yann LeCun’s [108] LeNet-
5 demonstrated the potential utility of convolutional neural
networks (CNNs). The success of AlexNet in 2012 marked the
widespread adoption of DL. Subsequently, a visual geometry
group network was developed, enhancing classification per-
formance through increased network depth [109-112]. Google
neural networks subsequently introduced the inception mod-
ule to improve efficiency [113, 114], and a residual network
(ResNet) resolved the gradient vanishing problem in deep net-
works through residual connectivity [115, 116]. In recent years,
an efficient neural network (EfficientNet) has been developed
even higher efficiency and accuracy through composite scaling
[117-119], whereas the vision transformer has demonstrated the
competitiveness of transformer-based architectures in image
classification tasks [120-122]. Continued innovations in these
models have driven significant performance improvements in
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FIGURE 2 | Principles of DM, FFDM, and DBT imaging and the advantages and disadvantages of DBT in clinical applications. DM uses a digital
detector to penetrate the breast tissue with X-rays. The sensor then converts X-ray absorption into a digital signal that is then processed by a computer
to produce a high-resolution image of the breast. This is achieved through the use of image filtering, feature extraction, and enhancement. FFDM uses a
planar detector and a rotating arm to comprehensively scan the breast tissue area, convert the X-ray signals to digital form, and capture high-resolution
images of the internal structure of the breast via a fully digital detector. The data are then processed and reconstructed by a computer to produce high-
resolution breast images. DBT is based on the imaging principle of obtaining a series of high-resolution, 2D breast images by taking multiple, low-dose
exposures of an X-ray tube over a limited angular range. The images are then reconstructed by a computer into high-resolution tomograms parallel to the
detector, resulting in 3D tomograms. DBT has several advantages over DM and FFDM, including enhanced visualization, precise localization, effective
differentiation of overlap, improved detection of breast cancer, and improved discrimination between benign and malignant lesions. However, DBT also
has some disadvantages, such as being less effective in women with dense breasts, higher radiation dose [396], and longer reading time [87], which can
impact efficiency. MGD, mean glandular dose.
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classification tasks and facilitated the application of DL in other
domains.

However, most well-established DL models originally designed
to analyze natural images may produce suboptimal results when
applied directly to medical imaging tasks [123], in part due to
the substantial differences between the two types of images.
Additionally, DBT data differ notably from ordinary medical
imaging data [124]. For example, in the application of case of
DBT data to breast cancer screening, 3D imaging is used to
provide higher tissue resolution and contrast via the acquisition
of a series of low-dose X-ray images from different angles and
their reconstruction into 3D images [125, 126]. While this method
reduces the effect of tissue overlap and improves lesion detection,
it also introduces a series of challenges [127, 128]. Lesions may
appear as different shapes and with different densities in different
slices, and the complexity of normal tissues further increases
lesion identification difficult [129]. Therefore, DBT data hold
great research importance for the classification of breast diseases.
Next, we detail the application of various DL models in DBT
(Figure 3).

3.1.1 | Convolutional Neural Network

CNN extract local features from data through convolutional
operations, construct high-level semantic information layer by
layer, and are commonly used to process structured data such as
images. In 2019, Samala et al. developed a CNN using multistage
transfer learning (MSTL) for classifying malignant and benign
masses on DBT images. They first fine-tuned an ImageNet-
trained CNN using more readily available mammography data
and then performed a second stage of fine-tuning using a small,
available DBT dataset. This article employs a MSTL approach to
feature extraction, in particular applying pretrained knowledge
of CNNs in relevant ancillary domains to the task of classifying
breast cancer. They compared multistage fine-tuned CNNs with
single-stage CNNs fine-tuned directly with DBT data and assessed
how the different fine-tuning strategies affected the performance
of the CNNs when the available mammography and DBT data
varied over a wide range. Additionally, the impact of different
migration learning strategies on classification performance was
evaluated via statistical methods with restricted sample sizes,
such as area under the curve (AUC) and paired ¢-tests. In the
single-stage transfer learning (STRL) test set, the view-based
AUC was 0.85 + 0.05, whereas in the MSTL test set, the AUC
significantly improved to 0.91 + 0.03. The study demonstrated
that when the target domain has a limited number of training
samples, using data from similar auxiliary domains for additional
stages of training is effective [130].

In 2021, Aswiga et al. [131] developed an innovative, two-tier
framework for classifying the data in DBT datasets. Initially, they
built a basic framework based on multilevel transfer learning,
whose main goal was to utilize knowledge gained from five other
datasets (including a general nonmedical imaging dataset and
a specialized mammography dataset) for feature extraction and
subsequent classification of the target DBT dataset. By progres-
sively fine-tuning the model, they enhanced the classification
performance. Notably, the AUC for the fine-tuned MedCNN

using the CNCF fusion algorithm reached an impressive value of
0.89.

3.1.2 | Deep Convolutional Neural Network

The deep CNN (DCNN) is based on CNNs and is suitable for more
complex tasks by increasing the depth and number of layers of
the network to improve the feature extraction and representation
capabilities of the model. In 2018, Samala et al. [132] proposed a
layered pathway evolution method to compare multiple DCNNs
for breast cancer classification via DBT. Initially, transfer learning
was employed with 19,632 augmented regions of interest (ROIs)
from 2454 lesions identified on mammograms to further train a
DCNN pretrained on ImageNet. Subsequently, 9120 DBT ROIs
from 228 lesions were used in the second stage to further train the
pretrained DCNN. The results demonstrated substantial network
simplification; the number of neurons decreased by 87%, the
number of parameters was reduced by 34%, and the required
multiplications and additions in the convolutional layer were
diminished by 95%. The AUC in the test increased from 0.88 to
0.90 in the evaluation of 89 lesions identified on mammograms
from 94 independent DBT cases before and after pruning, respec-
tively. The results of that study suggest that the features learned
by a DCNN from mammography can be effectively transferred to
DBT.

3.1.3 | Graph Convolutional Network

The graph convolutional network (GCN) is a neural network for
graph-structured data that extracts node features and captures
node relationships through neighborhood aggregation. In 2018,
Zhang et al. [133] developed a novel method called boundary-
aware dense region CNN with a GCN (BDR-CNN-GCN), which
integrates two state-of-the-art neural networks. This study used a
combination of a CNN and a GCN through feature extraction to
increase the performance of breast cancer detection, and the per-
formance was evaluated via statistical metrics such as sensitivity,
specificity, and accuracy. The experimental results indicate that
compared with the five proposed neural network models and 15
state-of-the-art breast cancer detection methods, the BDR-CNN-
GCN method achieves superior performance, with a sensitivity
of 96.20 + 2.90%, a specificity of 96.00 + 2.31%, and an accuracy
of 96.10 + 1.60%. These findings demonstrate that BDR-CNN-
GCN is an effective method for improving malignant breast
mass detection. However, importantly, both the training and test
sets in that study were derived from the Mini-Mammographic
Image Analysis Society dataset, and no independent external
validation was conducted. Therefore, the reliability of the model
requires further verification. Future studies are planned to test
the proposed AI model by expanding the dataset to include
mammography X-ray images from diverse sources and with
varying resolutions.

3.1.4 | Dense Convolutional Network Model

Dense convolutional network (DenseNet) enhances feature reuse
and improves training efficiency by directly using the output
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FIGURE 3 | Applying DL models and other AI techniques to DBT data. The traditional AI models applied to DBT include decision trees, random
forests, logistic regression, SVM, and multilayer perceptron. Deep learning models for the diagnostic classification of breast diseases on DBT data include
CNN, DCNN, AlexNet, DenseNet, RetinaNet, ResNet50, VGG16, VGG19, and Inception V3. The deep learning models used for breast lesion segmentation
and detection on DBT data include U-Net and GCN. Other DL models used for medical image generation from DBT data include Faster R-CNN, Mask
R-CNN, and YOLO. In addition, a GAN has been used for this purpose. The applications of DL in DBT go beyond early detection and diagnosis of breast
cancer. It can also act as a quantitative biomarker, predict molecular subtypes, assess treatment efficacy, and predict patient prognosis.

7 of 32

85U8017 SUOWILLOD 3A e8I 3|qeotjdde au Ag peussnob are sajoie O ‘8sn J0 se|n. 1oy Ariqi8uljuQ /8|1 UO (SUORIPUOD-pUB-SWBIW0D A8 | 1M Ate1q Ul |Uo//SdNL) SUORIPUOD PUe SWS 1 84} 885 *[5202/90/9T] Uo ARiq18ul|uo A8|IM BUIYOBURILI0D AQ /£20/ Z00W/Z00T OT/I0p/W0o A8 | Afeiqijeuljuo//Sdiy Wwoiy papeojumod ‘9 ‘520z ‘£9928892



of each layer as the input for all subsequent layers. In 2022,
Pawar et al. [134] proposed a multichannel DenseNet architecture
for breast cancer detection. This architecture consists of a four-
channel transfer learning architecture that extracts important
features from two medial oblique views and two craniocaudal
views of digital mammograms of a single patient. An evaluation of
800 digital mammograms with different breast imaging reporting
and data system (BI-RADS) density levels revealed that the archi-
tecture achieved statistically good performance: 96.67% accuracy
in the training set and 90.06% accuracy in the test set, with a mean
AUC of 0.9625. These findings suggest that the proposed archi-
tecture can achieve state-of-the-art results with a relatively small
number of images and low computational power. Additionally,
DenseNet enhances the propagation of features throughout the
network and facilitates feature reuse, significantly reducing the
number of parameters needed and thus simplifying the network’s
computational requirements. Compared with most advanced
network architectures, the DenseNet architecture yields superior
breast cancer detection models with less computational effort.

3.1.5 | RetinaNet Model

RetinaNet enhances the detection of small and challenging
objects by introducing focal loss, which balances positive and
negative samples while maintaining both efficiency and accuracy.
In 2023, Habeeb et al. [135] achieved efficient breast cancer
detection with a two-stage transfer learning approach combined
with RetinaNet. For feature extraction, the first stage of transfer
learning employs the curated breast imaging subset of the digital
database for screening mammography (CBIS-DDSM) dataset
for pretraining, whereas the second stage fine-tunes the model
on the INbreast dataset, resulting in substantial performance
improvements. Specifically, the model achieves true positive (TP)
rates of 0.99 + 0.02 and 1.67 false positives (FPs) per image,
indicating a substantial enhancement over the STRL methods.
This approach provides an innovative framework and serves as
a successful example for breast cancer detection.

3.1.6 | ResNet50 model

ResNet50 is a 50-layer deep ResNet that alleviates the vanishing
gradient problem in deep networks by introducing residual
connections, enhancing training efficiency and accuracy. In 2022,
Chen et al. [136] employed the ResNet50 architecture in DBT
to diagnose breast cancer in patients with structural distortions,
employing gradient-based class activation mapping (Grad-CAM)
to visualize suspicious areas in 298 patients. In that study,
feature extraction was performed via radiomic and DL methods,
radiological features were extracted by manually outlining the
ROI, key features were identified via support vector machines
(SVMs), and finally, the diagnostic performance of the different
models was assessed via the DeLong test. The AUC of the imaging
radiomics model, which incorporated CC + MLO features, was
0.82, with a sensitivity of 0.78, a specificity of 0.68, and an accuracy
of 0.74, whereas the AUC of the DL model was 0.61. Despite its
lower accuracy, the trained model allows Grad-CAM to highlight
suspicious areas of structural distortion, facilitating automatic
ROI depiction. The results of the study suggest that the developed

CAD tool can initially detect subtle pathologic textures on DBT
images and subsequently perform further characterization to
make a diagnosis.

3.1.7 | Visual Geometry Group-16 Model

Visual geometry group-16 (VGG16) is a 16-layer CNN that
enhances feature extraction and classification performance via
small convolutional kernels and a deep architecture. In 2024,
Esposito et al. [137] developed a preprocessing tool called the
digital breast imaging tool (DBIT) and evaluated its performance
in improving DL-based CAD systems for cancer detection. They
extracted over 200 DBT volumes from a public repository, dividing
them into negative and positive (benign and malignant) tumors
to form the “original dataset” (raw images) and the “processed
dataset” (images processed with DBIT). In the study, 214 features
were extracted via PyRadiomics, a SVM was used for feature selec-
tion and model construction, and the model performance was
evaluated via fivefold cross-validation and the DeLong test. The
classification performance of VGG16 in the original and processed
datasets was evaluated in terms of the AUC, accuracy, F1 score,
precision, sensitivity, and specificity. The average classification
accuracy of VGGI16 increased by approximately 12% with the
processed dataset. The results demonstrate that DBIT effectively
preprocesses images to serve as suitable inputs for DL-based CAD
systems, thereby assisting imaging physicians in the diagnosis of
breast cancer.

3.1.8 | Visual Geometry Group-19 Model

Visual geometry group-19 (VGG19) is a 19-layer CNN that extends
VGGI16 with additional convolutional layers, offering enhanced
feature representation for more complex image classification
tasks. In 2018, Mendel et al. [138] used an ImageNet pretrained
VGG19 model to extract features from DBT images for the classi-
fication of malignant and benign lesions. Features were selected
from the VGG19 model after each maxpool layer, and mean
pooling was applied to reduce feature dimensionality. To avoid
feature redundancy, a “leave-one-out” stepwise feature selection
method was used to identify the most frequently selected features,
followed by an estimation of the likelihood of malignancy. The
study utilized 78 lesion images, including 30 images of malignant
lesions and 48 images of benign lesions. The results revealed a sig-
nificant improvement in classification accuracy when combined
with the use of anterior and posterior images from DBT, with DBT
images having an AUC as high as 0.98 in the classification of mass
and architectural distortion (ARD) lesions, compared with 0.88
in FFDM (p = 0.024), highlighting the advantages of DBT in the
detection of breast malignancies.

In 2023, Mukhlif et al. [139] proposed a novel method called
dual transfer learning, which is based on pattern convergence
between the source and target domains. Four pretrained models
(VGGI16, Xception, ResNet50, and MobileNetV2) were fine-tuned
on sufficient unclassified breast cancer images by adjusting the
corresponding final layers. A small number of already classified
images of the same disease and target task were also used,
and data augmentation techniques were employed to balance
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the categories and increase the sample size. The experimental
results indicate that the proposed method enhances the perfor-
mance of all the models, whereas data augmentation further
improves the performance of the VGG16, Xception, ResNet50,
and MobileNetV2 models by 19.66, 34.76, 31.76, and 33.03%,
respectively. Notably, the Xception model achieved an accuracy
of 99%, a precision of 99.003%, a recall of 98.995%, an F1 score of
99%, a sensitivity of 98.55%, and a specificity of 99.14%.

3.1.9 | InceptionV3 Model

InceptionV3 uses amodular Inception architecture and factorized
convolutions to improve computational efficiency and feature
extraction, making it suitable for various image recognition tasks.
In 2023, Harron et al. [140] conducted a comparative investigation
of various pretrained CNN models for feature extraction in fuzzy
detection with DBT images. The CNN models assessed included
ResNetl8, ResNet50, AlexNet, VGG16, and InceptionV3. These
pretrained CNN models, combined with a SVM classifier, yield
promising results in the fuzzy classification of DBT images.
Specifically, deep feature extraction methods were used for
feature extraction, with InceptionV3 having the highest accuracy
of 97% and a maximum AUC of 0.9961.

3.2 | Breast Lesion Segmentation and Detection
with DL on DBT Data

In the task of lesion detection and classification, the development
of DL has significantly changed the traditional methods of image
segmentation and detection [141-144]. In 2012, AlexNet marked
the rise of DL in computer vision [145, 146], followed by the
region-based CNN (R-CNN) family [147, 148] (including Fast R-
CNN and Faster R-CNN) and the You Only Look Once (YOLO)
model from 2016 onward, which drove further developments in
object detection [149-152]. For semantic segmentation, models
such as the fully convolutional network and U-shaped network
(U-Net) have achieved breakthroughs in pixel-level prediction
[153,154], and the Mask R-CNN and DeepLab series have resulted
in further improvements in instance and semantic segmentation
[155-159]. In 2021, transformer architectures, such as the detection
transformer and swin transformer, were introduced to perform
visual tasks [160, 161]. In 2023, Xia and Wang [162] systematically
reviewed transformer-based approaches, noting that models such
as vision transformer and swin transformer have been widely
used for image segmentation tasks for brain tumors, stroke, and
other diseases. The article summarizes a variety of architectures
that fuse convolution with transformer, including SwinUNet,
TransBTS, and so on. These methods utilize the global modeling
capability of transformer, which significantly improves the seg-
mentation effect in multimodal medical images, and especially
show strong adaptive ability under small sample conditions [162].
These advancements have led to significant progress in image
segmentation and detection techniques [163, 164].

For segmentation and detection tasks, DBT data present unique
advantages and disadvantages compared with other medical data
[165-167]. The higher resolution of DBT allows the capturing
of fine structures and lesions in breast tissue, providing clearer
images than traditional 2D mammography methods and enhanc-

ing the accuracy of detection and segmentation algorithms
[168-170]. However, the high resolution also results in substantial
storage requirements and increased computational resources for
processing and analysis [171]. The volume of 3D imaging data
grows exponentially with respect to that of 2D imaging data,
placing greater demands on hardware [172]. Additionally, DBT
images usually contain hundreds of slices, making manual lesion
labeling extremely time consuming and error prone [173-175].
Consequently, the segmentation and detection tasks for DBT data
are highly complex.

3.21 | U-Net Model

U-Net achieves multiscale feature fusion through an encoder-
decoder structure with symmetric skip connections. In 2020, Lai
et al. [176] proposed an algorithm for automatically segmenting
DBT-detected images masses using the U-Net architecture. This
approach can be divided into six stages: DBT image preprocess-
ing, patch extraction, data augmentation, voting scheme fusion,
segmentation via the U-Net architecture, and postprocessing.
The authors employed a 23-layer U-Net model for segmentation,
after which they compared the performance of their model
with that of linear discriminant analysis, SVM and CNN. Their
model outperformed the other methods, with accuracies, sen-
sitivities, specificities, and AUCs for the entire experimental
dataset of 0.871, 0.869, 0.882, and 0.859, respectively. The results
demonstrate that the proposed U-Net-based system is an effective
solution to the problem of DBT mass segmentation.

3.2.2 | Faster R-CNN

Faster R-CNN is an efficient object detection framework that
integrates an RPN for generating region proposals and a CNN
for object classification and localization. In 2019, Fan et al. [177]
designed a CAD system for DBT masses via Faster R-CNN. They
first collected a dataset comprising 89 patients and 105 masses.
The detection architecture employs a CNN with a region proposal
network to generate region proposals (e.g., bounding boxes) with
mass likelihood scores for each slice. The masses detected on
consecutive 2D slices are then merged into a 3D DBT volume
through a slice fusion procedure. The performance of the CAD
system was evaluated with free-response ROC curve analysis, and
the results indicated that, in a comparison between R-CNN-based
CAD systems and DCNN-based CAD systems, the AUCs were
0.96 and 0.92, respectively [178]. The results demonstrated the
utility of faster R-CNN for pretesting ROIs and distinguishing true
masses from FPs in DBT. They further compared the performance
of this method with that of a previous DCNN-based CAD system,
showing that the faster R-CNN could improve prescreening and
reduce FPs in mass CAD systems.

3.23 | Mask R-CNN

Mask R-CNN is an extension of Faster R-CNN that adds a parallel
branch, such as segmentation, to achieve object classification,
localization, and pixel-level segmentation. Additionally, in 2022,
Fan et al. [178] proposed the Mask R-CNN CAD system frame-
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work for breast lump detection and segmentation of DBT images,
which uses ResNet-50 as a feature extractor. The study was based
on a 364-sample design divided into a training set (n = 201) and
a test set (n = 163). In lesion detection, the 3D-Mask R-CNN
achieves a sensitivity of 90% and an FP rate of 0.8 per lesion,
which outperforms the performance of the 2D-Mask R-CNN and
Faster R-CNN. Statistical analysis revealed that the 3D-mask R-
CNN significantly outperformed 2D-based detection in patients
with different features (p < 0.05).

3.2.4 | YOLO Model

YOLO is an end-to-end object detection framework that refor-
mulates object detection as a single neural network regression
problem, enabling real-time object detection and localization. In
2022, Hossain et al. [179] presented a novel algorithm for detecting
breast lesions on DBT images using multidepth level convolu-
tional models. They employed YOLOVS5 as the base network and
enhanced the detection algorithm through data augmentation
and fine-tuning, ultimately developing an integrated algorithm
for medium-to-large models. The integrated model achieves an
average sensitivity of 0.786 FPs per DBT volume on the DBTex
independent test set, with a 2 FP per image sensitivity of 0.743.
The results indicate that the FP outcomes of nonbiopsied benign
lesions provide valuable information for the lesion detection
algorithm and that the integrated detection model improves
lesion detection.

3.3 | Breast Medical Image Generation with DL on
DBT Data

Since 2012, DL has achieved tremendous progress in the field of
image generation. In 2013, autoencoder and variational autoen-
coder (VAE) improved the quality of image generation through
unsupervised learning [180-182]. In 2014, the generative adver-
sarial network (GAN) was proposed by Ian Goodfellow et al.
[183]; this system significantly enhanced the quality of generated
images through adversarial training between a generator and
discriminator. Subsequent variants, such as deep convolutional
GAN, Pix2pix, and cycle GAN, further advanced image transfor-
mation and style migration [184-187]. After 2017, the Wasserstein
GAN, big GAN, and style GAN families demonstrated notable
improvements in training stability and image quality [188-191].
Since 2020, generative transformation models such as vector
quantized VAE 2, diffusion models for autoregressive language
learning-E, and contrastive language-image pretraining, which
combine VAE and transformer architectures, have substantially
improved image quality and consistency in multimodal genera-
tion tasks [192-197].

The applications of generative models in the field of medical
images primarily include image enhancement and restoration
[198, 199], image segmentation [200, 201], image synthesis [202,
203], image transformation [204], and anomaly detection [205].
A prominent challenge with DBT data in the context of DL
is the high cost of manual delineation and annotation. DBT
images typically consist of hundreds of slices, and manually
annotating lesions in each slice requires medical experts to spend
substantial time and effort, resulting in fewer publicly available

DBT datasets with annotations such as outlining [36]. Therefore,
image synthesis, dataset extension, and improvements in the
generalization ability of the model through data augmentation
techniques and GANs have become important areas of research.

3.3.1 | Generative Adversarial Network

GAN achieves high-quality data generation through adversarial
training between a generator and a discriminator. Although
primarily used for image generation, GANs have also played
significant roles in improving breast cancer detection through
various innovative approaches [206-208]. GANs can augment
DBT datasets by generating synthetic images that closely resem-
ble real cases, even when trained on a small dataset [209,
210]. These synthetic images can be integrated into the original
dataset, enriching and diversifying the available training data
and improving the robustness and generalizability of machine
learning models dedicated to breast cancer detection, greatly
facilitating the development of more accurate and reliable
detection algorithms [211, 212].

In 2021, Lee and Nishikawa [213] developed a conditional GAN
(CGAN) model to simulate normal-appearing mammograms
based on mammograms of the opposite breast and processed the
images with a CNN. After testing, the fusion AUC of the CNN
reached 0.77, which was significantly better than that of the CNN
model when only real mammograms were used (AUC of 0.70) and
that of the CNN model when only simulated mammograms were
used (AUC of 0.68). These results indicate that the CGAN model
could aid in the detection of breast cancer [213]. In addition,
the study trained a deep image-to-image network for feature
segmentation on DBT images and subsequently constructed a
task-driven GAN model for simultaneous synthesis and parsing
of unseen real DBT images. In 2022, Staffa et al. [214] proposed
an evolutionary GAN (E-GAN) to augment and balance DBT
image datasets. The quality of the synthetic images generated
by the E-GAN was significantly improved at a later stage of the
learning process, especially in terms of detail and fidelity, with the
structure and texture of the breast becoming more visible [214].

Breast disease classification and diagnosis, lesion segmentation
and detection, and medical image generation can be achieved on
DBT data via DL models. The integration of image data obtained
from DBT is essential for developing an intelligent early breast
cancer screening system based on DL. A comprehensive and in-
depth exploration of the application of DL in the field of DBT is
particularly necessary to fully realize its potential.

3.4 | Application of DL to Other Areas of DBT

DL has various potential applications in the field of DBT [58]. It
has already been widely used in breast disease diagnosis and clas-
sification, lesion segmentation and detection, and medical image
generation [215]. Additionally, in combination with DBT, DL
has shown great promise in predicting breast cancer molecular
subtypes, chemotherapy response, and recurrence risk [216-
218]. DL can also be applied in various clinical environments,
suggesting unprecedented opportunities for its application in
DBT. Table 1 illustrates several potential applications of DL in
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TABLE 1 | Summary of other applications of DL in DBT.

Paper/ Core Model Evaluation Best
reference algorithm application metric results
Shimokawa et al. DL Predict the presence of stromal AUC 0.750
[219] invasion
Schmitgen et al. Random forest Individualized treatment prediction Sensitivity 0.770
[220]
Rigaud et al. [221] DL Automated assessment of breast Binary 0.750
density classifications
Michielsen et al. CNN Improve accuracy and precision of Dice similarity 0.975
[222] iodine quantification in coefficient
contrast-enhanced tomosynthesis
Jang et al. [223] CNN Signal known statistically and Optimal detection Signal known
background known statistically performance exactly: 0.912
detection tasks in breast tomosynthesis Signal known
images statistically:
0.824
Gao et al. [224] DCNN Improve the image quality of DBT in AUC 0.970
terms of image noise and MC
conspicuity
Su et al. [225] DL Improve the DBT imaging performance Azimuthal
symmetry 5.900 mm/9.300
function S
curves/the image
reconstruction
time
Lee et al. [56] Deep neural Improved breast cancer classification AUC 0.910
network performance
Yang et al. [226] Convolutional Classify lesion malignancy in DBT AUC 0.802
inception style
transfer
module
Wang et al. [49] Multiscale Breast mass classification using DBT AUC 0.870
feature deep
neural network
Wang et al. [227] CNN Alleviate the impacts for the accurate Sensitivity 93.51%
and rapid detection of
microcalcification clusters in DBT
Samala et al. [228] DCNN Masses in DBT volume AUC 0.900
Mota et al. [229] CNN An automatic classification of a AUC 94.19%
complete DBT image for the presence
or absence of MCs
Lai et al. [176] U-Net Improve the automatic segmentation Specificity/AUC 0.882/0.859
accuracy of breast masses in DBT
images
Conant et al. [230] DCNN Shorten DBT reading time while AUC 0.852
maintaining or improving accuracy
Xiao et al. [231] CNN Improve the classification performance AUC 0.8837
of benign and malignant MCs in DBT
Teuwen et al. [104] CNN Predictions of breast density Structural 0.910
similarity index
Whitney et al. [232] CNN Distinguish between benign or AUC 0.930
malignant lesions
(Continues)
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TABLE 1 | (Continued)

Paper/ Core Model Evaluation Best
reference algorithm application metric results
Matthews et al. DL Predict breast density AUC 0.980
[233]

Kim et al. [234] CNN Characterize malignant masses in DBT AUC 0.910

Note: Aside from the source code of Ref. 133 and the database of Ref. 143, none of the source codes or databases of the papers listed in Table 1 are publicly available.
Abbreviations: AUC, area under the curve; CNN, convolutional neural network; DBT, digital breast tomosynthesis; DCNN, deep convolutional neural network;

DL, deep learning; MC, microcalcification cluster; U-Net, U-shaped network.
Source code: https://www.mdpi.com/article/10.3390/cancers14205003/sl1.

Database: https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=39879200.

DBT in addition to those described previously.

DBT has the potential to allow the extraction of quantitative
biomarkers of breast cancer [235]. In 2019, Tagliafico et al. [236]
extracted a set of 106 quantitative features from DBT images,
including morphological features, grayscale/scaling statistics,
and texture features. They then applied the least absolute shrink-
age and selection operator method to select the most predictive
features, yielding 34 features that were significantly correlated
with Ki-67, with correlation coefficients exceeding 0.5 for five
of them. The quantitative radiographic features of the breast
tumors extracted from the DBT images were associated with Ki-67
expression in breast cancer [236].

DL also provides a way for DBT to predict molecular subtypes of
breast cancer. This involves the detailed exploration of specific
molecular subtype features visualized on DBT images, which can
help classify lesions based on receptor status and molecular sub-
type [237-239]. In 2019, Cai et al. [240] retrospectively analyzed
234 breast cancer patients with surgical, complete pathological,
and immunohistochemical data, classified the patients’ tumors
into four molecular subtypes and then assessed the associations
between the clinical features of each molecular subtype and DBT
features. The results revealed that the calcification score and
lymph node size significantly differed among the four molecular
subtypes. Subgroup analyses based on tumor size, calcification
score, and lymph node size revealed a significant difference in the
distribution of patients with a lymph node size >1.5 cm versus
those with a lymph node size <1.5 cm. In summary, diagnostic
imaging features such as the calcification score and lymph node
size determined by DBT can be used as auxiliary diagnostic
indicators for the molecular subtype of breast cancer [240].

DL has shown promise for risk prediction and prognosis in
DBT [241]. In 2020, Conant et al. [242] compared the resection
rate, complete dissection rate, and biopsy recommendation rates;
positive predictive value of recall; positive predictive value of
biopsy; false-negative rates; and biology, size, and lymph node
status of screen-detected and interval cancers in patients con-
secutively screened with DBT versus DM. The results suggested
that DBT screening detects a greater proportion of cancers with
a poor prognosis than does DM screening. The combination of
DL with DBT, together with other clinical indicators, aims to
facilitate early prediction of patient and survival outcomes [243].
The potential application of combining DBT with DL could also
be extended to predicting cancer recurrence, as demonstrated

through some recent developments in breast imaging [244]. This
includes combining AT with imaging genomics, using the features
of the latter to predict the risk of recurrence in patients with breast
cancer.

DL has demonstrated a wide range of applications in the field
of DBT, significantly improving the accuracy of breast disease
diagnosis and lesion segmentation and detection and offering the
potential for fully automated detection. When combined with
DL, DBT technology excels in predicting the molecular subtypes
of breast cancer, assessing the response to chemotherapy, and
predicting the risk of recurrence, thereby greatly improving the
sensitivity in diagnosing breast cancer.

4 | Machine Learning in the Field of DBT

Using the enhanced features extracted from DBT images, differ-
ent research teams have significantly improved the effectiveness
and diagnostic accuracy of early breast cancer screening by com-
bining various techniques, including logistic regression models
and machine learning methods [245-247]. In 2022, Eriksson
et al. [248] developed a logistic regression model based on DBT
information, producing a fundamental machine learning-based
classification algorithm that has been widely studied in the field
of early breast cancer screening. This model uses enhanced image
features extracted from DBT images to predict the risk of breast
cancer in women who undergo annual screening [2438].

Similarly, Johnson et al. [249] reported a decrease in the incidence
of interstitial cancer following DBT screening. Their findings,
derived from a prospective, population-based DBT screening trial,
indicated a rate of 1.6 interval cancers per 1000 women screened, a
reduction from the accepted value that suggests the potential ben-
efits of their method, such as enhanced early detection, leading to
reduced breast cancer mortality rates [249]. Additionally, Sharpe
etal. [76] analyzed the effect of DBT on recall and cancer detection
rates in breast cancer screening. By combining single- and mixed-
effects logistic regression models, their results demonstrated
that the implementation of DBT significantly improved cancer
detection rates, markedly increasing the efficacy of breast cancer
screening [76].

In the medical field, machine learning techniques have been
widely used for feature extraction from DBT images, as well as
for screening and diagnosing breast cancer, as shown in Table 2.
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TABLE 2 | Non-DL Al models in DBT.

Paper/ Core Model Evaluation Best
reference algorithm type metric results
Conant et al. [64] Logistic regression DBT-based logistic Sensitivity specificity 0.909
regression model 0.913

Niu et al. [250] Multivariate logistic DBT-based AUC 0.980

regression radiomics model
Wang et al. [251] Logistic regression DBT-based AUC 0.905

combined radiomics
nomogram
Eriksson et al. Elastic net logistic DBT-based risk AUC 0.820
[248] regression, nested model
cross-validation

Bahl et al. [252] Multivariable logistic DBT-based DL Adjusted odds ratio 0.880-1.140

regression models
Kim et al. [253] Multivariable logistic DBT-based logistic TP, FP 18.7 vs. 21.7%

regression regression model 75.9 vs. 77.6%
Peng et al. [254] Random forest DBT-based random AUC 0.834

forest classifier
Sakai et al. [255] Support vector machine DBT-based support Correct identification 0.840
vector machine rate
classifier
Wels et al. [256] Multiple multivariate DBT-based machine Localization error 22.480 + 8.670 mm
random forest regression learning methods

Samala et al. Feature selection, random DBT-based deep AUC 0.900

[132]

forest classification

DCNN

Note: None of the source codes or databases of the papers listed in Table 2 are publicly available.

Abbreviations: AUC, area under the curve; DBT, digital breast tomosynthesis; DCNN, deep convolutional neural network; DL, deep learning; FP, false positive;

SVM, support vector machine; TP, true positive.

In 2022, Niu et al. [250] developed a nomogram that combines
radiomic features with clinically important factors. Compared
with the classical mammography-DBT assessment method, their
nomogram demonstrated superior diagnostic ability and was
recommended as a valuable tool for assisting clinicians in the
early screening of breast cancer [250].

In 2020, Sakai et al. [255] explored the use of various clas-
sifiers, including SVM, naive Bayes, random forest, and MLP
classifiers, to classify a variety of extracted radiomic features,
with a particular focus on comparing their accuracy. Among
these classifiers, the SVM-based classifier was the most effective,
achieving accuracies of 55 and 84% in detecting benign and
malignant tumors, respectively. These results indicate that the
proposed method can assist imaging physicians in diagnosing
lesions more accurately [255].

Radiomics employs machine learning technology to analyze and
interpret medical images, as demonstrated by numerous studies
applying such methods to this field [257-260]. Radiomic methods
can extract specific imaging features (e.g., first-order features,
textural elements, intensities, gradients, and curvatures) from
DBT images to identify ROIs [251, 255, 261]. This capability
plays a key role in all aspects of breast cancer management,
including diagnosis, subtype differentiation, treatment response
assessment, and prognosis.

For example, Tagliafico et al. [262] used radiomics in DBT to
assess dense breasts, extracting 104 different features from the
images of 20 patients and analyzing the differences in three
specific features between healthy individuals and cancer patients,
achieving an AUC of 0.567. Moreover, Fusco et al. [263] utilized
radiomics to differentiate between malignant and benign lesions,
focusing on the morphological features distinguishable on DBT,
and achieved an AUC of 0.74 following univariate analysis.
Together, these studies illustrate the ability of radiomics to
identify ROIs by extracting specific imaging features from DBT
images. Advances in machine learning technology are critical for
improving the early screening and diagnosis of breast cancer.

5 | Public Mammography Databases

DL models in the field of DBT require a substantial amount of
data and comprehensive databases [264]. Currently, DM research
benefits from numerous datasets sourced from multiple medical
centers, but the limited availability of public datasets hampers the
development of the DBT field [265-267].

In this subsection, we present several key databases that allow
researchers access to DBT-related data. These databases can
be categorized into two types: DM datasets and DBT datasets.
Notably, the DM and FFDM datasets are relatively abundant in
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GRADE
Y
Pathological s
Diagnosis
N/A
Target
Delineation 100000
10000
Abnormal
Annotation 1000
100
Amount Amount

MIAS DDSM LAPIMO INbreast BCDR-DM CSAW-CC OMI-OB VinDr-Mammo

FIGURE 4 | Detailed comparison of breast cancer image databases. We make detailed comparisons between databases based on several key
attributes, including GRADE, that is, whether information on the severity grading of breast cancer is included; pathological diagnosis, that is, whether
benign and malignant information is included; target delineation, that is, whether the delineation of target regions for breast cancer is included; abnormal
annotation, that is, whether abnormal annotations are included; and amount, that is, the number of images in the dataset. The yellow triangles indicate
that the attribute is present, whereas the blue triangles represent “not applicable,” that is, the data are not provided. The size of the circle indicates the
order of magnitude of the images in the dataset. For example, the largest circle represents an order of magnitude of more than 100,000 images, whereas
the smallest circle represents an order of magnitude of fewer than 100 images. The representative breast cancer image databases include MIAS, DDSM,
LAPIMO, INbreast, BCDR-DM, CSAW-CC, OMI-OB, and VinDr-Mammo.

publicly available sources. We list 11 widely used public datasets
with data sizes ranging from a few hundred to hundreds of
thousands of samples. Most of these datasets contain detailed
regional-level annotations.

We summarize the currently available mammography databases,
including DM and FFDM databased. The MIAS and INbreast
databases are specifically dedicated to mammography image
analysis. The MIAS database was constructed from Joyce-Loebl
scanning of films from the UK National Breast Screening Program
[268]. It includes images of women of various ages and ethnicities,
with annotations detailing lesion location, size, and morphology.
INbreast comprises data from 115 women (410 images), includ-
ing patients with both breasts and those who had undergone
mastectomy and lesion types including masses, calcifications,
asymmetries, and deformities [269]. The DDSM [270], LAPIMO
[271], BCDR-DM [272], CSAW-CC [273], OMI-DB [274], and
VinDr-Mammo [273] databases provide extensive collections of
mammography and FFDM images. These databases offer not
only conventional X-ray images but also ultrasound images and
a rich array of images with BI-RADS classification annotations
to support the development, training, and performance testing of
mammography CAD programs.

The DDSM, LAPIMO, INbreast, and VinDr-Mammo databases
contain grading of recommendations, assessment, development,
and evaluation annotations. The OMI-DB and VinDr-Mammo
databases, containing 148,461 and 5000 four-view FFDM images,
respectively, are annotated with detailed assessments and lesion
findings at the breast level, providing high-quality resources for
research and clinical diagnosis (Figure 4).

In contrast, few publicly available DBT datasets exist because
of the relative recency of DBT technology. The main shortcom-
ings of DBT databases with respect to other databases (e.g.,

DM databases) are their small number of datasets, insufficient
detailed annotations, and lack of patient diversity. This limits the
options available to researchers and clinicians for training and
evaluating DL models. Currently, DBT databases are widely used
in training tumor detection and classification algorithms, evalu-
ating their effectiveness in the diagnosis of various conditions,
improving image reconstruction and enhancement techniques,
conducting multimodal image research, training and educating
clinicians, and developing optimized CAD systems [275-277].
These applications not only enhance the early detection and
diagnosis of diseases such as breast cancer but also promote the
advancement of related technologies and algorithms.

However, most datasets constructed in these studies are not
publicly available. The BCS-DBT dataset, consisting of 5060
samples, is currently the only publicly accessible DBT dataset
[167, 278]. Two imaging physicians annotated these samples,
documented the presence of masses and ARDs, and assessed
whether the findings were benign or malignant lesions [279, 280].
However, the details of their regional-level annotations are very
limited. This discrepancy highlights the scarcity of comprehen-
sive DBT datasets, especially considering the volume and depth of
information needed. Therefore, the development and availability
of large-scale, well-annotated public DBT databases is highly
important. A comparison between the DBT and DM databases is
shown in Table 3.

6 | Challenges and Prospects of DL Applications
in DBT Imaging

Although DL techniques have shown great potential in analyzing
breast cancer images, their application in the DBT field remains
limited. Next, we review the three main challenges faced in
the application of DL techniques in DBT research and propose
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Abbreviations: BI-RADS, breast imaging reporting and data system; CAD, computer-aided diagnostic; DBT, digital breast tomosynthesis; DL, deep learning; DM, digital mammography; FFDM, full-field digital mammography.

directions for future development. Figure 5 provides an overview
of the deployment of DL and machine learning in the DBT
domain, highlighting their advantages and challenges.

6.1 | Challenges and Perspectives Related to DBT
Datasets

The training of DL models relies on large, high-quality annotated
training sets [281, 282], and public datasets provide a foundation
for researchers to develop and evaluate models. However, the
lack of public DBT datasets remains a significant challenge, with
existing well-known mammography datasets (e.g., DDSM and
OMI-DB) not applicable to DBT and the sharing of image data
severely restricted owing to privacy policies [283-285]. Therefore,
further development of DL-based DBT models requires the
collection of a large amount of accessible data. Typically, DL
models perform best on large amounts of highly annotated data,
but DBT typically produces more than 100 times more images
than DM does; however, malignant features are usually only
visible in a few slices [286, 287]. Previous studies have improved
model performance by collating and annotating DBT image
datasets, applying multi-instance learning, and so on [288, 289].
Buda et al. [167] collated data from more than 22,000 3D-DBT
volumes from 5060 patients to facilitate the development of a
breast cancer screening model. Lotter et al. [287] also developed
a new method to efficiently train a model using DBT data labeled
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FIGURE 5 | Challenges and future prospects of DL techniques for DBT applications. The challenges are grouped into three categories: data

challenges, model challenges, and interpretability challenges. The training of DBT-DL models depends on the availability of a substantial, high-quality
annotated training set, as there is a paucity of publicly available datasets for DBT. A lack of data can lead to model overfitting. In addition to building public
databases, the use of data augmentation, federated learning, encrypted data learning, and other methods is expected to improve model generalizability
across different datasets. In addition, the training process of DL models presents numerous challenges. Multisource domain migration, LLM, and

knowledge graphs are expected to facilitate the implementation and dissemination of DBT techniques in clinical settings. Since DL models are opaque,
resulting in low interpretability. Attention mechanism networks, multiperspective feature fusion, and in-model interpretation approaches are expected

to improve interpretability.

a more cautious approach to sharing sensitive data, limiting
the construction of and access to DBT public databases. Data
privacy protection methods range from data anonymization and
obfuscation to federated learning and encrypted data learning.
Federated learning is a private, distributed, and decentralized
machine learning method that uses private data to train shared
models locally without exchanging original patient data [305-
307]. In 2019, Sheller et al. [308] demonstrated federated learning
on clinically acquired brain tumor segmentation data for an
interagency segmentation task. Their study revealed that feder-
ated semantic segmentation models (Dice = 0.852) performed
similarly to models trained on shared data (Dice = 0.862) and
outperformed two alternative collaborative learning methods
[308].

In summary, the challenges faced by datasets during the training
of successful models are related to the generalization ability of the

model and data privacy protection. In the future, data privacy-
preserving methods such as federated learning and encrypted
data learning are expected to improve the generalization ability
of models for different datasets while meeting the requirements
of data privacy preservation. In addition, we encourage research
teams to make DBT datasets publicly available to promote the
further application of DL models in the field of DBT.

6.2 | Challenges and Perspectives Related to
Modeling

New developments in DL models in the DBT field continue to
emerge, which we categorize into three parts. We also outline the
challenges associated with model training and present prospects
for the application of multiple-source domain transfer (MSDT),
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large language models (LLMs), and knowledge graphs in the DBT
domain.

In the field of the diagnosis and classification of breast cancer,
DL has made significant progress, with multimodal data fusion
achieving encouraging results [309-311]. The synergistic appli-
cation of DM, DBT, and contrast-enhanced magnetic resonance
imaging has been demonstrated to enhance the identification of
malignant tumors and reduce the incidence of interstitial cancer
[312, 313]. A groundbreaking study by Shoshan et al. [86] used an
ensemble of 50 DL and machine learning classifiers to combine
DBT data with numerous clinical parameters, including patient
age, ethnic background, hormonal status, and family history of
breast cancer. Their findings highlighted the efficacy of AI in
enhancing breast cancer screening programs. Notably, the Al-
driven approach resulted in a significant reduction in the clinical
workload by 39.6% and a 25% reduction in patient recall without
compromising sensitivity [86]. Thus, this multimodal screening
paradigm shows great promise in enhancing DBT by improving
diagnostic accuracy and streamlining the screening process.

In the field of early screening and diagnosis, Rodriguez-Ruiz
et al. [314] introduced a DL-enhanced interactive tool for imaging
students that calculates a localized cancer likelihood score after
selecting a specific breast region. This innovation significantly
improved the AUC, increasing sensitivity while maintaining
specificity and accuracy without prolonging the reading time
[314]. In addition, the application of AI in the design and
implementation of clinical trials is equally significant. Dong et al.
[315] aimed to analyze the characteristics of registered Al trials
for cancer diagnosis by searching the ClinicalTrials.gov database
to statistically and analytically analyze the design and outcomes
of 97 clinical trials involved. The results revealed that most of
the trials were observational in design and that the number of
interventional trials was low, indicating that the field is in dire
need of more high-quality clinical validation [315]. The use of AI
in clinical trials is still in its infancy, but it is a rapidly evolving
field. As regulators provide more guidance on the acceptability of
Al in specific areas, its use will expand, and its implementation
will increase rapidly.

Important breakthroughs in lesion segmentation and detection
have also been achieved by DL [316-318]. Advanced segmentation
models can accurately identify and segment structures and
lesions in the breast, aiding in diagnosis and treatment. U-Net
and its variants, as well as the DeepLab family, are advanced
segmentations models that have been applied to DBT [319-323].
In 2023, Bobowicz et al. [324] proposed a clustering-based con-
strained attention multiple instance learning (CLAM) classifier
that can be trained efficiently despite a relative scarcity of data.
A feature extractor pretrained on ImageNet (ResNet18, ResNet34,
ResNet50, and EfficientNetB0) was used, resulting in an AUC of
0.848. The attention map of the CLAM algorithm highlights the
features in the image most relevant for the algorithm [324].

The field of medical image generation has also benefited from
developments in DL, particularly through the application of
GANSs and VAEs. In 2019, Cogan et al. [325] presented a com-
prehensive mammogram screening solution consisting of three
main components: a machine learning algorithm to accept or

reject images as valid mammograms, an artificial neural network
to locate potential malignancies, and a web service for uploading
images and viewing results. The image receiver is primarily a class
of SVMs constructed based on features derived from a VAE. If an
image is accepted as a mammogram, the malignant tumor rec-
ognizer (ResNet-101 Faster R-CNN) will locate the tumor in the
mammogram. In the test data, the malignant tumor recognizer
achieved an AUC of 0.951 [325]. In 2023, Balaji [326] proposed a
3D Connected-UNet based on an encoder-decoder architecture
for tumor segmentation from 3D MR images and evaluated it
on the INbreast and private datasets. The experimental results
show that the proposed model outperforms existing breast tumor
segmentation methods [326].

MSDT may be a potential optimization approach for integrat-
ing DM, FFDM, and DBT data, mitigating variability between
datasets and enhancing the generalization ability and diagnostic
accuracy of models in the DBT field [327-329]. Specifically, MSDT
can reduce data bias, resulting in more stable and accurate models
when processing images from various sources, thereby improving
the sensitivity and specificity of early breast cancer detection [330,
331]. Additionally, MSDT can significantly reduce the need for
and cost of labeled data, as models can be effectively trained using
multiple unlabeled datasets. This approach not only addresses the
challenge of data scarcity but also accelerates the adoption of DBT
technology in clinical settings [332, 333].

In the future, with advancements in transfer learning algorithms
and computational resources, the application of the MSDT in
DBT is expected to further enhance image quality, diagnos-
tic efficiency, and patient outcome prediction. Regularization
methods (e.g., dropout) and the development of more robust
model architectures (e.g., transformer) have been proposed for
improving model adaptability across different sets of data and
tasks [334-338]. In 2019, Aslani et al. [339] proposed the use of
secondary networks and corresponding regularized loss terms to
learn domain-specific knowledge. Their study demonstrated that
networks with independent branches produced more accurate
segmentation, such as a dice similarity coefficient (DSC) of
0.7649, than did single-branch networks with all modalities
stacked, highlighting the importance of the fluid-attenuated
inversion recovery modality for multiple sclerosis lesion segmen-
tation (DSC > 0.65) [339].

These secondary networks learn to predict the class of the
input scanner domains, encouraging the backbone segmentation
network to ignore domain-specific information and helping it
outperform other baseline networks in generalizing to new data
points. In 2022, Sendra-Balcells et al. [340] evaluated the potential
of domain generalization for increasing the number of images
with data augmentation, domain blending, transfer learning,
and domain adaptation techniques. Their results indicated that
combining data augmentation with transfer learning can produce
single-center models that generalize well to new clinical centers
not included in the training data [340]. Single-domain neural
networks enriched with appropriate generalization procedures
can meet or exceed the performance of multicenter, multivendor
models for augmented imaging, thereby eliminating the need
for comprehensive multicenter datasets for training generalizable
models [340, 341].
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Recently, LLMs have achieved important milestones in address-
ing various challenges in the biomedical field [342-345]. For
example, in 2024, Huang et al. [346] introduced the clustered rule-
interval short palindromic repeats-generative pretrained trans-
former (CRISPR-GPT) that enhances domain knowledge and
external tools to automate the process of designing CRISPR-based
gene editing experiments. CRISPR-GPT leverages the reasoning
capabilities of LLMs to facilitate the selection of CRISPR systems
and experimental design, demonstrating the potential of LLMs in
complex biodiscovery tasks [346]. At the same time, LLMs play an
important role in clinical trials. In 2024, Jin et al. [347] introduced
TrialGPT, an LLM-based framework for assisting in the matching
of patients to clinical trials. Evaluated across 183 patients and
more than 18,000 trial annotations, TrialGPT not only achieved
87.3% predictive accuracy, but also significantly reduced the time
for clinical trial matching, demonstrating its great potential to
enhance patient recruitment efficiency [347].

DL models are highly dependent on the amount of data, and
the number of mammograms required for a human physician
to achieve better diagnostic performance is much less than that
required for DL models. Human doctors utilize their extensive
experience and comprehensive background knowledge in the
diagnostic process and can make accurate diagnoses with fewer
images, whereas DL models require large amounts of data for
training to ensure their accuracy and generalizability in various
situations. However, LLMs have the potential to mitigate the
extensive data needs of DL models in medical imaging diagnosis
with many mammography images. Like human doctors, LLMs
can use textual information to enhance their diagnostic capa-
bilities. By analyzing electronic health records and other textual
information, an LLM can acquire more contextual knowledge,
improving the accuracy of image diagnosis [348-351]. LLMs
can also accumulate a vast amount of medical knowledge and
reasoning ability through the pretraining process, enabling them
to apply existing knowledge and reasoning strategies when pro-
cessing new image data, thus improving diagnostic efficiency and
accuracy, even in cases of low image data availability [352-354].

In addition, various retrieval augmented generation (RAG)
methods have been developed to search for documents from a
knowledge corpus and generate responses by attaching them
unconditionally or selectively to the input of the LLM [355-
357]. In 2024, Jeong et al. [358] introduced self-biomedical
RAG (Self-BioRAG), a reliable biomedical text framework that
is specialized in generating explanations, retrieving domain-
specific documents, and self-reflective generated responses. The
experimental results for Self-BioRAG demonstrated significant
performance gains, with an average absolute improvement of
7.2% compared with those of state-of-the-art open-base models
with parameter sizes of 7B or less [358].

Overall, the application of the RAG score to LLMs enables the
models to act like medical experts do, utilizing information from
retrieved documents and coded knowledge, thereby enhancing
the capabilities of the biomedical and clinical domains.

A retrospective study by Andrea et al. in 2024 demonstrated
that, based on breast imaging reports written in three languages,
publicly available LLMs such as GPT-4, GPT-3.5, and Google
Bard reached moderate agreement with the BI-RADS category

assignments given by human readers (AC1 values of 0.52, 0.48,
and 0.42, respectively). However, their limitations in processing
multilingual breast imaging reports have revealed their per-
formance in complex clinical tasks needs improvement [359].
Additionally, in 2024, Vera et al. evaluated the performance of
ChatGPT-3.5 and GPT-4 in clinical note analysis, guideline-based
Q&A, and patient management recommendations by searching
medical literature analysis and retrieval systems online for rel-
evant studies published before December 22, 2023. The results
revealed the potential of LLMs in breast cancer patient care,
with high accuracy in structured tasks but demonstrating issues
regarding inconsistency and cue dependency, highlighting the
importance of careful validation and continuous monitoring of
these models [360]. Currently, state-of-the-art models such as
GPT-4 and pathway language model 2 occupy a central position
in healthcare AI innovation, showing significant potential for
DBT screening in the early stages of breast cancer [359, 361, 362].
Incorporating LLMs into this field is expected to help health
care professionals more accurately identify and classify breast
lesions and shorten consultation times, potentially transforming
the landscape of breast cancer diagnosis and screening.

However, the problem of the baselessness of LLMs in generating
knowledge highlights the need to incorporate other technological
tools to improve the accuracy and reliability of the generated
information. Among these, the integration of knowledge graphs
into LLMs provides one effective solution [363-365]. Knowledge
graphs describe knowledge as a structured and decisive repre-
sentation in the form of “head entity-relation-tail entity” triples;
examples include Wikidata, yet another great ontology, and
never-ending language learning [366-368]. Knowledge graphs, an
important subfield of knowledge engineering, can provide LLMs
with structured medical knowledge and relationships to enhance
their comprehension and reasoning capabilities, thus helping the
models more accurately and comprehensively consider patho-
logical features and diagnostic information when analyzing and
interpreting medical images [369-371].

In 2023, Li et al. [372] designed a workflow centered on a DL
model called the bidirectional long short-term memory highway
conditional random field. This workflow first establishes the
structure of the knowledge graph for breast cancer diagno-
sis at the conceptual level and then searches for associations
through bidirectional long short-term memory while optimizing
information flow with a highway network, which optimizes
information flow and feature extraction, leading to significant
improvements in performance [372]. In 2022, Zhang and Cao [373]
combined knowledge graphs with natural language processing
to simplify the extraction of breast cancer genetic features, using
the Bhattacharyya distance index and Gini index for sample gene
selection. These advances are expected to enrich the pathways
for breast cancer gene extraction and significantly contribute to
disease control and prevention [373].

In conclusion, DL models have broad application prospects
in the field of DBT, and their potential to achieve significant
advancements in diagnostic classification, lesion segmentation
and detection, and medical image generation has been prelimi-
narily verified in various studies. Through multisource domain
migration, DL models are expected to integrate data from dif-
ferent sources better and achieve improved generalizability and
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diagnostic accuracy. Al technologies other than DL, including
LLMs and knowledge graphs, are expected to accelerate the
application and diffusion of DBT technologies in clinical settings.

6.3 | Interpretability Challenges and Perspectives

One of the main challenges in applying DL and other AI models
to DBT is the issue of model interpretability [374-376]. DL
models are often regarded as “black boxes” [377] due to a lack
of transparency in their decision-making process [378, 379]. If a
model makes a mistake, it is difficult for doctors to detect and
correct it, potentially resulting in diagnostic errors [380].

Regulatory issues have a profound impact on the interpretability
of DL models, and regulatory restrictions have made the devel-
opment of tools and strategies for interpreting complex models
of sophisticated AI a pressing need [381]. On the one hand,
regulatory frameworks have driven the development of inter-
pretability standards to ensure that AI meets transparency and
compliance requirements in its applications [382]. On the other
hand, regulatory requirements enhance model transparency,
prompting developers to emphasize interpretability in the design
and implementation process, enabling healthcare professionals
to understand model decisions and thus increasing trust in Al
[383]. Regulation also facilitates the validation and approval
process by requiring developers to demonstrate evidence of
explainability to gain approval for clinical applications, which
drives the development of compliant technologies. Farah et al.
[384] emphasized the importance of explainability in enhancing
trust among healthcare stakeholders through a review of the
existing literature. The specific tools proposed in the article
include decision support flowcharts and evaluation methods that
incorporate interpretability into the core of algorithm develop-
ment to help understand how machine learning algorithms work
[384].

Strategies for improving the interpretability of DL models applied
to DBT include feature visualization, fusion of multiview feature
fusion, model-agnostic interpretation, and location annotation.
Mohseni et al. [383] presented a multidisciplinary framework
that integrates knowledge from different domains to support the
design and evaluation of explainable AI (XAI) in clinical work-
flows. The article categorizes the design goals and evaluation
methods of XAI, emphasizing how interpretable tools can be
practically applied to enhance physicians’ trust and willingness to
use them [385]. Lu et al. [386] enhanced the model’s application in
clinical trial management by employing a selective classification
approach in conjunction with a hierarchical interaction network
that ensured the retention of prediction decisions at low con-
fidence, thereby enhancing physicians’ trust and willingness to
use model predictions. The results of the study showed that the
method significantly improved the accuracy and interpretability
of clinical trial approval prediction [386]. Improving interpretabil-
ity can be achieved by introducing innovative neural network
architectures and visualization techniques, such as models based
on attention mechanisms and Grad-CAM. The introduction
of the attention mechanism enhanced model interpretability,
allowing networks based on this mechanism to represent the
significance of features at different spatial locations and guide the

information visible in other parts of the network [387]. Fusion of
multiview features involves combining image information from
different angles and levels and enhancing the interpretability
and reliability of the model by integrating features from different
viewpoints, thereby making the model’s decision more clinically
meaningful.

In 2023, Zhong et al. [388] proposed a multiview fusion net-
work with local-global dual-path transformer architecture, for
mammography-based breast density classification in breast can-
cer screening, achieving AUCs of 96.73 and 91.12% on two publicly
available mammography datasets, CBIS-DDSM and INbreast,
respectively. The designed fusion model utilizes information
from multiple views more efficiently than existing models do,
outperforming baseline and state-of-the-art methods [388]. In
2016, Gal and Ghahramani [389] developed a new theoretical
framework that treats dropout training in deep neural networks
as approximate Bayesian inference in a deep Gaussian process.

Model-agnostic interpretation methods, such as LIME and
Shapley additive explanations (SHAPs), can reveal the detailed
contributions of individual features to the prediction results of a
DL model [390-392]. In 2022, Ma et al. [216] built an interpretable
machine learning model to distinguish the molecular subtypes
of breast cancer, using the SHAP technique to identify important
features for predicting the molecular subtypes from many imag-
ing signs. The application of these explanatory methods in DBT
can better elucidate the decision-making process of the model for
each image segment, identify key lesion features, and enhance
physicians’ trust in the model’s predictions, thereby increasing
the clinical application value of DBT [393].

Another intuitive and enhanced interpretability approach is
lesion localization annotation [394]. This method can reveal
the spatial locations of key features in the model’s decision-
making process, aiding imaging physicians in understanding and
validating the model’s diagnostic results, thereby improving trust
and clinical usability in the model. The noninterpretability of
DL models remains the most significant barrier to their clinical
deployment, highlighting the urgent need for models with better
interpretability [395].

7 | Conclusion

This review comprehensively analyzes the applications, chal-
lenges, and future directions related to DL technology in the
field of DBT. First, we analyzed the current status of DBTs,
including their principles and applications. Next, we summarize
the functions and applications of DL in the treatment of breast
diseases and classify the DL models into three main categories.
Additionally, we explore the application of DL in other areas of
DBT and other AI techniques in addition to DL in early DBT
screening, summarizing publicly accessible databases. Finally,
we address the challenges and future research directions in the
application of DL to DBT, summarize the potential of knowledge
graph- and LLM-based applications in DBT, and lay a foundation
for advancing DL-based early DBT screening applications. Our
work highlights the significant promise of DL applications in DBT
and outlines future research trajectories.
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