
RESEARCH ARTICLE
www.advancedscience.com

A Multi-Task Self-Supervised Strategy for Predicting
Molecular Properties and FGFR1 Inhibitors

Xin Yang, Yang Wang, Ye Lin, Mingxuan Zhang, Ou Liu, Jianwei Shuai,* and Qi Zhao*

Studying the molecular properties of drugs and their interactions with human
targets aids in better understanding the clinical performance of drugs and
guides drug development. In computer-aided drug discovery, it is crucial to
utilize effective molecular feature representations for predicting molecular
properties and designing ligands with high binding affinity to targets.
However, designing an effective multi-task and self-supervised strategy
remains a significant challenge for the pretraining framework. In this study, a
multi-task self-supervised deep learning framework is proposed, MTSSMol,
which utilizes ≈10 million unlabeled drug-like molecules for pretraining to
identify potential inhibitors of fibroblast growth factor receptor 1 (FGFR1).
During the pretraining of MTSSMol, molecular representations are learned
through a graph neural networks (GNNs) encoder. A multi-task
self-supervised pretraining strategy is proposed to fully capture the structural
and chemical knowledge of molecules. Extensive computational tests on 27
datasets demonstrate that MTSSMol exhibits exceptional performance in
predicting molecular properties across different domains. Moreover,
MTSSMol’s capability is validated to identify potential inhibitors of FGFR1
through molecular docking using RoseTTAFold All-Atom (RFAA) and
molecular dynamics simulations. Overall, MTSSMol provides an effective
algorithmic framework for enhancing molecular representation learning and
identifying potential drug candidates, offering a valuable tool to accelerate
drug discovery processes. All of the codes are freely available online at
https:// github.com/zhaoqi106/MTSSMol.
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1. Introduction

Drug discovery and development are com-
plex and challenging tasks, even with the
latest advancements in biomedical research
and technology. This complexity arises from
the multiple stages involved, each present-
ing unique challenges and difficulties.[1,2]

The drug discovery phase requires exten-
sive basic scientific research, including un-
derstanding disease mechanisms, identi-
fying potential drug targets, and screen-
ing and optimizing compounds.[3,4] Tradi-
tional experimental methods for evaluat-
ing the impact of each compound on all
possible protein targets require significant
time and resources.[5] To overcome these
limitations, researchers often use compu-
tational methods to predict the potential
interactions between compounds and pro-
tein targets.[6,7] These computational meth-
ods, based on protein structure and com-
pound structure, simulate and predict in-
teractions, helping researchers screen for
compounds most likely to interact with spe-
cific targets, thus reducing the number and
cost of experiments.[8]

In recent years, the rise of advanced
artificial intelligence technologies has
brought numerous opportunities and
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breakthroughs to drug design and target identification, demon-
strating significant efficiency and cost-effectiveness.[9–11] Ar-
tificial intelligence can handle large-scale bioinformatics
data, including single-cell multi-omics data analysis,[12–15]

computational toxicology,[16–18] miRNA-lncRNA interactions
prediction,[19,20] metabolite-disease associations prediction,[21,22]

and remote health monitoring.[23–25] Through machine learn-
ing and deep learning techniques, patterns and regularities
can be discovered from these data, enabling the prediction of
interactions between drugs and targets, thus accelerating the
process of drug design.[26,27] Learning molecular representa-
tions from chemical structures is a fundamental challenge in
utilizing artificial intelligence methods for predicting molecular
properties.[28]

However, traditional methods for molecular representation,
such as those based on manually crafted features, physical-
chemical descriptors, and pharmacophore-based features, typi-
cally rely on the expertise of domain specialists to extract molec-
ular features. While these methods may perform well in certain
cases, they also have limitations. They require a deep understand-
ing of chemical structures and properties to manually select and
extract features, thereby limiting their applicability and gener-
alization, especially for complex molecular structures and un-
known compounds.[29–31] Self-supervised learning (SSL) meth-
ods have emerged as a powerful approach to molecular prop-
erty prediction, leading to significant advancements in molecular
representation learning.[32,33] SSL methods have been applied to
pre-train GNNs to improve molecular representation learning. By
learning from large-scale unlabeled compound data, these meth-
ods can acquire richer and more effective molecular representa-
tions, thereby enhancing the performance of downstream molec-
ular property prediction tasks.[34–36]

Currently, SSL methods such as GROVER[37] and MolCLR[38]

modify molecular graphs and then predict the modified parts or
align the modified graphs with corresponding original graphs in
latent space through contrastive learning. However, contrastive
learning objectives may be highly sensitive to minor modifi-
cations of graphs. Even slight structural changes can make it
difficult for the contrastive learning model to align the modi-
fied graph with the original graph, thereby reducing the robust-
ness and generalization ability of the model. Additionally, con-
trastive learning objectives may lead to overfitting specific rep-
resentations of the original graph, neglecting broader semantic
information in molecular structures. This could result in poor
performance of the model on new, unseen molecules. Taking
these factors into account, while contrastive learning objectives
can assist the model in learning molecular representations to
some extent, there are still challenges and limitations. More-
over, most existing SSL-based approaches predominantly rely
on a single SSL task to train GNNs for drug discovery, which
introduces a bias toward that task. Although Wang et al. pro-
posed a multi-task SSL-based strategy for biomedical network
drug discovery (MSSL2drug),[39] their method primarily empha-
sizes the relationships among drug molecules, proteins, and dis-
eases, while overlooking the structural characteristics inherent to
drug molecules themselves.

In this study, we propose a multi-task self-supervised deep
learning framework named MTSSMol, specifically designed for
predicting molecular properties and designing high-affinity lig-

ands. MTSSMol integrates two pre-training strategies and unsu-
pervised learning, utilizing large-scale unlabeled data for train-
ing to learn and optimize molecular representations. Compared
to existing methods, MTSSMol excels in effectively handling var-
ious drug discovery tasks and demonstrates exceptional perfor-
mance in predicting the molecular properties of targets such
as FGFR1. Our research demonstrates that MTSSMol not only
achieves significant performance in theoretical predictions but
also undergoes validation through RFAA and molecular dynam-
ics simulations, thus providing a robust computational frame-
work to accelerate drug discovery.

2. Materials and Methods

2.1. Model Framework

We develop a pre-training deep learning framework called MTSS-
Mol to accurately predict molecular properties. To accurately cap-
ture the structural information of molecules, we design two pre-
training tasks aimed at learning biologically relevant features: 1)
we create GNNs molecular encoder to extract latent features from
≈10 million molecules; 2) by employing two pre-training strate-
gies that consider chemical knowledge and structural informa-
tion in molecular graphs, we optimize the latent representations
of molecular encoder (Figure 1a); 3) the pretrained GNNs module
of MTSSMol is fine-tuned on target molecular property datasets
using supervised learning, refining the entire model for molecu-
lar property prediction (Figure 1b) and thus further enhancing its
performance;[40,41] 4) as shown in Figure 1c, we fine-tune the pre-
trained model using a known FGFR1 molecular dataset to predict
potential inhibitors for this target. The predicted results are then
filtered and followed by similarity clustering, resulting in two dis-
tinct molecular families. Subsequently, we employ RFAA to pre-
dict the docking results of these two families with the target. Fi-
nally, molecular dynamics simulations are conducted to validate
the docking results.

2.2. Molecule Graph Augmentation

2.2.1. Assign Labels to Molecular Diagrams

The main purpose of using multi-granularity clustering and
pseudo-labels is to enhance the model’s expressiveness and gen-
eralization by capturing different levels of similarity in chemi-
cal structures and reducing dependence on labeled data. Multi-
granularity clustering provides richer structural information,
while pseudo-labels allow the use of extensive unlabeled data,
thereby improving the model’s robustness and predictive perfor-
mance. As shown in Figure 1a, in simple terms, multi-granularity
clustering is initially utilized to assign multiple different gran-
ularity clusters to each chemical structure fingerprint. Subse-
quently, each cluster is assigned as a pseudo-label to the cor-
responding molecule, resulting in each molecule having multi-
ple pseudo-labels of varying granularities. Specifically, we utilize
MACCS fingerprints to represent molecules, which consist of a
166-bit sequence of 0 and 1. These molecular fingerprints form
the basis for clustering: molecules with similar fingerprints are
more likely to belong to the same cluster. We apply K-means clus-
tering with different values of K (100, 1000, and 10000), resulting
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Figure 1. a) The overview of MTSSMol during pretraining. Initially, data augmentation techniques are applied to the raw input data to create various
enhanced versions. These images are then fed into GNNs to extract latent features. Finally, the augmented data is utilized for two learning tasks. b)
Transfer learning for downstream molecular property prediction in the feature extraction setup. c) FGFR1 inhibitor discovery process.

in clusters at varying levels of granularity, from coarse to fine.
Based on the clustering outcomes, each molecular graph is as-
signed three distinct pseudo-labels.

2.2.2. Graph Mask

The masking process starts with randomly selected initial atoms
in the graph Gn. Masking then extends to neighboring atoms
and their subsequent neighbors until the proportion of masked
atoms reaches a predetermined ratio of the total atom count. Sub-
sequently, the bonds between the masked atoms are removed,
forming a subgraph of the original molecule induced by the
masked atoms and deleted bonds. As shown in Figure 1a, the
masked graph is denoted as Gn

’.

2.3. Graph Neural Networks

Specifically, we abstract the molecule represented by SMILES
into a molecular graph G = (V, E), where atoms are represented
as nodes V and bonds are represented as edges E (see Table
S1, Supporting Information). The core idea of GNNs is to prop-
agate and aggregate information through the connections be-
tween nodes, thereby updating the representation of each node.
Through multiple rounds of message passing and aggregation
operations, GNNs can capture complex local and global features
in graph data, gradually enhancing the representation capability
of nodes. AGGREGATE(·) and COMBINE(·) are two fundamen-
tal operations of GNNs, where AGGREGATE(·) retrieves mes-
sage information from the neighbors of node v, and COMBINE(·)
integrates the information from all neighbors of node v. The
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message-passing process in the k-th layer of GNNs is shown as
follows:

a(k)
v = AGGREGATE(k) ({h(k−1)

u : u ∈  (v)
})

(1)

h(k)
v = COMBINE(k) (h(k−1)

v , a(k)
v

)
(2)

where a(k)
v represents the feature formed by aggregating the fea-

tures of neighboring nodes for node v, N(v) is the set of neigh-
boring nodes for node v, and h(k)

v is the feature of node v at the
k-th layer. In order to further extract the graph-level feature hG,
the readout operation integrates all node features in graph G, as
shown below:

hG = READOUT
({

h(k)
v : v ∈ G

})
(3)

In our model, we build a GNNs encoder based on a graph iso-
morphism network (GIN). In GIN, the node aggregation opera-
tion typically involves a weighted summation of neighbor node
features combined with the node’s own features. Through mul-
tiple rounds of node aggregation operations, GIN gradually up-
dates the node representations, capturing complex relationships
and patterns in the graph data. Furthermore, we utilize mean
pooling for the readout operation to obtain the representation of
the entire graph.

2.4. Strategies for Pretraining MTSSMol

The purpose of pretraining is to enable models to acquire ex-
tensive knowledge and language understanding across various
tasks through learning from large-scale datasets. This type of
pretraining helps models learn language grammar, semantic re-
lationships, and rich knowledge, thereby enhancing their lan-
guage comprehension and generation capabilities. Through pre-
training, models can learn rich contextual information to bet-
ter understand and generate natural language. In this work, we
define two effective and task-related proxy tasks for pre-training
models.

2.4.1. Multi-Label Classification Task

Based on semantic consistency, we propose a multi-label clas-
sification task for discovering semantic consistency by predict-
ing molecular chemical structures. Specifically, first, we assign
three pseudo-labels to the molecular graph using data augmen-
tation methods. Then, we use the molecular graph features as
output and employ GNNs molecular encoder to extract the la-
tent features of the molecular graph, which are then used to
predict pseudo-labels via a structural classifier. This classifier
comprises three parallel fully connected layers, each correspond-
ing to a different label classification. The number of neurons in
these layers is set to 100, 1000, and 10000, respectively, based on
different clustering requirements. Finally, the molecular graph
features of each sample are represented as xn, and their three
pseudo-labels are represented as y100

n ∈ {0, 1,… , 99}100, y1000
n ∈

{0, 1,… , 999}1000 and y10000
n ∈ {0, 1,… , 9999}10000. The loss func-

tion is defined as:

MLCT = arg min 1
N

𝜃,W

N∑
n=1

[
𝓁1

(
W100f𝜃

(
xn

)
, y100

n

)

+𝓁2

(
W1000f𝜃

(
xn

)
, y1000

n

)
+ 𝓁3

(
W10000f𝜃(xn), y10000

n

)]
(4)

where ℓ1, ℓ 2, and ℓ 3 represent the losses for multi-label classi-
fication, using the CrossEntropyLoss function for calculating the
cross-entropy loss. The parameters of three fully connected clas-
sification layers in the structural classifier are denoted as W100,
W1000, and W10000, corresponding to layers with 100, 1000, and
10000 neurons, respectively. f𝜃 represents the mapping function
of the molecular encoder.

2.4.2. Mask-Based Contrastive Learning

Traditional contrastive learning learns the underlying structure
and relationships of data by comparing the similarity between
different samples, capturing the intrinsic characteristics of the
data.[38,42] However, this process is computationally intensive. Ad-
ditionally, to fully leverage the feature extraction capabilities of
pre-trained models, contrastive learning has high requirements
for selecting feature pairs, which results in the need for signif-
icant computational resources.[43] To address the issues men-
tioned above, we introduce a simple graph comparison learn-
ing method, namely masked graph contrastive learning. This ap-
proach is a straightforward and effective way to compare graphs,
enabling conservation of computational resources and extraction
of more detailed chemical structural information from molecu-
lar graphs. By using masks, the focus is placed on the shared
parts when comparing two graphs, thereby enhancing efficiency
and reducing computational burden. This method plays a crucial
role in fields such as molecular structure alignment and similar-
ity analysis, aiding in a deeper understanding of the relationships
between molecules. In addition, introducing the cost function
ℒMCL ensures the consistency of the potential features extracted
from the molecular graphs before and after masking. Its form is
shown below:

MCL = arg min
𝜃

1
N

N∑
n=1

||f𝜃
(
xn

)
, f𝜃

(
xn

′) ||2 (5)

where, xn and xn′ represent the original molecular graph and
the molecular graph after masking, respectively. ||f𝜃(xn),f𝜃(xn′)||2
marks the calculation of Euclidean distance between xn and xn′.

2.4.3. Training Details

Here, molecular graphs are obtained through data preprocessing
and forwarded to GNNs to extract latent features hn. Each atom
on the molecular graph is embedded based on its atomic num-
ber and chirality type, while each bond is embedded based on
its type and direction. We implement a 5-layer graph convolution
with ReLU activation as the backbone of GNNs to ensure compat-
ibility between aggregation and edge features. Average pooling is
applied on each graph as the readout operation to extract a 512-D
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molecular representation. An MLP with one hidden layer maps
the representation to a 256-D latent space. Subsequently, utiliz-
ing these latent features, the total cost function ℒall is calculated
through two auxiliary tasks:

all = MLCT + MCL (6)

Finally, we utilize ℒall for backpropagation to update GNNs.
Specifically, we use Adam optimization to minimize the cost
function.[44] The pre-training of MTSSMol took ≈40 h on two
Nvidia 4090 GPUs. For more detailed hyperparameter settings,
please refer to Table S2 (Supporting Information).

2.5. Fine-Tuning

To evaluate MTSSMol, we designed four downstream predic-
tion tasks related to molecular representation learning: molec-
ular property prediction, therapeutics data commons (TDC) pre-
diction, drug metabolism prediction, and anti-FGFR1 target in-
hibitors prediction. In the first task of molecular property predic-
tion, we use 11 benchmark datasets from MoleculeNet,[6] includ-
ing 6 classification datasets and 5 regression datasets (see Table
S3, Supporting Information). For the second prediction task, the
data comes from the TDC benchmark dataset, which provides
9 datasets measuring the absorption, distribution, and toxicity of
molecules.[45] In drug metabolism prediction, we utilize the Pub-
Chem dataset from Cheng et al.[46] which includes 5 human CYP
subtypes. In FGFR1 target prediction, we fine-tune the model
using experimental data from Li et al.[47] and then collect FDA-
approved drugs from DrugBank (referred to as the FDA dataset).

2.6. FGFR1-Ligand Complex: Structure Prediction to Binding
Energy

We predict FGFR1 and ligand complex structure by the latest and
highly accurate deep learning-based protein structure prediction
tool RFAA and AlphaFold2-multimer.[48–51] This structure is then
subjected to all-atom molecular dynamics (MD) simulations us-
ing GROMACS to assess its stability and dynamic behavior under
physiological conditions. Binding free energy is estimated using
the gmx_MMPBSA tool, with key residue contributions analyzed
through energy decomposition. Detailed descriptions of MD sim-
ulation setup, system parameters, and binding energy calculation
are provided in Note S1.8 (Supporting Information).

3. Results

3.1. Benchmark Evaluation of MTSSMol

To demonstrate the effectiveness of MTSSMol, we benchmark
its performance on multiple challenging classification and re-
gression tasks from MoleculeNet. These datasets include: blood-
brain barrier penetration (BBBP); 𝛽-secretase (BACE, a key tar-
get for Alzheimer’s disease); human immunodeficiency virus
(HIV); side effect resource (SIDER); molecular toxicity (Tox21)
and clinical trial toxicity (ClinTox) for toxicology studies; solubil-
ity: Free solvation (FreeSolv) and estimated solubility (ESOL) and
lipophilicity.

We first employ the multi-task pre-training strategy to build
predictive models using GCN,[38] GAT[39] and GIN architectures.
Evaluation results indicate that GIN consistently achieves supe-
rior performance across multiple classification and regression
tasks. Table S4 (Supporting Information) summarizes the perfor-
mance of these models on six classification tasks evaluated using
AUC scores. GIN exhibits higher predictive accuracy compared
to GCN and GAT across all datasets. Specifically, on BACE, GIN
achieves AUC = 0.915, outperforming GAT (AUC = 0.891) and
GCN (AUC = 0.885) by 2.7% and 3.4%, respectively. For BBBP,
GIN achieves AUC = 0.930, improving upon GAT (AUC = 0.885)
by 5.1% and GCN (AUC = 0.915) by 1.6%. On ClinTox, GIN
records AUC = 0.842, surpassing GAT (AUC = 0.816) by 3.2%
and GCN (AUC = 0.839) by 0.4%. For HIV, GIN achieves
AUC = 0.834, outperforming GAT (AUC = 0.771) by 8.2%
and GCN (AUC = 0.787) by 6.0%. On SIDER, GIN scores
AUC = 0.643, which is slightly better than GAT (AUC = 0.642)
by 0.2% and outperforms GCN (AUC = 0.622) by 3.4%. For
Tox21, GIN achieves AUC= 0.857, exceeding GAT (AUC= 0.801)
by 7.0% and GCN (AUC = 0.828) by 3.5%. GIN also consis-
tently outperforms GAT and GCN across all regression tasks
(Table S5, Supporting Information). For RMSE evaluations, GIN
achieves the lowest errors on FreeSolv (RMSE = 1.209), ESOL
(RMSE = 0.798), and Lipo (RMSE = 0.65), with improvements
of 37.2%, 21.4%, and 12.9% over GAT, and 38.4%, 11.9%, and
12.5% over GCN, respectively. Similarly, in MAE evaluations,
GIN demonstrates superior performance on QM7 (MAE = 67.4)
and QM8 (MAE = 0.0125), surpassing GAT by 15.1% and 2.3%,
and GCN by 12.8% and 17.8%, respectively. These results un-
derscore GIN’s ability to generate more accurate molecular rep-
resentations, leading to consistent improvements across diverse
regression tasks.

Consequently, GIN is selected as the baseline model for subse-
quent experiments and comparisons. In classification tasks, we
achieve higher AUC values across all tasks (Figure 2a). Next, we
compare the performance of MTSSMol with four state-of-the-art
(SOTA) self-supervised learning methods in the field: D-MPNN,
GROVER, MolCLR, and MSSL2drug. MSSL2drug is a multi-task
self-supervised model originally designed for predicting interac-
tions among drug molecules, proteins, and diseases.[39] To adapt
it for molecular property prediction tasks, we modify its input and
output settings. These modifications enable us to evaluate the
generalizability of MTSSMol by using the adapted MSSL2drug
model as a benchmark. On most classification datasets, MTSS-
Mol outperforms the comparison models (Figure 2b). In regres-
sion datasets, MTSSMol demonstrates superior performance
over all comparison models. Additionally, from Figure 2c, it can
be observed that MTSSMol has a higher average AUC than the
comparative algorithms across the six classification tasks. Specif-
ically, MTSSMol outperforms the second-rank method by 2.35%
on BACE (AUC = 0.915), 2.4% on BBBP (AUC = 0.930), 2.5%
on HIV (AUC = 0.834), and 2.3% on Tox21 (AUC = 0.857).
In regression tasks, MTSSMol also achieves lower RMSE val-
ues compared to the comparative algorithms. Specifically, MTSS-
Mol outperforms the second-rank method by 21.7% on FreSolve
(RMSE = 1.209), 2.3% on ESOL (RMSE = 0.798), and 7.2% on
QM7 (MAE = 67.4). AUC and confusion matrices are provided
in Tables S4, S5, and Figure S1 (Supporting Information). These
experimental results indicate that MTSSMol can capture more of
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Figure 2. a) AUROC curves of MTSSMol on 6 classification datasets (BBBP, Tox21, HIV, ClinTox, BACE, SIDER). b) AUROC and RMSE/MAE performance
are compared with four SOTA models and MTSSMol on six classification datasets and five regression datasets. c) The performance of MTSSMol and
the comparative algorithms on 6 classification datasets and 5 regression datasets. d) AUROC curves of MTSSMol on TDC classification datasets (Pgp,
Bioav, BBB, hERG, Ames, DILI). e) MTSSMol’s predictive performance on the TDC benchmark dataset, as well as the best baseline methods provided
by the TDC benchmark leaderboard. Left: AUROC results for binary classification tasks. Right: RMSE/MAE results for regression tasks (AqSol, LD50,
PPBR). f) AUROC performance of MTSSMol and comparative algorithms on CYP450 datasets (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4).
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the biological information that determines molecular properties
from molecular graphs.

Next, we compare the performance of MTSSMol against both
machine learning and deep learning methods using the TDC
dataset, which provides a benchmarking platform with nine
molecular property prediction tasks. These tasks cover key ar-
eas such as absorption, distribution, and toxicity, essential for
drug discovery and development. The results show that MTSS-
Mol outperforms the current baseline methods on eight out of
nine datasets. MTSSMol has higher AUC values on six clas-
sification datasets (Figure 2d). Specifically, MTSSMol outper-
forms the current baseline methods by 0.3%, 2.8%, 0.7%, 0.2%,
and 0.4% on Pgp (AUC = 0.941), BBB (AUC = 0.933), hERG
(AUC = 0.880), Ames (AUC = 0.873), and DILI (AUC = 0.933),
respectively. AUC and confusion matrices are provided in Table
S6, and Figure S2 (Supporting Information). MTSSMol out-
performs the current baseline methods by 2.3%, 6.2%, and
20.9% on Aqsol (MAE = 0.698), PPBR (MAE = 7.21), and LD50
(MAE = 0.431) regression datasets, respectively. Figure 2e dis-
plays the AUC ranking of MTSSMol in each dataset. These find-
ings underscore the robust and versatile molecular represen-
tation capabilities of MTSSMol, showcasing its ability to pre-
dict a wide range of molecular properties with reliability and
generalizability.

We also assess the performance of MTSSMol in the more de-
manding CYP50 task. In drug discovery, accurately classifying
cytochrome P450 inhibitors and non-inhibitors is vital for pre-
dicting significant drug interactions resulting from CYP inhi-
bition and identifying the affected subtypes. This poses a sub-
stantial challenge for predictive models. As shown in Figure 2f,
MTSSMol demonstrates superior performance compared to the
other 11 benchmark algorithms. Furthermore, as illustrated in
Figure S4 (Supporting Information), MTSSMol achieves higher
AUC values for CYP1A2 (AUC = 0.902), CYP2C9 (AUC = 0.866),
CYP2C19 (AUC = 0.885), CYP2D6 (AUC = 0.845), and CYP3A4
(AUC = 0.832), along with superior performance across other
performance metrics. Confusion matrices are provided in Figure
S3 (Supporting Information). In addition, we also calculate other
metrics for CYP50 datasets, and the results demonstrate that
MTSSMol exhibits superior performance (Table S7, Supporting
Information).

3.2. Investigation of MTSSMol Representation

Having demonstrated the superiority of MTSSMol in molecular
property prediction, we further investigate the underlying rea-
sons for its exceptional performance. To uncover this, we ana-
lyze the latent space generated by the pre-trained MTSSMol. For
this purpose, we utilize a dataset containing 11725 molecules tar-
geting CYP1A2 enzyme and their corresponding bioactivity mea-
surements (i.e., inhibition or non-inhibition). CYP1A2 enzyme is
crucial in drug metabolism.

First, we employ the pre-trained MTSSMol to generate molec-
ular feature representations for CYP1A2 dataset. We then ran-
domly select 200 molecules from this dataset to serve as a test
set, with the remaining molecules used for training. Next, we
use k-nearest neighbors (kNN) classification based on molecu-
lar feature representations to predict the activity of the test set

molecules. We compare the performance of MTSSMol with two
widely used classical fingerprint methods: ECFP and RDKFP.

Figure 3a,b presents a comparison of MTSSMol with base-
line methods, evaluating their performance in terms of accuracy
and the area under the precision-recall curve (AUPRC). Notably,
MTSSMol achieves a 3.5% to 4.8% improvement in AUC com-
pared to the baseline methods. These results suggest that the
molecular neural fingerprints generated by MTSSMol are more
effective in capturing the intricate relationship between molecu-
lar structure and biological activity. The latent space constructed
by MTSSMol successfully embeds molecules into a continuous
vector space, where molecules with similar biological properties
exhibit a tendency to cluster. This latent representation offers a
robust foundation for downstream tasks such as molecular prop-
erty prediction and drug design.

To further evaluate MTSSMol, we compare its learned repre-
sentations with those of ECFP and RDKFP. Specifically, given
a query molecule, we extract its representation using MTSS-
Mol and compute its cosine distance to all reference molecules
in a pre-trained database. The reference molecules are then
ranked according to their representation distance and evenly
divided into 10 bins based on the ranking percentile, where
lower percentiles correspond to higher similarity. Within each
bin, 1000 molecules are randomly selected, and their Tanimoto
FP similarity to the query is calculated. The similarity distribu-
tions using ECFP and RDKFP are shown in Figure 4a,b. ECFP
tends to yield lower similarity values compared to RDKFP, as
the former encompasses a broader range of features related to
molecular activity. However, both ECFP and RDKFP similari-
ties decrease as MTSSMol representation distance increases. Al-
though there are fluctuations with increasing percentile thresh-
olds, the overall trend between MTSSMol representations and
chemical fingerprints remains consistent. The distance be-
tween MTSSMol representations effectively reflects molecular
similarity.

Next, we fine-tune MTSSMol using the CYP1A2 dataset and
employ t-distributed stochastic neighbor embedding (t-SNE) to
visualize the molecular representations. The fine-tuned MTSS-
Mol effectively distinguishes CYP1A2 inhibitors from non-
inhibitors, indicating that our model successfully captures the
key differences between different types of molecules during the
learning process (Figure 3e). To further validate the effectiveness
of MTSSMol, we calculate the distance between each pair in the
latent space. We then perform correlation analysis on several
key properties of these molecule pairs, including molecular LogP
(MolLogP), molecular weight (MolWt), topological polar surface
area (TPSA), number of rotatable bonds (NumRotatableBonds),
quantitative estimate of drug-likeness (QED), and synthetic ac-
cessibility (SA). The results show a high correlation between the
molecular representations learned by MTSSMol and these prop-
erties, demonstrating that our model effectively captures the rela-
tionship between molecular structure and properties. The results
in Figure 3f and Figure S5 (Supporting Information) show that
MTSSMol performs exceptionally well in predicting molecular
properties. By visualizing the latent space, we find that MTSS-
Mol accurately identifies activity cliffs, providing interpretability
for the model’s predictions (see Figure 3g; Figure S6, Support-
ing Information). This means we can understand the model’s
decision-making process by analyzing the molecular represen-
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Figure 3. a, b) AUPRC and accuracy of k-nearest neighbor classification for predicting drug metabolism given different values of k on the CYP1A2
dataset. c, d) Change of ECFP and RDKFP similarities with respect to the distance between MTSSMol representations. e) t-SNE visualization of molecular
representations from CYP1A2 dataset produced by MTSSMol. f) The Spearman’s r between five descriptors (i.e., MolLogP, MolWt, TPSA, NumRotat-
ableBonds, QED, and SA) of CYP1A2 dataset and their corresponding closest molecules identified using fingerprints from MTSSMol. g) Activity cliffs
identified by SubgraphX.[57] Dashed circles highlight the distinguished substructures within the activity cliffs.
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Figure 4. a) The performance of MTSSMol and baseline methods in predicting FGFR1 inhibitors is measured by Pearson’s r and Spearman’s r, respec-
tively. b) Visualization of molecular representations of molecules from the pIC50 dataset of FGFR1 inhibitors and FDA dataset derived from KPGT. c)
Details of 5 molecules in family 1. d) Visualization of 5 molecular structures in family 1. e) RMSF analysis of FGFR1 residues in the presence of different
inhibitors. The y-axis represents RMSF values in Ångstroms (Å), and the x-axis represents the residue number. f) Binding free energy calculations for
each inhibitor. The bar graph shows the average binding energy in Kcal/mol, with error bars representing the standard deviation. Error bars represent
standard deviations. g) Visualization of interactions of Cabozantinib and Ripretinib with FGFR1. The protein-ligand structure (PDB ID: 5A4C) is utilized
as a reference for binding pocket identification.
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tations in the latent space, thereby better explaining the model’s
predictive outcomes.

3.3. Uncovering Effective Inhibitors for FRFR1 Targets with
MTSSMol

FGFR1 is closely associated with various types of cancers and
has been extensively studied for anti-tumor therapy. The avail-
ability of high-quality experimental data on FGFR1 has greatly fa-
cilitated the development and validation of artificial intelligence-
based computational models, providing ample data support for
assessing the utility and predictive performance of MTSSMol. In
this subsection, we conduct evaluation tests, drug repositioning,
and docking analyses targeting FGFR1 to validate the effective-
ness of MTSSMol in real-world drug discovery scenarios.

We initially collected 12461 existing FGFR1 molecules from
patents and previous experiments. Subsequently, we employ
MTSSMol for drug repositioning to identify potential FGFR1
inhibitors. Specifically, we obtained 2718 FDA-approved drugs
from DrugBank (designated as FDA dataset). We then fine-tune
MTSSMol using a dataset of pIC50 values for FGFR1 inhibitors
and predict molecules from the FDA dataset. We have compre-
hensively evaluated MTSSMol’s predictive performance on this
dataset. Figure 4a presents a detailed comparison of MTSSMol
with 11 self-supervised learning baselines. The results show that
MTSSMol significantly outperforms all 11 self-supervised learn-
ing baselines in terms of both Spearman’s rank correlation coef-
ficient (Spearman’s r) and Pearson correlation coefficient (Pear-
son’s r). Next, we visualize the molecular representations from
the FGFR1 inhibitors pIC50 dataset and FDA dataset (Figure 4b)
to assess structural similarities and clustering patterns. The vi-
sualization highlights distinct clusters of FGFR1 inhibitors, sug-
gesting meaningful groupings based on molecular features cap-
tured by MTSSMol. Furthermore, we perform a structural analy-
sis of the top 25 predicted inhibitors identified during drug re-
purposing. Among them, 15 molecules have been experimen-
tally validated as high-affinity or effective FGFR1 inhibitors (Table
S8, Supporting Information). To further evaluate biological rele-
vance, we examine the functional groups and pharmacophores of
these predicted inhibitors and compare them with known FGFR1
inhibitors. Results indicate that the predicted molecules share
key structural motifs, such as aromatic scaffolds, hydrogen bond
donors/acceptors, and lipophilic regions, which are critical for
FGFR1 binding. These findings reinforce MTSSMol’s ability to
prioritize biologically relevant compounds. Additionally, we clus-
ter these 25 molecules into structural families and identify two
main clusters with Tanimoto similarities greater than 0.65 in the
FDA database (Table S9, Supporting Information). These clus-
ters exhibit a strong structural resemblance to existing FGFR1
inhibitors, further validating the biological relevance of MTSS-
Mol’s predictions.

Docking experiments utilize protein-ligand structures (PDB
ID: 5A4C) as references for binding pocket recognition.
Figure 4c,d show detailed information and visualizations of five
molecules of family 1, including previously demonstrated FGFR1
inhibitors and potential inhibitors that have not been experi-
mentally demonstrated.[52–54] Figure 4e shows Root Mean square
fluctuation (RMSF) plots, which indicate the flexibility of each

residue in the protein when bound to different inhibitors. Higher
RMSF values indicate greater flexibility. This plot helps iden-
tify regions of the protein that are more dynamic or stabilized
by each inhibitor. Notably, residues around positions 50, 150,
and 250 show increased fluctuation, suggesting these regions
might be critical for inhibitor binding and protein function.
The root-mean-square deviation (RMSD) plots over time for the
protein-ligand complexes show the overall stability of these com-
plexes during the simulation (Figure S7, Supporting Informa-
tion). The lower the RMSD value, the better the stability. This
plot shows that Cabozantinib and Regorafenib complexes are
more stable compared to Tivozanib and Ripretinib, which ex-
hibit higher RMSD values, indicating more significant confor-
mational changes over time. Figure S8 (Supporting Informa-
tion) presents the RMSD plots for the ligands within the bind-
ing pocket over the simulation period. Similar to Figure S7 (Sup-
porting Information), this plot assesses the stability of ligands.
The data shows that while most ligands remain relatively stable,
Tivozanib exhibits higher fluctuations, indicating potential insta-
bility or conformational flexibility within the binding site. The
bar graph (Figure 4f) displays the binding energies (in Kcal/mol)
for each inhibitor. Ripretinib shows the highest binding energy
(−35.24 Kcal mol−1), indicating the strongest binding affinity to
the target protein. In contrast, Lenvatinib has the lowest bind-
ing energy (−0.81 Kcal mol−1), suggesting a weaker interaction.
These results provide insight into the relative binding strengths
of inhibitors, which can inform drug efficacy and design strate-
gies. Figure 4g shows that the Cabozantinib and Ripretinib lig-
ands bind closely to the protein FGR1.

The designed inhibitors from family 1 play a crucial role in
modulating the activity of target proteins, often used in therapeu-
tic settings to treat various diseases, including cancer, by block-
ing specific protein functions. The analysis of these interactions
sheds light on the stability, flexibility, and binding affinity of these
inhibitors, providing valuable insights into their potential efficacy
and mechanisms of action. Together, these analyses help eluci-
date the mechanistic basis of inhibitor binding and can guide the
development of more effective FGFR1 inhibitors.

Next, as a second prototypical family, Figure 5a,b shows the
specific information of six molecules in family 2 and their corre-
sponding structure diagrams, two of which have been identified
as FGFR1 inhibitors in previous studies.[55,56] Figure 5c shows an
RMSF plot that measures the flexibility of each residue in the pro-
tein over the simulation time for different inhibitors. The plot in-
dicates regions of the protein that are more flexible or more rigid
in the presence of each inhibitor. The flexibility varies across dif-
ferent regions of the protein, with certain inhibitors (e.g., Abroci-
tinib represented in blue) causing higher fluctuations in specific
regions. Figure S9 (Supporting Information) shows the RMSD
of the protein’s backbone atoms over time, indicating the overall
stability of the protein structure in the presence of each inhibitor.
Inhibitors like Debrafeinib and Pazopanib maintain lower RMSD
values, suggesting they stabilize the protein structure more effec-
tively compared to others. Figure S10 (Supporting Information)
shows the RMSD of ligands (inhibitors) themselves, indicating
how stable the inhibitors are within the binding site over time.
Lower RMSD values for the ligands suggest tighter binding and
less movement within the binding pocket. Inhibitors such as De-
brafeinib and Pazopanib exhibit lower ligand RMSD values, indi-
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Figure 5. a) Details of 5 molecules in family 2. b) Visualization of 5 molecular structures in family 2. c) RMSF of FGFR1 residues in the presence of
different ligands. d) Binding free energy (in Kcal/mol) of the protein-ligand complexes calculated over the simulation period. The error bars represent the
standard deviation of the binding energy value. e) Visualization of interactions of Baricitinib and Debrafenib with FGFR1. The protein-ligand structure
(PDB ID: 5A4C) is utilized as a reference for binding pocket identification.

cating more stable binding interactions compared to others like
Metolazone, which shows higher fluctuations. Figure 5d repre-
sents the binding energies (in Kcal/mol) of the inhibitors to the
protein, with error bars showing the variability. More negative
values indicate stronger binding affinities. Debrafeinib and Pa-
zopanib show the most negative binding energies, suggesting
they have the highest binding affinities. On the other hand, Meto-
lazone has a positive binding energy, indicating weaker or less
favorable binding.

The combination of structural visualization (Figure 5e), flexi-
bility analysis (Figure 5c), overall stability (Figure S9, Supporting
Information), ligand stability (Figure S10, Supporting Informa-
tion), and binding affinity (Figure 5d) provides a comprehensive
understanding of how different inhibitors interact with FGFR1.
Inhibitors like Debrafeinib and Pazopanib are highlighted as po-
tentially more effective due to their strong binding affinities, sta-
bility, and ability to maintain protein structure. Metolazone, how-
ever, appears less effective based on these criteria.
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These findings collectively demonstrate the universality and
effectiveness of MTSSMol in accelerating the identification of po-
tential drug candidates, solidifying its value as a practical tool
for drug discovery. By integrating various experimental results,
MTSSMol has demonstrated its exceptional ability to swiftly
screen and identify candidate drugs, further proving its impor-
tance and reliability in pharmaceutical research. This discovery
not only offers new avenues for drug development but also sig-
nificantly enhances the efficiency of the drug discovery process.

3.4. Identifying HPK1 Inhibitors Using MTSSMol

To demonstrate the generalization of MTSSMol, we extend its
application to the prediction of inhibitors targeting HPK1, a ki-
nase that plays a critical role in immune regulation and is a
promising target for drug discovery. We utilize a dataset of 4442
molecules with experimentally determined anti-HPK1 activity,
sourced from previous studies.[47] To evaluate MTSSMol’s perfor-
mance comprehensively, we compare it with 11 baseline models
based on self-supervised learning, which include widely recog-
nized frameworks for molecular property prediction.

As shown in Figure S11 (Supporting Information), MTSSMol
consistently outperforms 11 baseline methods in terms of Spear-
man’s r and Pearson’s r, demonstrating its superior ability to cap-
ture the relationship between molecular features and inhibitory
activity. These results highlight MTSSMol’s robustness and relia-
bility in predicting inhibitors with high precision. Moreover, this
analysis confirms that MTSSMol’s framework, trained on a di-
verse dataset of drug-like molecules, is capable of generalizing to
new and specific protein targets. By demonstrating strong perfor-
mance across different predictions of target inhibitors, MTSSMol
offers a versatile and powerful tool for accelerating the discovery
of novel inhibitors in various therapeutic areas.

3.5. Ablation Analysis of MTSSMol

To validate the effectiveness of MTSSMol’s design choices, we
conduct a comprehensive ablation study by introducing several
modified frameworks with specific limitations: MTSSMol-NP
(no pre-training), MTSSMol-MLCT (only multi-label classifica-
tion tasks), and MTSSMol-MCL (only contrastive learning tasks).
Table S10 (Supporting Information) presents the performance re-
sults on our benchmark dataset. These results show that MTSS-
Mol achieves AUC scores that are 2.7% and 3.2% higher than
those of MTSSMol-MLCT and MTSSMol-MCL, respectively. This
indicates that combining two pre-training strategies in MTSSMol
significantly enhances information capture compared to using
a single strategy. Additionally, MTSSMol demonstrates a 4.8%
overall improvement compared to MTSSMol-NP. In summary,
by combining multi-label classification and mask-based con-
trastive learning, MTSSMol effectively captures multi-level struc-
tural similarities through clustering and pseudo-labeling while
simultaneously enhancing robustness and structural awareness
through masked graph contrastive learning. This dual approach
allows the model to better utilize unlabeled molecular data and
learn comprehensive molecular representations, leading to su-
perior performance across diverse molecular property prediction
tasks.

4. Discussion and Conclusion

In this study, we propose MTSSMol, a self-supervised learning
framework designed to provide a highly adaptive and robust
molecular property prediction system through enhanced molec-
ular representations and multi-task pre-training strategies. Our
framework is rigorously validated across benchmark biomed-
ical datasets encompassing a diverse range of drug discovery
tasks, demonstrating superior performance. Notably, MTSSMol
exhibits significant practical applications, particularly in iden-
tifying potential inhibitors of FGFR1, an important target in
cancer therapy. The versatility and effectiveness of MTSSMol
are further corroborated by molecular dynamics simulations,
which provide an additional layer of validation. Our study high-
lights MTSSMol’s potential to accelerate drug discovery pro-
cesses, enhance predictive modeling, and offer insights into
molecular interactions, thereby contributing to the develop-
ment of novel therapeutics. Additionally, although its effective-
ness in predicting FGFR1 inhibitors has been validated through
molecular dynamics simulations, further experimental valida-
tion is needed to confirm its applicability in actual drug devel-
opment.

Compared to SOTA methods, MTSSMol shows several im-
provements. First, MTSSMol excels in various drug discovery
tasks such as assessing drug properties (e.g., blood-brain bar-
rier permeability, drug metabolism, and toxicity) and predict-
ing molecular targets (e.g., FGFR1). Second, MTSSMol outper-
forms existing methods based on sequence, fingerprint, and
graph-based representations. Lastly, MTSSMol offers enhanced
interpretability, enabling more intuitive recognition of biological-
relevant chemical structures or substructures involved in molec-
ular property recognition and target binding.

Despite MTSSMol’s advantages in effectively predicting
molecular properties, there are still some limitations. First,
the current pre-training framework heavily relies on a large
amount of unlabeled data, which may pose challenges in data
acquisition and processing, especially for specific or rare com-
pounds. Second, while MTSSMol excels in multiple drug dis-
covery tasks, its performance may be influenced by dataset
characteristics and model structure choices, necessitating fur-
ther optimization and validation. Third, the current model’s
interpretability and transferability need improvement to en-
sure its universality and accuracy across different compounds
and biological contexts. While the computational results un-
derscore the potential utility of MTSSMol in early-stage drug
discovery, it is important to recognize that, although molec-
ular docking and simulation methods are highly sophisti-
cated, they cannot fully replace experimental validation, such
as in vitro or in vivo assays, which remain essential to con-
firm the practical efficacy and biological relevance of the pre-
dicted compounds. Future research directions could explore in-
tegrating additional types of information and knowledge, such
as richer molecular descriptors or 3-D molecular conforma-
tional information, to enhance MTSSMol’s representation learn-
ing capabilities and application scope. In conclusion, MTSS-
Mol represents a promising self-supervised learning framework
but requires further development and optimization to achieve
widespread application and long-term sustainability in drug
discovery.

Adv. Sci. 2025, 12, 2412987 2412987 (12 of 14) © None The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 2025, 13, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202412987 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This work was supported by the Biomedical Big Data Intelligent Comput-
ing Center of Oujiang Lab. The authors thank Prof. Xiaoqi Wang and Prof.
Shaoliang Peng for valuable suggestions on the revision of the bench-
mark model. This work was supported by the Ministry of Science and
Technology of the People’s Republic of China (STI2030-Major Projects
2021ZD0201900), National Natural Science Foundation of China (Grant
Nos. 12090052 and U24A2014), Natural Science Foundation of Liaon-
ing Province (Grant No. 2023-MS-288), Fundamental Research Funds for
the Liaoning Universities (Grant No. LJ212410146026), Research Fund of
Wenzhou Institute, UCAS (Grant No. WIUCASQD2021043).

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
X.Y. and Y.W. contributed equally to the paper as first authors. X.Y. per-
formed data curation, investigation, methodology, and software, and
wrote the original draft. Y.W. performed data curation, formal analy-
sis, investigation, validation, and visualization, and wrote reviewed, and
edited the original draft. Y.L. performed investigation and visualization.
M.Z. performed investigation and visualization. O.L. performed investiga-
tion and visualization. J.S. performed conceptualization, funding acquisi-
tion, methodology, project administration, and supervision, and wrote re-
viewed, and edited the original draft. Q.Z. performed conceptualization,
funding acquisition, methodology, project administration, and supervi-
sion, wrote reviewed, and edited the original draft.

Data Availability Statement
The source codes of MTSSMol are available online at https:
//github.com/zhaoqi106/MTSSMol. The datasets from the TDC bench-
mark platform are available at https://tdcommons.ai/. The FDA dataset
is available at https://go.drugbank.com/releases/5-1-10/downloads/
approvedstructure-links. The reference protein-ligand complex structures
for FGFR1 used in this study are available in Protein Data Bank under
accession codes 5A4C https://www.rcsb.org/structure/5A4C.

Keywords
FGFR1, graph neural networks, molecular properties, multi-task strategy,
pretraining framework

Received: October 15, 2024
Revised: January 19, 2025

Published online: February 8, 2025

[1] X. Wang, Y. Wen, Y. Zhang, C. Dai, Y. Yang, X. Bo, S. He, S. Peng,
Inform. Fusion 2024, 110, 102485.

[2] X. Wang, B. Xin, W. Tan, Z. Xu, K. Li, F. Li, W. Zhong, S. Peng, Briefings
Bioinformat. 2021, 22, bbab226.

[3] M. De Rycker, B. Baragaña, S. L. Duce, I. H. Gilbert, Nature 2018, 559,
498.

[4] G. Schneider, Nat. Rev. Drug Discovery 2018, 17, 97.
[5] L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano,

L. Cavallo, Nat. Chem. 2019, 11, 872.
[6] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S.

Pappu, K. Leswing, V. Pande, Chem. Sci. 2018, 9, 513.
[7] Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li, X. Luo, K.

Chen, H. Jiang, J. Med. Chem. 2019, 63, 8749.
[8] S. Zheng, Y. Li, S. Chen, J. Xu, Y. Yang, Nat. Mach. Intell. 2020, 2,

134.
[9] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T.

Seidel, T. Langer, Drug Disc. Today Technol. 2020, 37, 1.
[10] W. P. Walters, R. Barzilay, Acc. Chem. Res. 2020, 54, 263.
[11] G. Hessler, K. H. Baringhaus, Molecules 2018, 23, 2520.
[12] H. Hu, Z. Feng, H. Lin, J. Cheng, J. Lyu, Y. Zhang, J. Zhao, F. Xu, T.

Lin, Q. Zhao, Comput. Biol. Med. 2023, 157, 106733.
[13] H. Hu, Z. Feng, H. Lin, J. Zhao, Y. Zhang, F. Xu, L. Chen, F. Chen, Y.

Ma, J. Su, Briefings Bioinformat. 2023, 24, bbad005.
[14] H. Lin, H. Hu, Z. Feng, F. Xu, J. Lyu, X. Li, L. Liu, G. Yang, J. Shuai,

Nucleic Acids Res. 2024, gkae340.
[15] R. Meng, S. Yin, J. Sun, H. Hu, Z. Q. scAAGA, Comput. Biol. Med.

2023, 165, 107414.
[16] Z. Chen, L. Zhang, J. Sun, R. Meng, S. Yin, Q. Zhao, J. Cell. Mol. Med.

2023, 27, 3117.
[17] X. Yang, J. Sun, B. Jin, Y. Lu, J. Cheng, J. Jiang, Q. Zhao, J. Shuai, J.

Adv. Res. 2025, 68, 477.
[18] T. Wang, J. Sun, Q. Zhao, Comput. Biol. Med. 2023, 153, 106464.
[19] W. Wang, L. Zhang, J. Sun, Q. Zhao, J. Shuai, Briefings Bioinformat.

2022, 23, bbac463.
[20] H. Liu, G. Ren, H. Chen, Q. Liu, Y. Yang, Q. Zhao, Knowledge-Based

Syst. 2020, 191, 105261.
[21] F. Sun, J. Sun, Q. Zhao, Briefings Bioinformat. 2022, 23, bbac266.
[22] H. Gao, J. Sun, Y. Wang, Y. Lu, L. Liu, Q. Zhao, J. Shuai, Briefings Bioin-

format. 2023, 24, bbad259.
[23] F. Zhu, Z. Shuai, Y. Lu, H. Su, R. Yu, X. Li, Q. Zhao, S. J. oBABC, Swarm

Evolutionary Computat. 2024, 87, 101567.
[24] F. Zhu, J. Ding, X. Li, Y. Lu, X. Liu, F. Jiang, Q. Zhao, H. Su, J. Shuai,

Health Informat. Sci. Systems 2024, 12, 8.
[25] F. Zhu, Q. Niu, X. Li, Q. Zhao, H. Su, J. Shuai, Research 2024, 7, 0361.
[26] P. Li, J. Wang, Y. Qiao, H. Chen, Y. Yu, X. Yao, P. Gao, G. Xie, S. Song,

Briefings Bioinformat. 2021, 22, bbab109.
[27] R. Winter, F. Montanari, F. Noé, D. A. Clevert, Chem. Sci. 2019, 10,

1692.
[28] O. A. von Lilienfeld, K. Burke, Nat. Commun. 2020, 11, 4895.
[29] H. Van De Waterbeemd, E. Gifford, Nat. Rev. Drug Discovery 2003, 2,

192.
[30] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature

2018, 559, 547.
[31] B. Zagidullin, Z. Wang, Y. Guan, E. Pitkänen, J. Tang, Briefings Bioin-

format. 2021, 22, bbab291.
[32] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, S. R. Albert,

arXiv 2019.
[33] J. Devlin, M. W. Chang, K. Lee, T. K. Bert, In Proceedings of naacL-HLT,

Minneapolis, Minnesota, Association for Computational Linguistics,
2019.

[34] R. Sun, H. Dai, A. W. Yu, Adv. Neural Informat. Process. Syst. 2022, 35,
12096.

[35] H. Stärk, D. Beaini, G. Corso, P. Tossou, C. Dallago, S. Günnemann,
P. Liò, Int. Conf. on Machine Learning, Baltimore, Maryland, USA,
PMLR, 2022, 20479–20502.

[36] S. Liu, H. Wang, W. Liu, J. Lasenby, H. Guo, J. Tang, arXiv 2021.

Adv. Sci. 2025, 12, 2412987 2412987 (13 of 14) © None The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 2025, 13, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202412987 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://github.com/zhaoqi106/MTSSMol
https://github.com/zhaoqi106/MTSSMol
https://tdcommons.ai/
https://go.drugbank.com/releases/5-1-10/downloads/approvedstructure-links
https://go.drugbank.com/releases/5-1-10/downloads/approvedstructure-links
https://www.rcsb.org/structure/5A4C


www.advancedsciencenews.com www.advancedscience.com

[37] Y. Rong, Y. Bian, T. Xu, W. Xie, Y. Wei, W. Huang, J. Huang, Adv. Neural
Inform. Process. Syst. 2020, 33, 12559.

[38] Y. Wang, J. Wang, Z. Cao, A. Barati Farimani, Nat. Machine Intel. 2022,
4, 279.

[39] X. Wang, Y. Cheng, Y. Yang, Y. Yu, F. Li, S. Peng, Nature Machine Intel-
ligence 2023, 5, 445.

[40] Z. Chen, Y. Jiang, X. Zhang, R. Zheng, R. Qiu, Y. Sun, C. Zhao, H.
Shang, Briefings Bioinformat. 2022, 23, bbac196.

[41] Z. Chen, M. Zhao, L. You, R. Zheng, Y. Jiang, X. Zhang, R. Qiu, Y. Sun,
H. Pan, T. He, Chin. Med. 2022, 17, 58.

[42] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, Y. Shen, Adv. Neural Inform.
Process. Syst. 2020, 33, 5812.

[43] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin, Adv.
Neural Informat. Process. Syst. 2020, 33, 9912.

[44] D. Kinga, J. B. Adam, Int. Conf. on Learning Representations (ICLR),
2015, 5, 6.

[45] K. Huang, T. Fu, W. Gao, Y. Zhao, Y. Roohani, J. Leskovec, C. W. Coley,
C. Xiao, J. Sun, M. Zitnik, arXiv 2021.

[46] F. Cheng, Y. Yu, J. Shen, L. Yang, W. Li, G. Liu, P. W. Lee, Y. Tang, J.
Chem. Informat. 2011, 51, 996.

[47] H. Li, R. Zhang, Y. Min, D. Ma, D. Zhao, J. Zeng, Nat. Commun. 2023,
14, 7568.

[48] R. Krishna, J. Wang, W. Ahern, P. Sturmfels, P. Venkatesh, I. Kalvet, G.
R. Lee, F. S. Morey-Burrows, Science 2024, 384, eadl2528.

[49] J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E.
Eisenach, W. Ahern, A. J. Borst, R. J. Ragotte, L. F. Milles, Nature 2023,
620, 1089.

[50] R. Evans, M. O’Neill, A. Pritzel, N. Antropova, A. Senior, T. Green, A.
Žídek, R. Bates, S. Blackwell, J. Yim, bioRxiv 2022.

[51] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, Nature 2021,
596, 583.

[52] Y. Cha, H. P. Kim, Y. Lim, S. W. Han, S. H. Song, T. Y. Kim, Mol. Oncol.
2018, 12, 993.

[53] J. Matsui, Y. Yamamoto, Y. Funahashi, A. Tsuruoka, T. Watanabe, T.
Wakabayashi, T. Uenaka, M. Asada, Int. J. Cancer 2008, 122, 664.

[54] J. Li, B. An, X. Song, Q. Zhang, C. Chen, S. Wei, R. Fan, X. Li, Y. Zou,
Eur. J. Med. Chem. 2021, 212, 113019.

[55] R. van der Noll, S. Leijen, G. H. Neuteboom, J. H. Beijnen, J. H.
Schellens, Cancer Treat. Rev. 2013, 39, 664.

[56] P. A. Harris, A. Boloor, M. Cheung, R. Kumar, R. M. Crosby, R.
G. Davis-Ward, A. H. Epperly, K. W. Hinkle, R. N. Hunter III, J. H.
Johnson, V. B. Knick, C. P. Laudeman, D. K. Luttrell, R. A. Mook, R.
T. Nolte, S. K. Rudolph, J. R. Szewczyk, A. T. Truesdale, J. M. Veal, L.
Wang, J. A. Stafford, J. Med. Chem. 2008, 51, 4632.

[57] H. Yuan, H. Yu, J. Wang, K. Li, S. Ji, Int. conf. on machine learning,
Proceedings of the 38 th International Conference on Machine Learn-
ing, PMLR, 2021, 12241–12252.

Adv. Sci. 2025, 12, 2412987 2412987 (14 of 14) © None The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 2025, 13, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202412987 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com

	A Multi-Task Self-Supervised Strategy for Predicting Molecular Properties and FGFR1 Inhibitors
	1. Introduction
	2. Materials and Methods
	2.1. Model Framework
	2.2. Molecule Graph Augmentation
	2.2.1. Assign Labels to Molecular Diagrams
	2.2.2. Graph Mask

	2.3. Graph Neural Networks
	2.4. Strategies for Pretraining MTSSMol
	2.4.1. Multi-Label Classification Task
	2.4.2. Mask-Based Contrastive Learning
	2.4.3. Training Details

	2.5. Fine-Tuning
	2.6. FGFR1-Ligand Complex: Structure Prediction to Binding Energy

	3. Results
	3.1. Benchmark Evaluation of MTSSMol
	3.2. Investigation of MTSSMol Representation
	3.3. Uncovering Effective Inhibitors for FRFR1 Targets with MTSSMol
	3.4. Identifying HPK1 Inhibitors Using MTSSMol
	3.5. Ablation Analysis of MTSSMol

	4. Discussion and Conclusion
	Supporting Information
	Acknowledgements
	Conflict of Interest
	Author Contributions
	Data Availability Statement

	Keywords


