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Spatial transcriptomics technology provides novel insights into the spatial organization of gene expression during
embryonic development. In this study, we propose a method that integrates analysis across both temporal and spatial
dimensions to investigate spatial transcriptomics data from mouse embryos at different developmental stages. We quanti-
fied the spatial expression pattern of each gene at various stages by calculating its Moran’s I. Furthermore, by employing
time-series clustering to identify dynamic co-expression modules, we identified several developmentally stage-specific reg-
ulatory gene modules. A key finding was the presence of distinct, stage-specific gene network modules across different
developmental periods: Early modules focused on morphogenesis, mid-stage on organ development, and late-stage on neu-
ral and tissue maturation. Functional enrichment analysis further confirmed the core biological functions of each module.
The dynamic, spatially-resolved gene expression model constructed in this study not only provides new biological insights
into the programmed spatiotemporal reorganization of gene regulatory networks during embryonic development but also
presents an effective approach for analyzing complex spatiotemporal omics data. This work provides a new perspective for
understanding developmental biology, regenerative medicine, and related fields.
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1. Introduction
A central question in developmental biology is under-

standing how gene regulatory networks are coordinated in time
and space to drive the development of complex organisms
from a single cell.[1] While traditional transcriptomics has re-
vealed the expression patterns of many key regulatory factors,
the loss of spatial information hinders a comprehensive analy-
sis of the intercellular context within tissues. The recent emer-
gence of spatial transcriptomics technology fills this gap, en-
abling us to simultaneously capture gene expression and its
spatial location on tissue sections.[2,3] In embryonic develop-
ment research, understanding how cell fate decisions and or-
gan formation occur with precise timing and spatial organiza-
tion within tissues is crucial.[4,5] Spatial transcriptomics pro-
vides a key tool for dissecting these dynamic processes. Mean-
while, advances in single-cell sequencing and high-throughput
technologies allow for the collection of transcriptomic data
from embryonic tissues at multiple developmental time points,
facilitating systematic studies across both spatial and temporal

dimensions.[6–9]

To extract biologically meaningful signals from complex
spatiotemporal transcriptomics data, this study introduces the
spatial statistic Moran’s I. Moran’s I was initially used in geo-
graphic information analysis to measure the spatial autocor-
relation of an attribute.[10] Spatial autocorrelation based on
Moran’s I is widely applied across various research fields: for
example, Augustine et al. used Moran’s I to analyze the rela-
tionship between grazing intensity and bare soil spatial hetero-
geneity, revealing the role of spatial autocorrelation in assess-
ing ecosystem responses;[11] Griffith and Chun used Moran’s
I for remote sensing information extraction;[12] Youssef et al.
employed Moran’s I to analyze the spatial autocorrelation of
landslide occurrences and combined it with spatial logistic re-
gression and GeoDetector methods to improve the accuracy of
landslide susceptibility mapping.[13] Similarly, Moran’s I has
been successfully applied to spatial transcriptomics.[14] For in-
stance, Qiu et al. utilized Moran’s I to identify differentially
expressed genes in spatial transcriptomics data,[15] and a study
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by Lin et al. used Moran’s I to measure spatial autocorrela-
tion for identifying tissue architecture.[16] Moran’s I measures
the correlation of signal intensity between adjacent locations:
when the expression levels of a gene at neighboring spatial
points are significantly correlated, its Moran’s I value is high,
indicating that the gene exhibits a clustered spatial expression
pattern.[17]

In the present study, we utilize Moran’s I to quantitatively
assess the spatial expression characteristics of each gene at
different embryonic stages, thereby identifying genes associ-
ated with spatial pattern development. The analysis pipeline
is illustrated in Fig. 1. First, for each stage, a spatial neigh-
borhood graph was constructed based on K-nearest neighbors
(KNN).[18] Using this graph, the Moran’s I was calculated for
every gene within defined tissue regions at each stage. This
process generated time-series Moran’s I profiles for each gene
across the developmental stages within specific tissues. These
profiles underwent linear interpolation and smoothing to en-
hance signal quality, followed by removing genes with exces-
sive missing values. Subsequently, we employed the Tslearn
KMeans time-series clustering[19] algorithm to group genes

into modules based on similar spatiotemporal dynamic pat-
terns reflected in their Moran’s I profiles. Within each iden-
tified module, genes were ranked in descending order based
on a representative Moran’s I value, and the top 50 genes were
selected. Finally, functional enrichment and network analyses
were performed on these top genes to elucidate their biologi-
cal significance, particularly concerning their roles in morpho-
genesis, organogenesis, and tissue maturation.[20] By compar-
ing changes in Moran’s I across multiple time points, we can
capture the evolution of gene spatial expression patterns over
time, laying the groundwork for constructing spatiotemporal
dynamic patterns of gene expression.

This study aims to utilize spatiotemporal transcriptomics
data, combined with Moran’s I analysis, to construct spa-
tiotemporal dynamic patterns during mouse embryonic devel-
opment and perform functional interpretation. We hypoth-
esized that distinct gene modules govern embryonic devel-
opment at different periods, which form specific spatial ex-
pression distributions and are activated programmatically over
time.
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Fig. 1. Workflow for the dynamic identification of gene modules in mouse embryonic development using Moran’s I. Gene spatial aggregation
dynamics across developmental stages (input: E9.5–E16.5 spatial transcriptomics) were quantified using Moran’s I. After processing the
temporal Moran’s I profiles, time-series clustering (KMeans via Tslearn) grouped genes into modules based on shared dynamic patterns. Top
genes from these modules, ranked by descending Moran’s I, were subsequently analyzed for functional significance in development through
enrichment (GO, KEGG, WP) and network analyses.

2. Materials and methods
2.1. Data source

The data used in this study were sourced from the
mouse embryonic development spatiotemporal transcrip-
tomics dataset provided by Zhong et al.[21] This dataset con-
tains gene expression information of mouse embryos from de-
velopmental stage E9.5 to E16.5 (see Fig. 1), covering spatial
expression data for 44 different tissues and the transcript lev-
els of 2000 genes. These 2000 genes were pre-selected by
the original data providers (Zhong et al.) by first identifying
highly variable genes and then further selecting those exhibit-
ing spatial expression patterns based on Moran’s I, ensuring
their relevance for spatiotemporal dynamic analysis. These
data capture, in high resolution, the spatial distribution and
temporal evolution of gene expression during embryonic de-
velopment, providing a rich resource for this research. Using
this dataset, we conducted an in-depth analysis of the spatial
patterns of gene expression during embryonic development

and their dynamic changes.

2.2. Adjacency matrix calculation

In our analysis of mouse embryonic spatiotemporal tran-
scriptomics data, we constructed an adjacency matrix based
on the spatial positions of cell spots to quantify the spatial re-
lationships between them. For this purpose, we utilized the
spatial neighbors function from the widely used spatial omics
analysis library Squidpy to construct the adjacency matrix.
This function computes the adjacency matrix based on spa-
tial coordinates using the KNN algorithm. This method es-
tablishes connections by identifying the K nearest neighbors
for each spot, ensuring accurate capture of relationships be-
tween adjacent spots.[18] The KNN algorithm is a distance-
based non-parametric method widely used in classification, re-
gression, and clustering tasks. For each cell spot in the dataset,
its Euclidean distance to all other spots is calculated. The al-
gorithm quantifies the spatial distance between any two cell
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spots. For each cell spot i, the 6 cell spots with the smallest
Euclidean distance to it were selected as its neighbors (i.e.,
K = 6), and the adjacency matrix 𝐴 was generated. The ad-
jacency matrix 𝐴 is an n× n matrix (where n is the number
of spots), whose element Ai j represents the connection be-
tween spot i and spot j. A simple binary method is used to
define Ai j; the adjacency matrix only records whether a neigh-
bor relationship exists between spots (a value of 1 indicates
existence, 0 indicates absence), without considering specific
distance weights.

2.3. Moran’s I calculation

For each gene, we calculated its Moran’s I at different
developmental time points (E9.5–E16.5) within each of the
44 annotated tissues, using the expression data from the con-
stituent cell spots. This calculation quantified the spatial au-
tocorrelation of gene expression. The formula for Moran’s I
is[10]

I =
N

∑
N
i=1 ∑

N
j=1 wi j

∑
N
i=1 ∑

N
j=1 wi j (xi− x̄)(x j− x̄)

∑
N
i=1 (xi− x̄)2

, (1)

where, for a specific tissue at a specific time point, N is the
number of cell spots, xi is the expression level of the gene in
spot i, x̄ is the average expression level of the gene across these
N spots, wi j is the spatial weight between spot i and spot j. In
this study, wi j is derived from the binary adjacency matrix Ai j

(based on KNN with K = 6, see Subsection 2.2), where wi j = 1
if spots i and j are neighbors, and wi j = 0 otherwise.

The resulting Moran’s I time-series profiles reflect the
temporal evolution of the gene’s spatial expression pattern
within each tissue.

2.4. Processing of Moran’s I time series

To ensure the reliability of subsequent analyses and im-
prove data interpretability, we further processed the calculated
Moran’s I time-series profiles. First, focusing on the Moran’s
I time series calculated for each gene within each tissue across
the E9.5 to E16.5 development period, we applied several
processing steps. To handle discontinuities observed in the
time series for some tissues (potentially arising from detection
sensitivity fluctuations or sample processing variations), we
used linear interpolation to fill these gaps (e.g., a “detected–
undetected–detected” pattern) to restore temporal continuity,
which is crucial for dynamic analysis (illustrated by red bands
in Fig. 2(a)). Second, we assessed the data completeness for
each tissue across the entire developmental timeline (E9.5–
E16.5) and removed tissues where the proportion of missing
data exceeded 50%, aiming to reduce interference from poten-
tial technical noise in the analysis results (indicated by gray
bands in Fig. 2(a)). After completing the tissue-level filtering
and interpolation, the temporal data coverage status for each

remaining tissue is summarized in Fig. 2(a). While more com-
plex interpolation methods exist, any interpolation approach
has its limitations. We adopted linear interpolation based on
its simplicity and robustness in filling a few missing points,
avoiding excessive assumptions about the local curve shape.
Concurrently, our clustering method assesses the overall simi-
larity of two time series across all time points.[22] On a curve
comprising multiple time points, the contribution of a single
interpolated point to the overall Euclidean distance is limited.
Therefore, as long as the main dynamic features of the curve
are preserved, this local processing is unlikely to systemati-
cally alter the final cluster assignment of a gene.

Finally, based on the volatility of these time series, we se-
lected and retained genes with significant changes in Moran’s
I while removing those with non-obvious spatiotemporal dy-
namic changes, specifically by calculating the difference be-
tween the maximum and minimum values of the time series.
To determine an appropriate fluctuation range threshold (∆),
we first evaluated the impact of different ∆ values on down-
stream clustering analysis. We compared clustering results
from gene sets filtered at various ∆ thresholds (e.g., 0.05, 0.1,
and 0.15) and found that while the number of genes included
for analysis varied, the major dynamic clustering patterns were
consistently identified across these different thresholds (sup-
plementary Fig. S5). This indicated that, at the level of the
primary dynamic patterns of interest, the clustering outcomes
exhibited good robustness to variations in ∆ within a reason-
able range (e.g., 0.05 to 0.15).

Having established a degree of robustness in downstream
analysis to the choice of ∆ , and to further identify a relatively
optimal ∆ value based on the data’s inherent characteristics,
we examined the change in the number of remaining genes af-
ter filtering across a broader range of ∆ thresholds (from 0 to
0.2, with a step of 0.005). By performing a knee point anal-
ysis on the “Number of Remaining Genes vs. ∆ Threshold”
curve (using the kneed library,[23] with parameters S = 1.0,
curve=‘convex’, direction=‘decreasing’), the results showed
that the “knee point” of this curve is located near ∆ ≈0.1
(supplementary Fig. S6). In this region, the rate of decrease
in the number of filtered genes begins to slow down signifi-
cantly with increasing threshold, suggesting that ∆ ≈0.1 is a
reasonable balance point between effectively filtering out low-
dynamic signals and retaining sufficient high-dynamic signals.
We therefore filtered the genes, retaining only those with a
Moran’s I fluctuation range of 0.1 or greater. This “fluctua-
tion filtering” step effectively enriched for genes with strong
dynamic spatial signals.

We employed ∆ to filter for genes with high volatil-
ity, aiming to further pinpoint, among genes already exhibit-
ing variability, those whose spatial aggregation patterns them-
selves undergo significant dynamic remodeling. Such genes
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are more indicative of the key regulatory changes driving tran-
sitions between embryonic developmental stages. Concur-
rently, filtering for highly volatile genes helps reduce static
background interference, thereby highlighting core dynamic
regulatory modules and rendering time-series clustering anal-
ysis, which relies on distinguishable dynamic features, more
effective. This “fluctuation filtering” step effectively enriched
for genes with strong dynamic spatial signals, as shown in
Fig. 2(b): compared to the original data (blue distribution),
the range of the Moran’s I distribution for the filtered genes
(orange distribution) is significantly widened, enhancing the
distinction between high and low spatial autocorrelation val-
ues, thereby improving the ability to capture key developmen-

tal regulatory genes. Notably, due to tissue filtering and the

inherent spatiotemporal heterogeneity of gene expression, the

number of valid tissues associated with each gene after prepro-

cessing varies. Compared to the theoretical association of each

gene with 44 tissues in the original dataset, filtered genes typi-

cally retained high-quality spatial autocorrelation information

in only 1 to 22 tissues, with the specific distribution shown

in Fig. 2(c). After the aforementioned curve processing steps,

the dataset’s dimensionality was reduced, while data quality

and signal-to-noise ratio were significantly improved, facilitat-

ing downstream time-series clustering and functional network

analysis.
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Fig. 2. Processing Moran’s I curves enhances the interpretability of spatial autocorrelation signals. (a) Tissue data coverage map (E9.5–
E16.5), showing continuous presence (yellow), partial detection (blue), interpolation (red), and removal (>50% missing, gray). (b) Moran’s I
distributions before (blue) and after (orange) filtering; filtering enriches dynamic signals, widening the distribution range. (c) Post-processing
histogram showing the number of tissues covered per gene.

2.5. Clustering

In studying the spatial dynamic patterns of gene ex-
pression during mouse embryonic development (stages E9.5
to E16.5), we performed clustering analysis on all qualified
Moran’s I time series obtained after the curve processing steps.
Moran’s I is an indicator measuring spatial autocorrelation,
used to characterize the changes in the spatial heterogeneity
of gene expression during development.[24] To group these
genes according to similar spatial expression trends, we em-
ployed the Tslearn KMeans algorithm, where each resulting
cluster represents a group of genes exhibiting similar spatial

dynamic patterns during embryonic development. This analy-
sis revealed the spatiotemporal characteristics of gene expres-
sion and laid the foundation for constructing dynamic gene
network models.

2.5.1. Tslearn KMeans algorithm principles

Tslearn KMeans is a clustering algorithm specifically
designed for time-series data. Compared to traditional K-
means, it is particularly suitable for handling data with tempo-
ral dependencies and dynamic characteristics.[25] Traditional
K-means typically assumes data points are independent static
vectors, whereas time-series data (such as the Moran’s I of
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a gene changing across developmental stages) possess conti-
nuity and temporal correlation, thus requiring specialized dis-
tance metrics and optimization strategies.

In time-series clustering, the distance metric is a core
component of the algorithm. Tslearn KMeans supports var-
ious distance calculation methods, such as Euclidean distance
and dynamic time warping (DTW).[26] In this study, since the
developmental time points are fixed and the focus is on over-
all trends rather than local time warping, we chose Euclidean
distance as the metric. This is because our time-series data are
aligned (i.e., the Moran’s I for each gene from E9.5 to E16.5
is sampled at fixed time points), eliminating the need to con-
sider non-linear stretching of the time axis. For two time series
𝑋 = (x1,x2, . . . ,xT ) and 𝑌 = (y1,y2, . . . ,yT ), the Euclidean
distance is defined.

d(𝑋,𝑌 ) =

√
∑

T
t=1 (xt − yt)2. (2)

Here, T represents the length of the time series, corresponding
in this study to the number of consecutive observation points
during the E9.5 to E16.5 developmental stages; and xt and yt

represent the Moran’s I values for the two variables at the t-th
time point, respectively. This distance metric effectively cap-
tures the overall dissimilarity between two time series during
their dynamic evolution. Euclidean distance is simple and ef-
ficient, suitable for time series that are aligned and of equal
length, and capable of reflecting differences in the overall ex-
pression trends of genes during development.

The objective of Tslearn KMeans is consistent with tra-
ditional K-means: to optimize the clustering result by mini-
mizing the total sum of squared distances from the time series
within a cluster to the cluster’s center. Mathematically, this
objective function can be represented as

min∑
k
i=1 ∑x∈Ci

d(𝑋,𝜇i)
2. (3)

where k is the number of clusters. Ci represents the set of time
series in the i-th cluster. 𝜇i = (µi1,µi2, . . . ,µiT ) is the center of
the i-th cluster (i.e., the mean vector of all time series within
the cluster). d(𝑋,𝜇i) is the Euclidean distance between time
series 𝑋 and the cluster center 𝜇i. By iteratively optimizing
this objective function, the algorithm groups genes into clus-
ters with similar spatial expression patterns.

2.5.2. Clustering process

We first constructed a time-series vector for each gene,
representing its Moran’s I changes during the E9.5 to E16.5
period. For a given gene, its time series vector consists of its
Moran’s I values across the consecutive time points from E9.5
to E16.5

𝑋 = (xE9.5,xE10.5,xE11.5, . . . ,xE16.5). (4)

To eliminate differences in scale and improve clustering per-
formance, we standardized the Moran’s I time series for all
genes. The standardization formula is

x′t =
xt −µx

σx
, (5)

where xt is the original Moran’s I value, ut and σx are the mean
and standard deviation of the gene’s time series, respectively,
and x′t is the standardized value. After standardization, each
gene’s time series is transformed into a vector with a mean of
0 and a variance of 1, facilitating subsequent distance calcula-
tions and clustering. Tslearn KMeans begins its iterations by
randomly initializing k cluster centers. The initial cluster cen-
ters can be chosen by randomly selecting k time series from the
2000 genes, or by using the KMeans++[27] algorithm for opti-
mized initial selection (the latter improves convergence speed
by selecting initial points that are distant from each other). In
this study, we used the default random initialization method.

2.5.3. Iterative optimization

The clustering process follows the iterative steps of the
classic K-means algorithm:

For each gene’s time series 𝑋 , calculate its Euclidean dis-
tance to all cluster centers 𝜇i, and assign it to the cluster with
the nearest center:

Ci =
{

X |d(𝑋,𝜇i)≤ (𝑋,𝜇 j), ∀ j 6= i
}
. (6)

For each cluster Ci, recalculate the cluster center 𝜇i, i.e., by
taking the mean of all time series within the cluster

𝜇i =
1
|Ci|∑𝑋∈Ci

𝑋, (7)

where |Ci| is the number of genes in cluster Ci. Repeat the as-
signment and update steps until the cluster centers no longer
change (or the change is less than a certain threshold), or the
maximum number of iterations is reached.

2.6. Functional enrichment and functional network
2.6.1. Functional enrichment

Enrichment analysis, an important step in interpreting ge-
nomics data, is used to identify biological functions or path-
ways that are significantly over-represented in a given list
of input genes.[28] Based on the time-series clustering anal-
ysis of Moran’s I, we identified gene expression modules at
different stages of mouse embryonic development and per-
formed functional enrichment analysis on these gene clusters
using the Metascape tool.[29] Representative gene lists were
uploaded to Metascape’s enrichment analysis module. Metas-
cape supports multiple gene identifiers (e.g., Symbol, En-
sembl, UniProt), facilitating cross-database comparisons. The
analysis covers databases such as gene ontology (GO) biolog-
ical processes and KEGG pathways. GO provides hierarchical
functional annotations,[30] including molecular function, cel-
lular component, and biological process; while KEGG focuses
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on metabolic and signaling pathways.[31] Metascape uses the
hypergeometric test to assess the enrichment significance for
each term. The hypergeometric test[32] is based on the follow-
ing formula:

P(X ≥ k) = ∑
min(n,K)

x=k

(
K
x

)(
N−K
n− x

)
(

N
n

) . (8)

where N represents the total number of background genes, K
represents the number of genes in the background annotated
with the term, n is the number of genes in the input list, and
k is the number of genes in the input list associated with the
term. This test calculates the probability of observing at least
k genes associated with a specific term, assuming a random
distribution under the null hypothesis (no enrichment).

Since multiple terms are tested simultaneously, it is nec-
essary to control the false positive rate. Metascape uses
the Benjamini–Hochberg method to adjust p-values,[33] gen-
erating q-values (FDR-corrected p-values). This study sets
q < 0.01 as the significance threshold to ensure the reliabil-
ity of the results. To reduce redundancy, Metascape performs
enrichment clustering, grouping terms with high gene over-
lap. Metascape uses the Kappa similarity coefficient (Co-
hen’s Kappa) to quantify the association between functional
terms:[34]

k =
po− pe

1− pe
, (9)

where po is the proportion of gene overlap actually observed
between terms, and pe is the proportion of overlap expected by
chance. Based on the resulting Kappa matrix (with a similarity
threshold >0.3), similar terms are merged into non-redundant
functional clusters via hierarchical clustering, and the most
significant term (lowest p-value) within each cluster is chosen
as its representative term.

2.6.2. Functional network

In this study, we utilized the Metascape platform to con-
struct functional network diagrams, enabling a systematic
analysis of the active biological processes and pathways dur-
ing key stages of mouse embryonic development. The en-
riched term network graph relies on identifying significantly
enriched functional terms within each gene cluster, obtained
via the hypergeometric test with Benjamini–Hochberg cor-
rection (FDR <0.01). To enhance interpretability, typically,
the top few most significant functional terms (e.g., the top 10
terms from the enrichment results of each input gene cluster)
are retained for network construction.

The Kappa similarity coefficient is calculated between
any two enriched terms to measure the degree of shared genes
between them. If the Kappa coefficient k > 0.3, an edge is
established between the two corresponding enriched terms in

the network. Through hierarchical clustering[35] applied to the
Kappa distance matrix between terms, modular clustering is
performed to further identify functional clusters, where each
cluster represents a group of biologically similar or related
functional processes.

These diagrams visualize the interactions between signif-
icantly enriched functional terms using: nodes (representing
biological processes or pathways, such as GO terms or KEGG
pathways), node color (indicating functional clusters), node
size (representing statistical significance or degree of gene en-
richment), and edges (representing shared genes or functional
relatedness based on Kappa similarity). Through this network
analysis, we elucidated the dynamic interactions and stage-
specific characteristics of gene regulatory networks during em-
bryonic development, providing new insights into the molecu-
lar mechanisms of morphogenesis and differentiation.

3. Results and analysis
3.1. Analysis of clustering results

To analyze the dynamic changes in spatial expression pat-
terns of genes during embryonic development, we performed
clustering analysis on the preprocessed genes based on their
Moran’s I time series. Selecting an appropriate number of
clusters (K) is crucial for balancing pattern resolution with bi-
ological interpretability. Our primary goal in clustering was to
distinguish gene modules peaking at different embryonic peri-
ods. As we needed to uncover the dynamic changes of genes
in each time period, we initially discarded cluster numbers be-
low 8, as these resulted in insufficient separation of dynamic
patterns across key developmental stages.

We systematically evaluated the clustering performance
when partitioning genes into 8, 9, and 10 clusters (Fig. 3(a)).
Our selection of K = 9 was principally based on a detailed
comparison of the clarity of clustering patterns and their bio-
logical significance across these K values.

Specifically, when K = 8 or less, some critical period dy-
namic patterns were not effectively separated (e.g., the peaks
for E12.5 and E13.5 were merged within the same cluster, as
illustrated by the red curve in the 8-cluster plot in Fig. 3(a)).
This obscured the precise signal for specific developmental pe-
riods and failed to sufficiently distinguish the dynamic features
of this critical transition period.

Conversely, when K = 10 or more, although the partition-
ing was finer, we observed redundancy where multiple clusters
peaked simultaneously during the same developmental stage
(e.g., E12.5, as shown by red curves in the 10-cluster plot
in Fig. 3(a)). This suggested potential pattern redundancy or
over-segmentation, increasing the complexity of subsequent
functional interpretation; therefore, cluster numbers above 10
were also not considered further.
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Fig. 3. Time-series clustering analysis of genes during embryonic development stages based on spatial autocorrelation dynamics. (a) Comparison of
average Moran’s I time curves for each cluster resulting from Tslearn K-means clustering of genes when setting the number of clusters to 8, 9, and
10. (b) Standardized Moran’s I time-series curves for each gene cluster in the 9-cluster result. The thick line represents the average time-series trend
of all genes within the cluster, while thin lines represent the specific expression trajectories of individual genes. (c) Bar chart showing the number
of genes contained in each cluster in the 9-cluster result. (d) Heatmap displaying the average Moran’s I value for each gene cluster across different
embryonic development stages (E9.5–E16.5), highlighting the temporal specificity and peak activity periods of each gene module.

In contrast, setting K = 9 provided an ideal balance. It

effectively distinguished different dynamic patterns and, im-

portantly, demonstrated strong biological relevance (Fig. 3(a)).

The K = 9 partitioning clearly resolved distinct gene modules

with different peak activity times corresponding to various de-

velopmental stages, including the critical period of organogen-

esis at E12.5 (Fig. 3(b)). Specifically, the 9-cluster partitioning

clearly identified two major clusters (cluster 0 and cluster 3)

088703-7



Chin. Phys. B 34, 088703 (2025)

whose average spatial autocorrelation reached a significant
peak during the E12.5 period (Figs. 3(b) and 3(d)). This time
point corresponds precisely to the critical period of organo-
genesis in mouse embryos, during which significant reorgani-
zation of spatial gene arrangement is expected. This concor-
dance between the clustering pattern at K = 9 and known de-
velopmental milestones strongly supports the choice of K = 9
as the optimal number of clusters for our analysis.

Finally, based on the K = 9 Tslearn K-means cluster-
ing, we partitioned the genes into 9 modules with distinct
spatiotemporal dynamic characteristics (Fig. 3(b)). The cor-
respondence between clusters and their approximate average
peak times in the clustering results is as follows: (0, E12.5),
(1, E14.5), (2, E11.5), (3, E12.5), (4, E10.5), (5, E15.5), (6,
E16.5), (7, E13.5), (8, E9.5). Each cluster represents a set of
gene instances exhibiting similar temporal dynamics of spatial
aggregation. The distribution of the number of genes included
in each module is shown in Fig. 3(c). Each module’s unique
average Moran’s I time curve (Fig. 3(b)) and its heatmap pat-
tern across different developmental stages (Fig. 3(d)) reveal
their respective temporal preferences, laying the foundation
for subsequent in-depth investigation into the functional roles
of each module at specific stages of embryonic development.

3.2. Spatial enrichment and functional network at key de-
velopmental stages

The results reveal the spatiotemporal regulation of gene
expression during the E9.5–E16.5 embryonic development
process and the dynamic changes in the biological processes
and molecular pathways driven by it. To highlight the sig-
nificance of spatial autocorrelation, for the cluster(s) peak-
ing at each specific time point, we ranked the genes within
them in descending order based on their Moran’s I values at
that respective time point. For example, genes from cluster 8
(peaking at E9.5) were ranked by their Moran’s I at E9.5. Fur-
thermore, for the dual peak observed at E12.5 involving clus-
ters 0 and 3, we combined the genes from both clusters and
performed a unified descending sort based on their respective
Moran’s I values at E12.5.

Starting from the top of this sorted list, we initially se-
lected the top 50 gene instances. Since a single gene might
appear multiple times in this initial list due to its high spa-
tial aggregation (high Moran’s I values) in different tissues,
we then deduplicated this top-50 list to obtain a unique set of
genes. Finally, the top 50 genes from this unique list were
selected as the gene set representing the dynamic features of
that specific time point (e.g., E9.5 and E12.5) and inputted into
Metascape for functional enrichment analysis. In this manner,
the gene sets we obtained represent groups of genes that ex-
hibit peak spatial aggregation dynamics in at least one tissue
during a specific developmental stage.

This section will focus on analyzing the functional en-
richment results for four key stages: E9.5, E12.5, E15.5,

and E16.5. The corresponding results for the remaining an-
alyzed periods (E10.5, E11.5, E13.5, E14.5) are presented in
Figs. S1–S4.

3.2.1. E9.5: Establishment of embryonic polarity and
formation of basic tissue architecture

At the E9.5 stage of mouse embryonic development,
functional enrichment analysis based on the gene set with high
spatial aggregation at this stage revealed that a series of bi-
ological processes related to early embryonic patterning, tis-
sue morphogenesis, and basic metabolic regulation were sig-
nificantly activated. Specifically, pathways such as “Retinol
metabolism” and “response to retinoic acid” were significantly
enriched (Fig. 4(a)). The retinol signaling pathway, partic-
ularly involving its active form retinoic acid (RA), plays a
central regulatory role in establishing the embryonic anterior-
posterior axis pattern and inducing the development of key
structures like the neural tube.[36] The enrichment of these
pathways is consistent with the known mechanism whereby
RA determines embryonic somite segmentation identity by
regulating Hox gene expression.[37] The enrichment of the “re-
sponse to retinoic acid” process further highlights the funda-
mental role of RA signaling gradients in coordinating morpho-
genetic and cell differentiation programs.

In addition to the RA signaling pathway, Fig. 4(a) fur-
ther reveals other key developmental processes. For instance,
terms related to early nervous system development, such as
“forebrain regionalization”, “cell proliferation in forebrain”,
and “regulation of neurogenesis”, were significantly enriched,
indicating that the initial construction and regional specializa-
tion of the nervous system are important events at this stage.
Concurrently, the enrichment of terms like “tissue morpho-
genesis”, “pattern specification process”, and “extracellular
matrix organization” collectively reflects that the embryo is
actively establishing basic tissue structures and spatial layout
during this stage. Furthermore, the significant enrichment of
“blood circulation” and pathways related to basic metabolism,
such as “post-translational protein phosphorylation”, also un-
derscores the importance of maintaining cellular functions and
establishing early organ support systems.

The functional network diagram for E9.5 (Fig. 4(a), right
panel) further visualizes the interconnections between these
processes. This highly interconnected network is dominated
by key processes of early embryonic patterning and tissue spe-
cialization, exhibiting distinct functional clusters. These in-
clude red nodes (post-translational protein phosphorylation),
dark blue nodes (blood circulation), pink nodes (intracellu-
lar chemical homeostasis), and light orange nodes (retinol
metabolism). Additionally, clusters such as yellow nodes (reg-
ulation of neurogenesis) and purple nodes (pattern specifica-
tion process) are densely interconnected, indicating coordi-
nated regulation of multiple developmental processes. The
rich connections between nodes reveal the interdependence
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of protein modification, morphogenesis, and metabolic path-
ways. Pathways like pattern specification process and regula-
tion of neurogenesis act as central hubs, reflecting their key
roles in signal transduction and gene expression regulation.
Regulation of neurogenesis is closely linked to brain devel-
opment, highlighting the importance of neural processes in es-
tablishing brain development patterns.

The E9.5 network illustrates the fundamental processes of

embryonic development, establishing embryonic polarity and
basic tissue architecture through the synergistic action of mor-
phogenetic gradients and tissue specialization genes. This in-
cludes the initiation of the brain and skeletal systems, as well
as circulatory mechanisms supporting nutrient transport. The
significant enrichment of retinol metabolism and tissue mor-
phogenesis pathways underscores the early embryo’s reliance
on precise spatiotemporal signal regulation.

(a)

(b)

(c) (d)

Fig. 4. Functional analysis of gene sets showing peak spatial aggregation at key developmental stages. Analysis results for E9.5 (a) and E12.5 (b).
Left: Sankey diagrams link genes to enriched terms, highlighting examples like Dll1 (a) and Runx2 (b). Middle: Bubble plots display enrichment
results (color indicates significance−log10(P), size indicates gene count, x-axis is rich factor). Right: Functional networks visualize term associations
(nodes represent terms, sized by significance and colored by functional cluster corresponding to Sankey terms; edge density reflects association
strength). Bar charts summarize enrichment results for E15.5 (c) and E16.5 (d), showing significantly enriched terms colored by database (bar length
represents significance −log10(P); numbers indicate gene count).
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3.2.2. E12.5: Organ system differentiation and mor-
phological refinement

Entering day 12.5 of embryonic development (E12.5), the
developmental focus significantly shifts towards the differen-
tiation, growth, and morphological refinement of specific or-
gan systems. Functional enrichment analysis of the gene set
with strong spatial aggregation at this stage (Fig. 4(b)) reveals
this transition. This timing closely coincides with key events
in cardiac morphogenesis, including heart tube looping, ini-
tial partitioning of atria and ventricles, and valve formation.
As shown in the comparative study of mouse and human heart
development by Krishnan et al., thickening of the ventricu-
lar walls and the primordia of the atrioventricular valves are
clearly visible by E12.5, laying an important structural foun-
dation for the subsequent functionalization of the circulatory
system.[38]

Beyond heart development, the enrichment results in
Fig. 4(b) further highlight that the coordinated development
of the muscular and skeletal systems is a central theme of the
E12.5 stage. Muscle-related pathways, such as “muscle struc-
ture development”, “cytoskeleton in muscle cellsMus muscu-
lus”, and “supramolecular fiber organization”, all show high
enrichment. Concurrently, “skeletal system development” and
its regulatory processes, such as “negative regulation of os-
teoblast differentiation”, are also significantly enriched. This
indicates that myocyte differentiation, muscle fiber assembly,
and the formation and initial shaping of skeletal elements are
actively underway at this stage. Coordination of these complex
morphogenetic processes relies on precise regulation by sig-
naling pathways. Figure 4(b) shows that “response to BMP”
and “response to growth factor” are among the most signif-
icantly enriched signaling pathways at this stage, suggesting
that BMPs (bone morphogenetic proteins) and various growth
factors (like FGFs) play crucial roles in regulating cell pro-
liferation, differentiation, and tissue interactions, especially
in coordinating the synchronous development of muscle and
bone.[39,40]

These enrichment results are further visually corrobo-
rated in the functional association network (Fig. 4(b), right
panel). The network structure shows that the blue node group
representing “muscle structure development” and the green
node group representing “skeletal system development” form
the core of the network and are closely interconnected. Con-
currently, the purple nodes representing “response to BMP”
and the red node cluster representing “response to growth fac-
tor” also exhibit dense connections with the node clusters re-
lated to muscle and skeletal development. The high degree
of connectivity (edge density) both within and between clus-
ters suggests that the differentiation and morphogenesis of the
muscular and skeletal systems are under strict, coordinated
regulation by these signaling pathways.

In summary, the gene regulatory network at E12.5 fo-
cuses on the intensive differentiation and functional special-
ization of organ systems. Organ formation processes, exempli-
fied by heart and musculoskeletal system development, under
the precise control of key signaling pathways like BMP and
growth factors, are tightly coupled with tissue morphogenesis
and remodeling processes. The enrichment patterns revealed
in Fig. 4(b) clearly reflect the key developmental characteris-
tics of the mouse embryo during mid-gestation, transitioning
from early broad patterning to the formation of specific organ
structures and gradual functional refinement.

3.2.3. E15.5–E16.5: Terminal differentiation and
preparation for birth

As embryonic development enters the late stages of E15.5
to E16.5, the main theme of development significantly shifts
from early organ patterning and mid-stage system differentia-
tion towards terminal differentiation and functional maturation
of various organ systems. This transition is a critical step nec-
essary for the embryo to adapt to the extrauterine environment
and prepare for independent survival. The molecular activity
underlying this shift is clearly demonstrated through the func-
tional enrichment analysis of spatially aggregated gene sets
from this period (Figs. 4(c) and 4(d)).

During the E15.5 stage (Fig. 4(c)), the development of
tissues and organs enters a final phase of refinement. Matu-
ration of the nervous system is particularly prominent, with
functional enrichment analysis highly concentrated on “cen-
tral nervous system neuron differentiation” and its regulation
(“regulation of neuron differentiation”), suggesting that neu-
rons are undergoing large-scale specialization and establish-
ment of functional connections. Concurrently, other systems
crucial for postnatal survival are also undergoing key develop-
ments. For instance, the significant enrichment of “respiratory
system development” foreshadows the progressive refinement
of the structures for future gas exchange. The musculoskeletal
system also continues its maturation trajectory, with signifi-
cant enrichment in “striated muscle tissue development” and
“skeletal system development”. Moreover, maturation at the
cellular structure level, such as the “cytoskeleton in muscle
cells” (KEGG), begins to become prominent.

Subsequently, the E16.5 stage (Fig. 4(d)) clearly shifts
the developmental focus towards the acquisition of function.
Building upon the structural and differentiation foundation es-
tablished by E15.5, multiple systems exhibit pronounced fea-
tures of functional maturation. The readiness of the motor
system is particularly evident. Enriched pathways not only in-
clude ongoing “skeletal muscle tissue development” but also
extend to functional adaptation aspects, such as “striated mus-
cle adaptation”, as well as pathways directly reflecting func-
tion, like “smooth muscle contraction” (Reactome) and “vas-
cular smooth muscle contraction” (KEGG). The skin, as an
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important protective barrier, also reaches a peak in its terminal
differentiation and functional formation during this stage, ev-
idenced by the significant enrichment of “skin development”
and “formation of the cornified envelope” (Reactome), which
marks the maturation of the physical barrier. Furthermore, the
enrichment of “endocrine system development”, along with
continued bone tissue differentiation (e.g., “osteoblast differ-
entiation”), points towards the final establishment of specific
organ functions. These complex processes of terminal dif-
ferentiation and maturation are regulated by precise signaling
networks. For example, the Wnt signaling pathway (“regula-
tion of Wnt signaling pathway”), cAMP response (“response
to cAMP”), and response to growth factors (“cellular response
to growth factor stimulus”) remain highly active during this
stage.

In summary, E15.5 to E16.5 together constitute a critical
developmental continuum transitioning from structural refine-
ment to functional completion. Through advanced cell differ-
entiation, tissue functional specialization, and the gradual re-
finement of physiological regulatory systems, the major organ
systems of the embryo (including respiratory, motor, skin, en-
docrine, etc.) actively undergo final preparations before birth.
This series of coordinated terminal differentiation events en-
sures that the newborn possesses the basic physiological func-
tions necessary for survival in the extrauterine environment.

3.3. Gene-specific functional analysis

By combining clustering analysis with functional enrich-
ment analysis, we can systematically analyze the core path-
ways and their biological significance at different stages of
mouse embryonic development, revealing the dynamic evo-
lution of gene regulatory networks across spatiotemporal di-
mensions. These analyses not only illuminate the clear pro-
gression of embryonic development from early patterning to
late tissue maturation but also highlight the temporal orches-
tration of stage-specific gene networks and their crucial role
in driving the transformation of the embryo from a simple cell
mass into a complex functional organism.

During the E9.5 stage of polarity establishment and ba-
sic tissue architecture formation, functional enrichment analy-
sis showed that protein phosphorylation and the retinoic acid
signaling pathway are synergistically activated, driving cell
fate decisions and the establishment of the embryonic body
plan. Among these, the key gene Dll1,[41] related to somite
formation, not only exhibited significant spatially aggregated
expression (Fig. 5(a)) but functional enrichment analysis also
indicated its involvement in key pathways significantly acti-
vated during this period, such as tissue morphogenesis, pat-
tern specification, and regulation of neurogenesis (highlighted
connections shown in Fig. 4(a), left panel). This intuitively
validates its critical role in regulating these core developmen-

tal processes, reflecting the guiding role of early morphogens
in axial patterning.

By E12.5, the embryo enters the stage of organ sys-
tem differentiation and initiation of ossification. Pathway en-
richment reveals significant activity in skeletal system devel-
opment, extracellular matrix remodeling, and muscle struc-
ture development. At this stage, the spatial expression of
the key skeletal development gene Runx2[42] is significantly
enhanced, particularly showing high enrichment in future
bone-forming regions such as the craniofacial and axial areas
(Fig. 5(b)). Correspondingly, functional enrichment analysis
confirms Runx2’s involvement in the highly enriched skele-
tal system development pathways and related regulatory pro-
cesses active at this time, such as response to BMP and reg-
ulation of osteoblast differentiation (highlighted connections
shown in Fig. 4(b), left panel). Its central role in osteoblast
differentiation and the transformation of cartilage to bone tis-
sue reflects the transition of mid-stage embryonic development
towards functional specialization.

Dll1

Runx2

Krt10
(c)

(b)

(a)
1.4

1.2

1.0

0.8

0.6
2.5

2.0

1.0

0.5

1.5

2.5

2.0

1.0

0.5

1.5

Fig. 5. Spatiotemporal expression patterns of representative stage-specific
genes during mouse embryonic development. Spatial transcriptomics data
were used to visualize the expression distribution of three key marker genes
at different developmental time points. (a) Dll1, involved in somite formation
and neurogenesis. Its expression is highly concentrated in the neural and ad-
jacent regions on the brain side of the embryo during early stages (e.g., E9.5).
(b) Runx2 is a key regulator of skeletal development, with its expression sig-
nificantly increased at mid-embryonic stages (e.g., E12.5), mainly localized
in craniofacial bones, the spine, and limbs. (c) Krt10, a marker for differenti-
ated epidermal cells. Its expression during late stages (e.g., E16.5) is clearly
confined to the outermost skin tissue layer of the embryo. Color intensity in
the plots represents the standardized relative expression level of each gene.

By E16.5, the embryo enters the terminal differentiation
stage. Functional pathways such as muscle cell cytoskeleton
organization, lung development, and hair follicle morphogene-
sis are significantly activated. At this time, the skin differentia-
tion marker gene Krt10[43] shows clear tissue-specific expres-
sion aggregation, primarily localized to the epidermal layer
(Fig. 5(c)). This indicates the maturation of the skin and its
appendages, laying the structural and molecular foundation for
autonomous defense and functional independence after birth.
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3.4. Identification of dynamic gene modules

Using time-series clustering methods based on the dy-
namics of gene spatial expression (Moran’s I time series), this
study successfully identified gene clusters with similar spa-
tiotemporal expression patterns during mouse embryonic de-
velopment. Each cluster is considered a co-regulated func-
tional module. These modules exhibit specific biological func-
tions at different developmental stages, collectively driving
the continuous process of embryonic development from early
morphogenesis to late tissue maturation. Three representative
dynamic modules were primarily identified.

First, the early somitogenesis and morphogenesis module
(E9.5–E11.5). Gene sets within this module show peak aggre-
gation activity in early embryonic development and are signif-
icantly enriched in key signaling pathways regulating embry-
onic pattern formation, such as Retinoic acid, Wnt, and BMP
signaling. The coordinated expression of these genes is cru-
cial for establishing the anterior-posterior and dorsal-ventral
axis patterns, guiding somite formation, neural tube closure,
and the positioning of major germ layers and tissue primor-
dia. The ordered activation of this module lays down the basic
structural blueprint for subsequent complex organogenesis.

Next, the mid-stage organ functional specialization mod-
ule (E12.5–E14.5). Genes in this module have their aggrega-
tion peaks concentrated in mid-embryogenesis. Their func-
tional enrichment characteristics clearly point towards the in-
tensive differentiation and functional refinement of specific
organ systems. This module includes numerous key genes
involved in the development of the nervous, muscular, and
skeletal systems, as well as the establishment of important
metabolic pathways. Pathway analysis shows that pathways
for skeletal system development, cartilage formation, mus-
cle structure development, and extracellular matrix organiza-
tion are particularly active during this stage. Concurrently,
signaling pathways such as Insulin and IGF signaling also
demonstrate important roles during this stage, supporting or-
gan growth and functional construction. Overall, the activation
of this module reflects the key transition in embryonic devel-
opment from establishing basic patterns towards the system-
atic and functional construction of organ systems.

Finally, the late-stage organ terminal maturation module
(E15.5–E16.5). In late embryonic development, the aggrega-
tion of genes in this module reaches its peak. Their functions
are primarily associated with the terminal differentiation and
functional maturation of various organ systems. Enrichment
analysis clearly points towards the final refinement of the res-
piratory system, motor system (final maturation and adapta-
tion of musculoskeletal components), skin system (including
the formation of its barrier function), and endocrine system.
Genes within this module are crucial for establishing the phys-
iological functions of organs, such as acquiring muscle con-

traction capability, forming the skin’s protective barrier, and
establishing endocrine regulatory networks. Activation of this
module ensures that the newborn can adapt to the extrauterine
environment, achieving the system integration and functional
independence necessary for survival.

4. Conclusion
By innovatively integrating the quantification of gene ex-

pression spatial aggregation dynamics using Moran’s I with
time-series clustering analysis, this study systematically mod-
eled and functionally analyzed spatiotemporal transcriptomics
data from mouse embryonic development between E9.5 and
E16.5. It successfully revealed that embryonic development
is driven not by static gene sets but by a “relay-style” ac-
tivation of a series of gene network modules that possess
stage-specific functions and dynamically reorganize in the spa-
tiotemporal dimension. We found that the dynamics of spa-
tial gene expression aggregation themselves contain signifi-
cant biological information. The identified modules for early
morphogenesis, mid-stage organ specialization, and late-stage
functional maturation align closely with known developmental
milestones. Among these, the early modules sketch the em-
bryonic blueprint centered around morphogen signaling, the
mid-stage modules shift towards refining organ structures and
functional primordia, and the late-stage modules fine-tune sys-
tem integration in preparation for birth.

The creation of this “dynamic map” not only deepens the
understanding of developmental temporal logic but also high-
lights the critical role of spatial organization dynamics in co-
ordinating cell behavior and tissue formation. It provides new
perspectives for identifying key regulatory nodes, elucidating
the roots of developmental diseases, and guiding precise inter-
ventions (such as stem cell differentiation control). Method-
ologically, this study overcomes the limitations of traditional
static or non-spatial analyses by capturing spatial aggregation
dynamics with Moran’s I and combining it with time-series
analysis. It provides a quantitative framework for understand-
ing spatiotemporal coordination mechanisms. Furthermore,
this dual-dimension integration strategy could potentially be
generalized and applied to analyze spatiotemporal data from
other species or dynamic biological systems.

Nevertheless, the study’s limitations must be acknowl-
edged: Moran’s I has limited sensitivity to complex spatial
patterns; clustering results are influenced by the algorithm
and parameters used; the study is based on a specific dataset
(which may have limitations in gene coverage, resolution, and
time-point density); it focuses on the transcriptomic level; po-
tential noise during data processing and biases in gene anno-
tations could affect analysis accuracy; and it does not directly
address deeper regulatory layers such as proteomics or epi-
genetics. Additionally, it should be noted that the functional
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enrichment analysis in this study was performed based on the
overall spatiotemporal dynamic patterns of genes. Although
this approach successfully identified macroscopic functional
modules associated with major developmental stages, it did
not resolve potential tissue specificity within these modules.
Therefore, the enriched pathways likely represent a compos-
ite reflection of biological processes concurrently active across
multiple tissues within that developmental window, rather than
the precise functions driven by spatial aggregation within a
specific tissue. Identifying and resolving this tissue-level het-
erogeneity will be an important direction for future research.

Future studies could more deeply explore the fine-tuned
regulation of gene spatial organization within specific anatom-
ical structures or cell types and its functional significance
by calculating and analyzing tissue-specific Moran’s I dy-
namics, or by incorporating spatial deconvolution meth-
ods. Alternatively, applying higher-resolution spatiotempo-
ral multi-omics technologies (e.g., integrating proteomics,
metabolomics, chromatin accessibility analysis), developing
more optimized spatial statistics, network analysis approaches
(such as quantifying network structural entropy[44] or ranking
genes within single-cell networks[45]), time-series analysis al-
gorithms (such as deep learning models), and using machine
learning models for validation and prediction would greatly
expand the depth and breadth of the research.

In conclusion, this study dissected the dynamic reorga-
nization of gene networks in mouse embryonic development
from a spatiotemporally integrated perspective, offering new
systemic insights into developmental biology. It builds a
bridge connecting fundamental scientific discoveries with po-
tential applications in regenerative medicine, disease model-
ing, and other fields. We anticipate that future technological
integration will further refine this dynamic blueprint of life,
aiding in the unraveling of the deeper mysteries of life’s con-
struction.
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