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GRAPHICAL ABSTRACT

ABSTRACT

Introduction: With the escalating menace of organic compounds in environmental pollution imperiling
the survival of aquatic organisms, the investigation of organic compound toxicity across diverse aquatic
species assumes paramount significance for environmental protection. Understanding how different spe-
cies respond to these compounds helps assess the potential ecological impact of pollution on aquatic
ecosystems as a whole. Compared with traditional experimental methods, deep learning methods have
higher accuracy in predicting aquatic toxicity, faster data processing speed and better generalization abil-
ity.

Objectives: This article presents ATFPGT-multi, an advanced multi-task deep neural network prediction
model for organic toxicity.

Methods: The model integrates molecular fingerprints and molecule graphs to characterize molecules,
enabling the simultaneous prediction of acute toxicity for the same organic compound across four dis-
tinct fish species. Furthermore, to validate the advantages of multi-task learning, we independently con-
struct prediction models, named ATFPGT-single, for each fish species. We employ cross-validation in our
experiments to assess the performance and generalization ability of ATFPGT-multi.

Results: The experimental results indicate, first, that ATFPGT-multi outperforms ATFPGT-single on four
fish datasets with AUC improvements of 9.8%, 4%, 4.8%, and 8.2%, respectively, demonstrating the supe-
riority of multi-task learning over single-task learning. Furthermore, in comparison with previous
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algorithms, ATFPGT-multi outperforms comparative methods, emphasizing that our approach exhibits
higher accuracy and reliability in predicting aquatic toxicity. Moreover, ATFPGT-multi utilizes attention
scores to identify molecular fragments associated with fish toxicity in organic molecules, as demon-
strated by two organic molecule examples in the main text, demonstrating the interpretability of

ATFPGT-multi.

Conclusion: In summary, ATFPGT-multi provides important support and reference for the further devel-

opment of aquatic toxicity assessment. All of codes and datasets are freely available online at https://

github.com/zhaoqi106/ATFPGT-multi.

© 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Regulatory bodies, such as the United States Environmental
Protection Agency and the Organization for Economic Co-
operation and Development, stress the significance of performing
ecological and environmental risk assessments for both established
and emerging chemicals before their production and usage [1,2].
Presently, artificially synthesized chemical substances are perva-
sive. Some organic compounds pose risks not only to aquatic life,
but also have the potential to affect the atmosphere, water, soil,
and ecosystems in the natural world. These compounds may per-
sist in the environment for extended periods before undergoing
degradation [3,4]. As these organic compounds contaminate the
environment, they are concurrently absorbed by aquatic organisms
through their skin, digestive system, and respiratory system. Accu-
mulating in the organisms’ liver, kidneys, fat, muscles, and brain
tissues, these compounds pose significant threats to their survival.
For instance, certain organic pollutants may lead to acute or
chronic poisoning in aquatic organisms, affecting their growth,
reproduction, and behavior [5,6]. Therefore, assessing the potential
risks associated with these chemicals is paramount for the contin-
ued well-being of humanity.

Assessing aquatic toxicity plays a critical role in evaluating the
environmental hazards and risks associated with various chemicals
[7,8]. Previously, the acute toxicity of chemicals was determined
through tests conducted on various fish species, such as the fat-
head minnow and zebrafish [9]. Nevertheless, appraising the safety
of these chemicals through conventional experimental methods is
not only costly but also time-intensive [10]. The sheer volume of
these chemicals makes it practically unfeasible to assess each
one thoroughly via in vitro or in vivo methods. In recent years,
advancements in computational capabilities have led to the wide-
spread application of machine learning techniques, especially deep
learning, across various bioinformatics fields. These applications
include the analysis of single-cell multi-omics data [11-16], com-
putational toxicology [17-22], miRNA-IncRNA interactions predic-
tion [23-25], metabolite-disease associations prediction [26,27],
remote health monitoring [28-30] and circRNA-disease associa-
tions prediction [31,32]. These studies provide strong support for
the continuous refinement of computational prediction models
for the acute toxicity of chemicals. Compared to traditional exper-
imental methods, deep learning methods typically excel in accu-
racy, especially in handling large-scale, high-dimensional data
and extracting complex patterns. These methods often have the
capability to automatically learn feature representations of data,
and under sufficient training, they can exhibit strong generaliza-
tion performance on unseen data. Presently, researchers have
developed a range of quantitative structure-activity relationship
(QSAR) models for the acute toxicity of aquatic organisms based
on these technologies. Existing methods for predicting acute toxi-
city primarily fall into two categories: relying on molecular finger-
prints and utilizing graph-based approaches.
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Molecular fingerprint methods depict the structure and charac-
teristics of molecules using binary strings, where each string corre-
sponds to a structural element or feature [33,34]. If a molecule
possesses that structure or feature, the corresponding binary bit
is set to 1. Otherwise, it is set to 0. Using molecular fingerprints
as a foundation, researchers have built a series of machine learning
models, including regression and classification models, to predict
acute toxicity [35,36]. For instance, in 2018, Cao et al. compiled a
comprehensive dataset consisting of compounds from 824 crus-
tacean species. They constructed a predictive model for aquatic
toxicity by employing six machine learning methods and utilizing
seven molecular fingerprints [37]. In 2019, Liu et al. built a diverse
dataset encompassing various crustacean species to predict aqua-
tic chemical toxicity and prioritize environmental hazard assess-
ments [38]. In the same year, Ai et al. utilized three conventional
machine learning algorithms to develop three ensemble models.
Trained on a dataset containing 400 different chemicals, these
models effectively pinpointed several molecule structures most
pertinent to acute aquatic toxicity [39]. Li et al. employed a com-
prehensive approach by utilizing median lethal concentrations
for 373 organic compounds from the environmental toxicology
datasets ECOTOX and EAT5. They constructed five classic machine
learning algorithms based on eight types of molecular fingerprints
and implemented a multi-classification model that can more accu-
rately classify the acute toxicity of organic compounds to aquatic
organisms [40]. However, these methods encounter two significant
limitations when dealing with high-dimensional feature data. First,
while molecular fingerprints represent chemical structures, they
often struggle to capture the complex structural features and inter-
actions within molecules comprehensively. Second, their approach
faces challenges in predicting properties of molecules not present
in the training data, especially when dealing with rare or novel
chemical structures.

Graph-based deep learning techniques depict molecular struc-
tures as graphs and utilize graph representation learning algo-
rithms to understand feature representations of molecular
structures [41]. In contrast to conventional machine learning
approaches relying on molecular fingerprints, graph-based meth-
ods excel at capturing the intricate structure of molecules, leading
to improved predictive accuracy and generalizability. In recent
years, researchers have begun adopting graph neural network-
based methods to forecast the toxicity of aquatic organisms. For
example, in 2022, Xu et al. gathered 1874 distinct compounds
along with their respective labels from ECOTOX and various litera-
ture sources. They employed both traditional machine learning
techniques and a graph convolutional neural network (GCNN)
architecture to develop predictive models [42]. Interestingly, it
was observed that GCNN demonstrated superior predictive perfor-
mance compared to the other tested approaches in their study.
However, GCNN still has inherent limitations, such as its limited
ability to handle global information or long-range relationships.
Furthermore, the current QSAR models limit scalability as they
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are based on a single or a few fish species’ data, making it challeng-
ing to design or predict for other fish species.

To tackle the aforementioned challenges, this study introduces
a multi-task model named ATFPGT-multi, which integrates molec-
ular fingerprints with a graph neural network featuring a global
attention mechanism. ATFPGT-multi addresses the challenge of
correlation between multiple tasks by sharing feature extraction
layers, simultaneously accommodating the distinctions among dif-
ferent tasks by creating separate output layers for each task. This
innovative design empowers our model to yield optimal results
in multi-task learning scenarios. Our findings reveal that the pro-
posed method outperforms previous traditional machine learning
approaches and GCNN, signifying its potential as a valuable tool
for environmental toxicity assessment. This study holds signifi-
cance in contributing to the classification of acute toxicity in aqua-
tic organisms caused by compounds and the prediction of the
hazard levels associated with these compounds.

Materials and methods
Data preparation

We collect data from four species: bluegill sunfish (Lepomis
macrochirus, BS), rainbow trout (Oncorhynchus mykiss, RT), fat-
head minnow (Pimephales promelas, FHM), and sheepshead min-
now (Cyprinodon variegatus, SHM) [43-45]. All data originate
from ECOTOX database. As these datasets comprise multiple repe-
titions of experiments conducted on the same species but under
varied conditions, we utilize the python package RDKit to stan-
dardize and process the chemical structures of all compounds
within our dataset. The following steps are undertaken: (1) Data
filtering to retain the 96-hour acute toxicity values (96 h-LC50,
mg/L). (2) Elimination of salts and inorganic compounds from the
dataset. (3) Molecular representation using standardized SMILES
notation, followed by merging records for the same molecule after
standardization. (4) Delete records of compounds belonging to dif-
ferent categories (including toxic and non-toxic), missing values,
and outliers. (5) Classification of the toxicity values of organic com-
pounds in accordance with the EEC 92/32/EEC standard [46],
wherein values less than 10 mg/L are categorized as ‘toxic’ and
‘non-toxic’ is assigned for values > 10 mg/L.

After preprocessing, the final number of compounds for BS, RT,
FHM, and SHM are 988, 1246, 938, and 346, respectively. On BS, RT,
and SHM, the ratio of toxic to non-toxic instances is approximately
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6:4, while on FHM, the ratio of toxic to non-toxic instances is close
to 1:1. Fig. 1 illustrates the proportion of each fish species in the
total count and the number of toxic versus non-toxic instances
for each species.

Model framework

The framework of ATFPGT-multi designed for predicting the
toxicity of four fish species, as depicted in Fig. 2A. It primarily con-
sists of four main components: data pre-processing, fingerprints
feature representation, molecular graph feature representation
based on GNN and transformer, and a fully connected module for
toxicity prediction. First, in the fingerprints feature representation
module, we extract three different types of fingerprint features for
each molecule in datasets, namely Morgan fingerprints [47],
MACCS fingerprints [48], and RDKit fingerprints [49]. Since the fea-
ture dimensions of different fingerprints are not the same, we con-
catenate the three types of fingerprint features for each molecule
together, forming a higher-dimensional feature representing the
molecule’s final fingerprint features. Subsequently, a multi-layer
perceptron (MLP) network is employed for feature selection from
these three different types of fingerprints. Moreover, within the
molecular graph feature representation section, a novel graph
transformation method is introduced to encode molecular graphs.
This approach aims to achieve more robust molecular representa-
tions by leveraging the strengths of both GNN and transformer. By
combining these techniques, ATFPGT-multi can effectively capture
the diverse and complex characteristics of various molecules
[50,51]. Finally, the molecular fingerprint features are integrated
with the molecular graph features to create the compound’s com-
prehensive features. Following this, a fully connected layer pro-
cesses the fused features and creating separate outputs for each
fish species to achieve multi-task classification.

Featurization stage

The chemical structures in our data are represented in the form
of SMILES strings [52]. In order for ATFPGT-multi to accurately
identify molecular structures, it is crucial to represent the mole-
cules as accurately as possible. At this phase, we extract two types
of features for each compound molecule, namely molecular finger-
print features and molecular graph features. Below, we elaborate
on the details and implementation of these two features.
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Fig. 1. (A) The amount of data for each fish species and its proportion to the total population. (B) The number of non-toxic and toxic compounds on each fish species.
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Fig. 2. (A) The overview of ATFPGT-multi. (B) The architecture of the molecular graph representation module, which presents the graph-based representation approach. (C)
Shows the transformer layer details based on the multi-head attention mechanism. (D) Describes the process of focused dot product attention layer.

Molecular fingerprint features

Since different molecular fingerprint methods can capture var-
ious molecular characteristics, ATFPGT-multi utilizes three distinct
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types of molecular fingerprints, Morgan fingerprints, MACCS fin-
gerprints, and RDKit fingerprints, to encode compound molecular
information. Morgan fingerprints are based on the molecular
topology. They encode structural information by recording the
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neighboring atoms around each atom in the molecule. Morgan fin-
gerprints also take into account the distance information between
atoms, making them effective for describing both local and global
molecular structures. MACCS is a binary fingerprint based on speci-
fic structural fragments or substructures of molecules. They repre-
sent molecules as vectors containing 166 bits of binary
information, with each bit representing a predefined molecular
feature such as rings, bonds, functional groups, etc. The RDKit fin-
gerprints algorithm crafts fingerprints by hashing paths within the
molecular graph up to a predetermined length. These fingerprints
are designed to capture the structural and chemical characteristics
of molecules. Morgan, MACCS, and RDKit fingerprints have found
extensive applications and validation in the field of cheminformat-
ics, demonstrating excellent performance in many chemical tasks.
These fingerprint methods capture different molecular characteris-
tics, each generating a fixed-length binary vector for every mole-
cule. Each bit in the vector represents a unique molecular
substructure. The numerical or binary values represent the pres-
ence or absence of specific molecular substructures within the
molecule, which are pivotal for understanding molecular activity.
The specific information of three types of molecular fingerprints
is shown in Table 1.

To represent molecular structure more precisely, feature pro-
cessing is essential. We perform dimensionality reduction on the
generated features to eliminate irrelevant features from the molec-
ular fingerprints. We delineate the specific details and implemen-
tation as follows.

In formal terms, let X be the entire fish dataset, where each
molecule in the dataset is represented by its SMILES notation. For
each molecule x in X, we extract its feature vectors using Morgan
fingerprints M(x), MACCS fingerprints A(x), and RDKit fingerprints
R(x), concatenating these three vectors together as the molecule’s
fingerprint feature. The formula is expressed as follows:

Z(x) = [M(x), A(x),R(x)] (1)

where Z(x) represents the final fingerprint feature of the molecule,
which is a binary vector of length L, where L is the sum of the
dimensions of the three types of fingerprint features. To create a
more efficient and concise feature, we utilize a trainable MLP to
reduce the dimensionality of the features, retaining only the most
relevant features. The output of MLP is then passed to our feature
fusion module for toxicity prediction. Formally, we denote
f(Z(x); W) as the MLP function with weight parameters W. The def-
inition of MLP is as follows:

f(Z(x); W) = ReLU(W,  ReLU(W  Z(x) + by) + by) )

where W; and W, are weight matrices, b; and b, are bias vectors,
and * denotes matrix multiplication. The ReLU activation function
is defined as ReLU(z) = max(0,z). This feature processing method
facilitates the capture of intricate nonlinear interactions among
diverse molecular substructures within molecules, a critical factor
for precisely predicting the toxicity of organic compounds to fish
in aquatic environments. In summary, the dimensionality reduction
of concatenated fingerprint features using MLP is a critical step, as it
helps optimize ATFPGT-multi’s performance by reducing complex-
ity, improving generalization, and enhancing interpretability.

Table 1

Name, length, and type of molecular fingerprints.
Molecular fingerprints Bits Type
Morgan 2048 Circular fingerprints
MACCS 167 Structural features
RDKit 2048 Structural features
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Molecular graph feature

Molecular graph features serve as an advanced representation
method for describing molecular structures, capturing the relation-
ships between atoms and bonds within a molecule. In this feature
representation method, each node in the molecular graph repre-
sents an atom, while the edges represent bonds. Additionally, we
design two weighted graphs, namely local map (Loc) and global
map (M), to encompass more crucial molecular attributes.

Specifically, the molecular graph representation module defines
a molecular graph G = (V,E, Loc, M), where atoms are represented
as nodes V, bonds are represented as edges E, bond weights are
denoted as Loc, and the bond properties and distance information
between atoms are represented as M. Loc is employed to character-
ize the bond information in molecules by allocating weights to
each bond type, thereby regulating the propagation of messages
between adjacent nodes. In contrast, M not only captures the inter-
actions between atoms but also encodes the properties of the
bonds. Furthermore, M incorporates distance information between
atoms. Following chemical principles, bonds with a greater number
of electrons, such as unsaturated bonds, receive higher weights to
amplify the exchange of information between terminal atoms.

As illustrated in Fig. 2B, within the module of molecular graph
representation, ATFPGT-multi’s capability for representation is
enhanced by aggregating node features through graph convolu-
tional layers. The incorporation of LayerNorm and ReLU operations
aims to enhance the model’s robustness and training stability
while introducing non-linearity to better capture intricate relation-
ships within the graph structure. Furthermore, by integrating a
transformer layer, the model becomes more adept at capturing
essential correlations within the global graph structure, facilitating
a comprehensive understanding of information embedded in the
graph. Iteratively applying the graph transformer process strength-
ens the model’s ability for multi-level and multi-scale feature
abstraction and learning on graph data. The specific implementa-
tion details are outlined as follows.

In the graph convolutional layer, Loc is employed to provide
edge attributes, facilitating the aggregation of information from
neighboring nodes to update node feature representations and
derive local atomic embeddings. The process is governed by the
local mapping, as depicted in Equation (3).

hi= Wik + Wy > Log; - ! 3)
JeN()

where, hﬁ’l and h]H denote the features of atoms i and j from the I-

1th layer, respectively. hﬁ represents the updated embedding of
atom i in the Ith layer, N(i) denotes all neighboring atoms of atom
i, while W}, W/, are two trainable matrices in the layer L The bond
weight Locj; which govern the extent of message propagation is
contingent upon the type of bond between atoms i and j. In conclu-
sion, message propagation enables each node to aggregate informa-
tion from its neighboring nodes and update its feature
representation accordingly, thereby enhancing the model’s
performance.

Additionally, as illustrated in Fig. 2C, following the generation of
graph embeddings by the GNN, a transformer layer is introduced.
This is a newly designed component that incorporates a multi-
head attention mechanism. The objective is to enhance the abstract
representation of molecular graph information, making it more
robust and better capable of capturing the diversity and complex-
ity among different molecules. Compared to GNN, which integrate
local molecular neighborhood information, transformers excel at
focusing on the connections between atoms at a global scale, thus
capturing superior global structural information of molecules. In
this work, we enhance the transformer’s performance using a glo-
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bal map to better understand the molecule’s overall environment
through more concentrated attention. We introduce a focused
dot product attention layer to enhance the performance of the tra-
ditional transformer, as illustrated in Fig. 2D. The formula is
defined as follows:

T
Attention(Q, K, V) = softmax(Z-..

vd

In the above equation, Q,K,V € RNm*4 represent the query vector,
key vector, and value vector in the transformer. Moreover, this
equation utilizes M to weigh affinity matrices. This method enables
better focus on atom pairs with stronger interactions while reduc-
ing attention on irrelevant atom pairs. It enhances the performance
of the transformer in understanding complex molecular structures.
Finally, by merging the graph embeddings generated by the GNN
with the information processed through the transformer layer, the
ultimate representation is formed. Once the embedding module
completes atom feature learning, the readout function calculates
attention scores for each atom and combines atom embeddings into
fully connected prediction layers to generate molecular embeddings
[53].

In summary, our molecule graph representation module can
provide more precise structural information about molecules,
thereby producing accurate molecular feature representations that
provide more information for prediction task. The combination of
GNN and transformer allows for the integration of local and global
information, leading to more comprehensive and effective molecu-
lar embeddings. This synergistic approach enables ATFPGT-multi
to capture intricate structural patterns, long-range dependencies,
and holistic molecular properties, ultimately improving predictive
performance. Furthermore, to better control the balance between
nodes and their neighboring nodes, we use the sigmoid function
to weigh the relative importance of node features and neighboring
node features. This approach improves the performance of
ATFPGT-multi.

Myv (4)

Fully connect neural network

In this section, we will concatenate the molecular fingerprint
features and molecular graph features together, and linearly trans-
form the features through fully connected layers to obtain a more
concise and precise feature representation. Then, an independent
fully connected output is created for each fish dataset to achieve
multi-task classification. By sharing certain layers and parameters
of the model, ATFPGT-multi is able to learn shared representations.
This shared representation can capture common features across
multiple tasks, thereby enhancing the generalization capability of
ATFPGT-multi. This approach enhances the model’s generalization
performance for each task. ATFPGT-multi can adapt better to the
features and characteristics of each task, thus improving overall
performance. Each neuron in a layer is connected to every neuron
in the preceding layer, allowing the network to capture complex
relationships in the input data. Each connection has a weight and
bias, enabling neurons to learn complex feature representations
and effectively model input data through linear transformations
and nonlinear activations. The formula for the fully connected neu-
ral network is shown as follows:
y=f(Wc+b) (3)
where y represents the output of the fully connected neural net-
work layers, f is the ReLU activation function, W is the weight
matrix, c represents the fused molecular features, and b is the bias
term. In the last layer, we apply a sigmoid activation function for
each task, optimized using the binary cross-entropy loss function
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(BCELoss). The equation for BCELoss is can be calculated by Equa-
tion (6).

Y4
BCELoss = *% > _vilog(p) + (1 - ;) log(1 - p,)] (6)
i=1

where Z represents the total number of compound samples, y; is the
category of the i-th sample, and p; is the prediction value of the i—th
compound, typically a probability value with the range of 0 to 1.
Moreover, we utilize Adam for optimizing our model. The Adam
optimization algorithm has advantages such as adaptive learning
rate, low memory requirements, stability, and simple parameter
adjustment.

Performance evaluation

To comprehensively assess the performance of ATFPGT-multi,
we employ a five-fold cross-validation procedure. In this process,
the dataset is divided into five equally sized subsets, with four sub-
sets used as training sets and one subset used as a validation set
during each iteration of training. This process is repeated five
times, ensuring that each subset is used as a validation set once.
By using multiple subsets of the data for training and validation,
cross-validation helps assess how well the model generalizes to
unseen data. If the model performs consistently well across all
folds, it suggests good generalization ability. Additionally, we
repeat the entire experimental procedure 100 times to ensure ran-
domness in the experiment and obtain reliable experimental
results. The following metrics are used to evaluate the predictive
performance of ATFPGT-multi, including accuracy (ACC), recall
(RE), and precision (PR). The calculation formulas for these metrics
are as follows:

TP+ 1N

ACC= 5 IN T PP LN

(7)

P

Recall = TP L EN

(8)

TP
P+ FP ®

where TP represents the correctly predicted toxic compounds, TN
represents the correctly predicted non-toxic compounds, FP repre-
sents the non-toxic compounds incorrectly predicted as toxic, and
FN represents the toxic compounds incorrectly predicted as non-
toxic. The area under the receiver operating characteristic curve
(AUC) is also calculated to reflect the classifier’s discriminative abil-
ity, and it is mainly used for comparing and selecting modeling
methods and hyperparameters.

Precision =

Experimental detail

Each organic compound is represented as a string using SMILES
notation. First, the SMILES is converted into three different molec-
ular fingerprints, which are then concatenated together. Subse-
quently, a MLP is employed to reduce the dimensionality,
yielding a 256-dimensional embedding. Simultaneously, the
SMILES is transformed into a molecular graph using RDKit. Then
implementing GNN to aggregate the local information of the mole-
cule, followed by using transformer to aggregate global informa-
tion to obtain atom embeddings, and then calculating attention
scores for each atom through a readout layer, and combining atom
embeddings to generate molecular graph embeddings. The con-
catenated molecule fingerprint embedding and molecular graph
embedding serve as the input for a shared fully connected layer.
ATFPGT-multi is achieved by creating separate classification heads
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for each task. ATFPGT-multi is pre-trained for 30 epochs using the
Adam optimizer with a learning rate of 0.0005. In the specific
implementation, we initially use random search for preliminary
exploration to narrow down the range of candidate hyperparame-
ters. Then, we perform grid search within this narrowed range for
more detailed tuning, further refining the hyperparameters to
achieve optimal performance. A cosine learning rate scheduler is
employed to adjust the learning rate during training. The entire
framework is implemented using PyTorch. Additional fine-tuning
details are provided in Table 2.

Results
Multi-task learning boosted performance

The framework of ATFPGT-multi is a novel deep learning archi-
tecture designed to combine data from multiple categories, imple-
menting a multi-task learning strategy. Additionally, to validate
whether multi-task learning methods improve toxicity predictive
performance, we establish separate prediction models (ATFPGT-
single) for each fish species. ATFPGT-single is a variant of
ATFPGT-multi, where the former has only one classification head
in the output layer, enabling predictions for only one classification

Journal of Advanced Research 68 (2025) 477-489

task, whereas the latter comprises four parallel classification
heads, allowing simultaneous predictions for four classification
tasks. As shown in Table 3, the AUC values of ATFPGT-multi on four
fish datasets are 0.932, 0.928, 0.881, and 0.906, respectively, which
are 9.8 %, 4 %, 4.8 %, and 8.2 % higher than that of ATFPGT-single.
The ACC values of ATFPGT-multi are 0.869, 0.854, 0.779, and
0.887, respectively, representing increases of 10.4 %, 3.9 %, 2.6 %,
and 17.3 % compared to that of ATFPGT-single. The PRE values of
ATFPGT-multi are 0.865, 0.866, 0.902, and 0.7, respectively,
exhibiting improvements of 13.5 %, 11.2 %, 19.6 %, and 4 % over that
of ATFPGT-single. The RE values of ATFPGT-multi are 0.801, 0.77,
0.729, and 0.75, showing improvements of 22.7 %, 6 %, and
10.6 % over that of ATFPGT-single on BS, RT, and SHM datasets,
respectively. However, it exhibits a 6.7 % decrease compared to
that of ATFPGT-single on FHM dataset. This could be attributed
to a higher number of non-toxic samples in the entire sample space
than toxic samples. ATFPGT-multi might be more inclined to pre-
dict samples as non-toxic, emphasizing accurate predictions of
non-toxic instances. Based on the above result analysis, it can be
concluded that the joint learning on relevant tasks in ATFPGT-
multi allows for a better understanding of the inter-relationships
among tasks, thereby enhancing overall performance.

For a more intuitive depiction of ATFPGT-multi’s performance,
in Fig. 3, we compare the performance of ATFPGT-multi and
ATFPGT-single on each fish dataset using bar charts. On RT, BS,
and SHM datasets, ATFPGT-multi outperforms ATFPGT-single in

E:l;yzper_parameters for ATEPGT-multi model. all evaluation metrics. On FHM dataset, except RE, the other three
— evaluation metrics of ATFPGT-multi are also higher compared to
Parameter Description Range ATFPGT-single. Based on the above analysis, we conclude that
batch_size Input batch size (32, 64} the multi-task learning allows models to share parameters across
Ir Learning rate {0.0005} multiple tasks, which can enhance ATFPGT-multi’s generalization
train_epoch Training epoch {30, 50} - . . . .
dropout Dropout ratio (01,02} ability. By sharing underlying representations, ATFPGT-multi can
hidden_size Size of hidden layers in MLP (512} transfer features and knowledge learned from one task to others,
attn_layers Number of embedding layers 4} thereby improving overall performance. Cross-species learning
atten_head Number of attention heads for transformer {4} with shared representations can enhance model performance by
output_dim Hidden size of embedding layer {256} hari I ledge and representations, facilitating knowledge
D Hidden size of readout layer {2} sharing knowledg| ,p ! K & R g
transfer and transfer learning. Through a series of experiments,
Table 3
Comparative analysis of ATFPGT-multi and other methods under 5-fold CV on four fish species datasets.
Fish species Models AUC ACC PR RE
BS ATFPGT-multi 0.932 0.869 0.865 0.801
ATFPGT-single 0.849 0.787 0.762 0.653
GCN-multi 0.796 0.674 0.599 0.880
GCN-single 0.875 0.826 0.727 0.880
ANN-KRFP 0.775 0.794 0.709 0.840
SVM-KRFP 0.780 0.800 0.709 0.850
RE-KRFP 0.761 0.787 0.673 0.850
RT ATFPGT-multi 0.928 0.854 0.866 0.770
ATFPGT-single 0.892 0.822 0.779 0.725
GCN-multi 0.804 0.719 0.675 0.799
GCN-single 0.835 0.787 0.643 0.872
SVM-KRFP 0.794 0.827 0.667 0.922
RE-MACCS 0.822 0.849 0.714 0.929
RE-KRFP 0.800 0.831 0.679 0.922
FHM ATFPGT-multi 0.881 0.779 0.902 0.729
ATFPGT-single 0.841 0.759 0.754 0.781
GCN-multi 0.744 0.505 0.870 0.454
GCN-single 0.847 0.770 0.812 0.734
SVM-PubChem 0.787 0.787 0.788 0.787
SVM-KRFP 0.832 0.833 0.812 0.851
RE-PubChem 0.762 0.764 0.738 0.787
SHM ATFPGT-multi 0.906 0.887 0.700 0.750
ATFPGT-single 0.837 0.756 0.671 0.678
GCN-multi 0.693 0.604 0.733 0.566
GCN-single 0.859 0.881 0.625 0.947
ANN-CDK 0.743 0.797 0.625 0.860
RE-PubChem 0.786 0.831 0.688 0.884
SVM-CDKExt 0.786 0.831 0.688 0.884
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Fig. 3. Comparative analysis of ATFPGT-multi and ATFPGT-single for four fish species datasets.

the effectiveness of our approach in improving model performance,
particularly in enhancing the model’s toxicity prediction capability,
has been demonstrated.

Comparison with other methods

To evaluate the performance of ATFPGT-multi further, we draw
inspiration from previous study where researchers not only con-
structed 36 classification models for four datasets using four
molecular fingerprints and nine machine learning algorithms but
also developed single-task GCN (GCN-single) and multi-task GCN
(GCN-multi) models [32], as shown in Table 3. From their results,
we select the top-performing three machine learning models for
each fish dataset. Specifically, for BS dataset, we gather ANN-
KRFP, SVM-KRFP and RF-KRFP. On RT dataset, we choose SVM-
KRFP, RF-KRFP and RF-MACCS. For FHM dataset, we select SVM-
PubChem, RF-PubChem and SVM-KRFP. For SHM dataset, the cho-
sen algorithms include ANN-CDK, RF-PubChem and SVM-CDKEXxt.
Additionally, we chose GCN-multi and GCN-single models for each
dataset.

We compare ATFPGT-multi with these classical methods. On BS
dataset, the AUC of ATFPGT-multi is 20.3 %, 19.5 %, 30.2 %, 6.5 %,
and 17.1 % higher than that of ANN-KRFP, SVM-KRFP, RF-KRFP,

GCN-single, and GCN-multi, respectively. On RT dataset, the AUC
of ATFPGT-multi surpasses that of SVM-KRFP, RF-KRFP, RF-
MACCS, GCN-single, and GCN-multi by 16.9 %, 16 %, 12.9 %,
11.1 %, and 15.4 %. For FHM dataset, ATFPGT-multi’'s AUC outper-
forms that of SVM-PubChem, RF-PubChem, SVM-KRFP, GCN-
single, and GCN-multi by 11.9 %, 15.6 %, 5.9 %, 4 %, and 18.4 %,
respectively. On SHM dataset, the AUC of ATFPGT-multi is higher
than that of ANN-CDK, RF-PubChem, SVM-CDKExt, GCN-single,
and GCN-multi by 21.9 %, 15.3 %, 15.3 %, 5.5 %, and 30.7 %, respec-
tively. The above analysis results indicate that ATFPGT-multi
enhances the model’s generalization ability, improves data effi-
ciency, and strengthens the predictive capability for toxicity
through multiple feature representations.

Additionally, from Fig. 4, we can observe that ATFPGT-multi
achieves the highest values for key evaluation metrics, including
AUC, and ACC, compared to other algorithms on BS, RT, FHM and
SHM datasets. In conclusion, through the above analysis, it is evi-
dent that ATFPGT-multi exhibits superior overall performance
compared to other models. This further elucidates its advantages
in feature extraction and multi-task learning.

Comparing with existing prediction methods, as shown in
Table 4, ATFPGT-multi performs better on the key evaluation met-
ric AUC than the comparative algorithms. This indicates that

484



X. Yang, J. Sun, B. Jin et al.

RE
PRE b
ACC -
AUC

47;% 47}(;0 GC/V\ GC‘/V\ 44’4/5
7\

Py gy R

b,
4’,9 o /?

07"/(‘ S”’g

FHM

47;“,0 47'% O, O, ~ ”/17 '?p
‘77 //; l/ ,?
m, sy b ) C‘/7
sy Mo Yo TChg Lo RIS

Journal of Advanced Research 68 (2025) 477-489

4 7}‘ 4 7*/: GC GC \ A
S A A
G, Y ) y i S/,Jg/ /( /\> A & s k’?ﬁp

/770/( s’/?g

SHM

D
RE
) PRE
ACC
AUC

YUy ”9/ 4’ />e Ae
ey X

/77(//“ /79

Fig. 4. The performance of ATFPGT-multi and the comparative algorithms for each fish species datasets.

Table 4
The AUC performance of different methods under 5-fold CV on four fish species
datasets.

Models BS RT FHM SHM

ATFPGT-multi 0.932 0.928 0.881 0.906
ATFPGT-single 0.849 0.892 0.857 0.837
GCN-multi 0.796 0.804 0.744 0.693
GCN-single 0.875 0.835 0.847 0.859
SVM 0.78 0.794 0.832 0.786
RF 0.761 0.822 0.762 0.786
ANN 0.775 0.792 0.768 0.743

ATFPGT-multi can integrate information from different tasks,
thereby improving the efficiency of data utilization, especially
when there is correlation between tasks. Multi-task learning can
enhance ATFPGT-multi’s generalization ability, enabling it to per-
form better on new data. To some extent, it addresses the limita-
tions of existing models that can only predict a single task and
the risk of overfitting. In addition, multi-task learning facilitates
knowledge transfer between tasks, so that knowledge learned from
one task can contribute to the learning of another task.

485

Ablation studies on ATFPGT-multi

The comprehensive evaluation results of ATFPGT-multi indicate
that the multi-task approach achieves the best predictive perfor-
mance. To investigate the importance of each component in the
ATFPGT-multi structure, a series of ablation experiments are
conducted.

o ATFPGT-FP: it only uses three molecular fingerprint features of
Morgan, MACCS and RDKit as input for the toxicity prediction.

e ATFPGT-GT: it only applies molecular graph features as input
for the toxicity prediction.

We show the performance of these models in Table 5. The
results show that ATFPGT-FP achieves AUC values of 0.807, 0.8,
0.725, and 0.758 on four fish datasets, respectively, which are
lower than ATFPGT-multi by 15.5 %, 16 %, 21.5 %, and 19.5 %
ATFPGT-GT obtains AUC values of 0.885, 0.884, 0.846, and 0.873
on the four fish datasets, respectively, which are lower than
ATFPGT-multi by 5.3 %, 5 %, 4.1 %, and 3.8 %. Specifically, solely
using molecular graph representation features would result in a
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Table 5
Comparison analysis between ATFPGT-multi and its ablation experiments on four fish datasets.
Fish species Method AUC ACC PRE RE
BS ATFPGT-multi 0.932 0.869 0.865 0.801
ATFPGT-FP 0.807 0.762 0.690 0.710
ATFPGT-GT 0.885 0.825 0.743 0.847
RT ATFPGT-multi 0.928 0.854 0.866 0.770
ATFPGT-FP 0.800 0.739 0.709 0.702
ATFPGT-GT 0.884 0.821 0.782 0.834
FHM ATFPGT-multi 0.881 0.779 0.902 0.729
ATFPGT-FP 0.725 0.676 0.807 0.750
ATFPGT-GT 0.846 0.772 0.767 0.781
SHM ATFPGT-multi 0.906 0.887 0.700 0.750
ATFPGT-FP 0.758 0.711 0.611 0.666
ATFPGT-GT 0.873 0.809 0.731 0.868

decrease in model performance. Molecular fingerprints typically
represent specific molecular fragments, accurately capturing sub-
tle differences between different molecules. Similarly, relying
solely on the molecular fingerprint encoding module would also
lead to significant performance degradation, emphasizing the
importance of the molecular graph representation module in cap-
turing global molecular information and the correlation between
atoms.

Additionally, experimental evidence demonstrates that our pro-
posed feature fusion method outperforms in toxicity prediction.
Through exploring the impact of different components on the
model, it is found that ATFPGT-multi, which simultaneously adopts
two molecular representation methods, exhibits the best perfor-
mance. This indicates that these two modules complement each
other in representing molecular features, demonstrating their
potential in the field of multi-species acute toxicity prediction.

Exploring different types of molecular fingerprints

To explore the impact of various combinations of molecular fin-
gerprints on the model, we investigate seven distinct combinations
of molecular fingerprints to evaluate ATFPGT-multi, and the com-

—/ 1 ATFPGT-RDKit

(=]

ATFPGT-Morgan
ATFPGT-MACCS

1 ATFPGT-MorMAC

parative results are presented in Fig. 5. To facilitate the identifica-
tion of the model with the best fingerprint combination, we
calculate the average evaluation metrics for each model on four
datasets. Specifically, when using Morgan, MACCS, and RDKit
alone, the models are named ATFPGT-Morgan, ATFPGT-MACCS,
and ATFPGT-RDKit, respectively. Their AUC values are 0.827,
0.798, and 0.816, respectively. These values are lower than that
of ATFPGT-multi by 11.9 %, 17.2 %, and 13.4 %. Among them,
ATFPGT-Morgan exhibits the best performance, while ATFPGT-
MACCS performs the worst. Next, we explore pairwise combina-
tions of the three molecular fingerprints: Morgan + MACCS
(ATFPGT-MorMAC), Morgan + RDKit (ATFPGT-MorR), and
MACCS + RDKit (ATFPGT-MACR). The AUC values for these combi-
nations are 0.868, 0.871, and 0.815, respectively. These values are
lower than that of ATFPGT-multi by 6.6 %, 6.2 %, and 13.5 %, respec-
tively. Among these, ATFPGT-MA yields the best results, while
ATFPGT-MR performs the lowest. When utilizing all three types
of molecular fingerprint patterns simultaneously, the model’s per-
formance surpasses that of all the aforementioned combinations of
molecular fingerprints. These results suggest that these finger-
prints are complementary in capturing different molecular fea-
tures. In conclusion, our study indicates that a multi-fingerprint

3 ATFPGT-MorR
3 ATFPGT-MACR

1 ATFPGT-multi

1.0
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0.6 1
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Fig. 5. Comparison analysis between ATFPGT-multi and its six variant models on four fish datasets.
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approach is beneficial for toxicity prediction, with Morgan + MAC
CS + RDKit combination yielding the best results.

Model interpretability

Traditional models often lack interpretability, making it difficult
to intuitively understand the relationship between molecular
structure and toxicity. To address this challenge, we conduct a
comprehensive interpretability case study of ATFPGT-multi.
Through visualizing the atomic-level attention weights, we further
investigate the contribution of individual atoms to molecular tox-
icity. Take the example of four compounds, CC(C)CC(C)c1sccc1NC
(=0)c1en(C)nc1C(F)(F)F, CC(C)[C@@H](Nc1ccc(C(F)(F)F)cc1Cl)C(=0
JOC(C#N)c1cccc(Oc2ccccc2)cl, Cnlcc(C(=0)Nc2ccccc2-c2cc(F)c(F)
c(F)c2)c(C(F)F)n1 and COC(=0)c1nc(-c2ccc(Cl)c(0C)c2F)cc(N)c1ClL.
As shown in Fig. 6A, we observe that three fluorine atoms in the
sample molecules exhibit high attention weights. In organic mole-
cules, compounds containing fluorine atoms often possess elevated
electronegativity. This may enhance interactions with other atoms,
leading to alterations in biological activity. Additionally, some
atoms, such as cyano groups and aldehyde groups, known to influ-
ence molecular toxicity, also receive significant attention [54].
Similarly, in Fig. 6B, we observe that six Cl atoms in the sample
molecules receive high attention. This significantly influences the
molecule’s polarity, thereby affecting membrane permeability
and negatively impacting cellular stability [55]. The same experi-
mental conclusion can also be observed in Fig. 6C and D.

By delving deeper into these findings, several noteworthy
observations can be made. First, ATFPGT-multi demonstrates
remarkable capabilities in recognizing the significance of different
functional moiety in influencing toxicity, which may vary depend-
ing on the dataset. This adaptability implies that the model has
broad prospects in various molecular property predictions, espe-
cially in toxicity prediction tasks. Second, the global attention

A I

=

N do N8
e Y/
= H YJ
N

Cnlcc(C(=0)Nc2cccec2-c2ec(F)e(F)e(F)c2)c(C(F)F)n1
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mechanism employed by ATFPGT-multi helps elucidate the rela-
tionship between molecular structure and properties. Through
in-depth analysis, we enhance our understanding of the potential
mechanisms of ATFPGT-multi and further demonstrate its promise
in the field of acute toxicity prediction in biology. For example,
attention scores can reveal the extent to which different parts of
a molecule contribute to toxicity, helping chemical designers focus
and adjust atomic groups that may contribute to toxicity. By mod-
ifying the molecular structure in a targeted way, safer and more
environmentally friendly compounds can be developed. Moreover,
identifying relevant fragments of molecules can speed up the
chemical evaluation process, allowing researchers to more quickly
assess the potential toxicity and environmental impact of com-
pounds. This helps improve the efficiency and accuracy of chemical
assessments and promotes a faster and more comprehensive
understanding of chemical safety.

Discussion and conclusion

In this study, we collect data from four different fish species,
each corresponding to a distinct task. We introduce ATFPGT-
multi, a model capable of jointly predicting toxicity across all four
tasks. This model integrates multi-level fingerprints and a graph
transformer architecture, showcasing excellent performance in
predicting acute toxicity. Our comprehensive evaluation indicates
that ATFPGT-multi outperforms all previous methods. Additionally,
to validate the feasibility of multi-task learning, we train individual
ATFPGT-single models for each task and evaluate them using var-
ious classification metrics, further confirming the reliability and
stability of multi-task learning.

The outstanding predictive ability of ATFPGT-multi is primarily
attributed to our dataset, which originates from multiple datasets
representing various species, ensuring an ample quantity and qual-
ity of samples. Next, we employ two different representation

cl a
/
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»
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\

Fig. 6. Visualization of atomic attention weights. (A) The exemplar molecule selected from BS dataset is presented. (B) The exemplar molecule chosen from RT dataset is
displayed. (C) The exemplar molecule selected from FHM dataset is presented. (D) The exemplar molecule selected from SHM dataset is presented.
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methods and incorporate a global attention mechanism, allowing
for the precise capture of toxic motifs and structures within mole-
cules that influence biological activity. Finally, we extract shared
features for multiple tasks through two fully connected layers
and create separate output layers for each task. This design ensures
that our model, in multi-task learning, not only considers the cor-
relations between different tasks but also adequately accounts for
their differences. These factors collectively contribute to ATFPGT-
multi achieving optimal results in toxicity prediction.

However, ATFPGT-multi still has some limitations and chal-
lenges. The performance may be affected during training due to
the imbalance in the number of samples in each task. The current
dataset only covers compound data from four fish species, while
the aquatic biodiversity is extensive, lacking sufficient coverage
of compounds from different species. Additionally, given the com-
plexity of the model, it requires higher computational resources
and longer training times. Fine-tuning and optimizing the model
architecture, parameters, and training process will enhance
ATFPGT-multi’s predictive performance on a wider range of aquatic
toxicity endpoints. Furthermore, further exploration of multitask
learning applications is possible. For example, predicting the toxi-
city of aquatic organisms under different environmental conditions
and exploring ATFPGT-multi’s transfer learning capabilities will
provide us with deeper insights. In addition, our model contributes
to the safer development of chemicals and the protection of aqua-
tic ecosystems. First, the accuracy and reliability of ATFPGT-multi
provide crucial tools for chemical design and evaluation. By pre-
dicting the toxicity of molecules, researchers and decision-
makers can identify potential environmental risks earlier and take
appropriate measures to mitigate these risks. Second, by gaining a
deeper understanding of the relationship between molecular struc-
ture and toxicity, ATFPGT-multi can assist in developing safer
alternatives or improving existing products, thereby reducing
adverse environmental impacts. Overall, in comparison to previous
methods, ATFPGT-multi demonstrates the best performance in
predicting aquatic toxicity. This not only emphasizes the crucial
role of various molecular representation methods but also high-
lights the advantages of multi-task learning. This outcome holds
significant implications for assessing environmental hazards in
aquatic ecosystems.
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