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 Introduction

Two-photon microscopy [1–3] is a powerful imaging tech-
nique that combines the depth-penetrating prowess of laser 
scanning confocal microscopy [4] with the precision of two-
photon excitation. It has emerged as a potent tool for eluci-
dating cellular structures and functions in exquisite detail, 
enabling deep tissue visualization and providing superior 
imaging resolution compared to conventional single-photon 
methods [5]. This imaging technique is particularly valuable 
for studying cellular activities and tracking changes within 
individual cells, thereby advancing the comprehension of 
cellular physiology. Additionally, two-photon microscopy 
offers a reduced risk of phototoxicity and cellular damage, 
making it suitable for prolonged observation of living cells, 
including neurons [6]. When combined with calcium-depen-
dent fluorescent indicators, it allows for capturing neuronal 
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Abstract
Two-photon microscopy is indispensable in cell and molecular biology for its high-resolution visualization of cellular and 
molecular dynamics. However, the inevitable low signal-to-noise conditions significantly degrade image quality, obscuring 
essential details and complicating morphological analysis. While existing denoising methods such as CNNs, Noise2Noise, 
and DeepCAD serve broad applications in imaging, they still have limitations in preserving texture structures and fine 
details in two-photon microscopic images affected by complex noise, particularly in sophisticated structures like neuro-
nal synapses. To improve two-photon microscopy image denoising effectiveness, by experimenting on real two-photon 
microscopy images, we propose a novel deep learning framework, the UNet-Att model, which integrates a specifically 
tailored UNet++ architecture with attention mechanisms. Specifically, this approach consists of a sophisticated downs-
ampling module for extracting hierarchical features at varied scales, and an innovative attention module that strategically 
emphasizes salient features during the integration process. The architecture is completed by an ingenious upsampling 
pathway that reconstructs the image with high fidelity, ensuring the retention of textural integrity. Additionally, the model 
supports end-to-end training, optimizing its denoising efficacy. The UNet-Att model proves to surpass mainstream algo-
rithms in the dual objectives of denoising and preserving the textural intricacies of original images, which is evidenced 
by an increase of 9.42 dB in the high Peak Signal-to-Noise Ratio (PSNR) coupled with an improvement of 0.1131 in the 
Structural Similarity Index Measurement (SSIM). The ablation experiments reveal the effectiveness of each module. The 
associated Python packages and datasets of UNet-Att are freely available at https:​​​//gith​ub.​com/Z​jjD​h​/UNet-Att.
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dynamics and producing video recordings of neuronal activ-
ity. In live imaging, there is often a trade-off between light 
exposure and image quality to avoid photobleaching and 
phototoxicity. Tracking very rapid processes usually neces-
sitates short exposure times and low-dose fluorescence 
dyes, resulting in low signal-to-noise (SNR) images. There-
fore, addressing the challenges of noise reduction and signal 
recovery in low SNR images is crucial for improving image 
quality in two-photon microscopy live image processing.

Various methods have been developed for noise reduction 
and signal recovery in fluorescence microscopic images. 
Traditional approaches include filtering-based methods 
such as WNNM [7], TNRD [8], EPLL [9], NLM [10], and 
BM3D [11], as well as mathematical optimization methods 
[12] such as the KSVD [13] method. Traditional denoising 
methods have very limited applicability due to their unsat-
isfactory performance under complex noise conditions [11, 
14]. In recent years, deep learning-based algorithms [15–19] 
have gained prominence due to the increased computational 
power of graphics processing units and their remarkable 
denoising performance [20–24]. Deep learning-based 
approaches do not require explicit analytical modeling of 
prior knowledge or noise models. Instead, they rely on spe-
cific patterns learned from training datasets obtained from 
experiments or simulations to achieve end-to-end image 
transformation [25]. The learned patterns depend heavily on 
the image features present in the training dataset, enabling 
the neural network model to deliver optimal noise reduction 
results for data similar to the training dataset.

Deep learning methods first applied to image denoising 
in the 1980s used neural networks with known translation-
ally invariant blur functions and additive noise to produce 
denoised images [26]. Jain et al. (2008) [27] proposed a 
four-layer neural network that achieved denoising effects 
comparable to traditional methods. Xie et al. (2012) [28] 
introduced Stacked Sparse Denoising Autoencoders (SSDA) 
for unsupervised image denoising, combining sparse cod-
ing with deep neural networks. Burger et al. (2012) [29] 
proposed a Multilayer Perceptron (MLP) model for image 
denoising, effectively removing various types of noise.

The advent of Convolutional Neural Networks (CNNs) 
marked a new era for deep learning-based image denois-
ing [30]. CNNs achieved speeds and accuracies in image 
processing tasks that rivaled human visual recognition, sig-
nificantly surpassing the limitations of previous traditional 
algorithms. CNNs, through their properties of translational 
invariance, local connections, and weight sharing, demon-
strated considerable advantages in 2D image processing. 
Increasing the width and depth of networks allowed for the 
extraction of higher-dimensional and deeper feature maps, 
enhancing denoising performance. However, increasing the 
number of neural network layers introduced training issues 

such as gradient explosion and vanishing gradients. Mao 
et al. [31] proposed a fully convolutional encoder-decoder 
network for image denoising and restoration. This network, 
composed of symmetric multi-layer convolutional and 
deconvolutional operators, learns the end-to-end mapping 
from noisy images to original images. Since then, the depth 
of neural networks for image denoising has continued to 
grow.

In the field of fluorescence microscopy image denoising, 
CNNs have also outperformed traditional methods and have 
gained great development, giving rise to numerous out-
standing models. A substantial portion of these models is 
based on the U-Net architecture [32], which integrates deep 
and shallow features through concatenation, effectively han-
dling complex and data-sparse biomedical images. U-Net 
consists of an encoder, a decoder, and skip connections 
between them. In the encoding phase, U-Net reduces the res-
olution through downsampling to capture multi-scale image 
information. In this process, image information gradually 
transforms from point and line information in the low-level 
information to contour and more abstract semantic informa-
tion in the high-level information. The entire network com-
pletes the process of feature extraction and combination 
from fine to coarse, enabling U-Net to obtain more com-
prehensive information. In the decoding layer operation, the 
original image resolution needs to be restored. During the 
process of converting the image from low resolution to high 
resolution, the image will be distorted, and the upsampling 
process will also lose sensitivity to detail information. The 
addition of skip connections transmits the detail information 
of the shallow feature map to the deep feature map, enabling 
the network to better recognize small targets and edge infor-
mation. In addition, during the decoding layer stage, feature 
extraction is performed at different scales, and the features 
extracted later will cover the features extracted earlier to a 
certain extent, causing loss of detail information and feature 
information dilution. Feature fusion through skip connec-
tions can replenish the diluted information, allowing the 
network to retain more contextual information. U-Net has 
become a widely used neural network in biomedical imag-
ing, achieving excellent results in many image processing 
tasks including image segmentation and denoising [32, 33].

Traditional deep learning-based denoising approaches 
were developed as supervised methods [34] which involve 
a set of corresponding noisy input images and clean tar-
get images. The great challenge of obtaining paired noisy 
and noise-free image datasets in fluorescence microscopy 
has given rise to self-supervised learning [35, 36], which 
only requires noisy images for training. This strategy lever-
ages the characteristics of fluorescence microscopy images, 
where long-term noise-free exposure is equivalent to a 
series of short, independent noisy exposures. Despite the 
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advancements in deep learning-based denoising, existing 
methods for the image denoising tasks with sophisticated 
hierarchical structures still have limitations in recovering 
structural details at different scales at the same time. The 
limitations include oversmoothing, loss of structural details 
and image contrast information, when relatively complex 
hierarchical structures are involved in the images. CNNs 
may suffer from overfitting and lack of generalization when 
trained on limited or biased data, and exhibit a spectral 
bias, which predisposes them to favor low-frequency fea-
tures while neglecting high-frequency details [37]. This bias 
often results in overly smoothed denoising outcomes, which 
can compromise the integrity of the original image features, 
especially for sophisticated hierarchical structures.

In this work, we propose a self-supervised method, UNet-
Att, which integrates a specifically designed UNet + + net-
work with advanced attention mechanisms for denoising 
synchronized two-photon calcium imaging datasets with 
low signal-to-noise ratios [38]. This method effectively 
removes image noise while preserving image texture fea-
tures, outperforming existing mainstream algorithms with 
an increase of 9.42 dB in PSNR and an improvement of 
0.1131 in SSIM. To improve accuracy in images with com-
plex hierarchical structures, we devised a specific advanced 
attention mechanism into our specially designed network 
based on the UNet + + framework. This approach aligns 
with the need to improve denoising effectiveness while 
preserving structural details. The main contribution of this 
research can be summarized as follows:

1)	 To enhance the image denoising effectiveness for com-
plex hierarchical structures, we combine the architec-
tural strength of UNet + + with attention mechanism.

2)	 To ensure the robust feature representation, we utilize 
a down-sampling module to extract image features at 
multiple scales.

3)	 To improve the preservation of important features for 
the hierarchical structures, we employ attention mod-
ules to emphasize the weights of structural information 
in the image.

4)	 To ensure the comprehensive reconstruction, we imple-
ment a multi-dimensional upsampling module to restore 
image information and merge the outputs from various 
network dimensions.

5)	 To obviate the difficulties of obtaining the counterpart 
ground-truth images, we successfully apply self-super-
vised training on three-dimensional low SNR two-pho-
ton microscopy images.

The remainder of this paper proceeds as follows: Sect.  2 
provides a literature review of the related denoising meth-
ods. Section  3 elaborates on the proposed self-supervised 

deep learning denoising method, UNet-Att, including the 
noise model, the architecture of the deep neural network, 
and the denoising mechanism. Section 4 details the applica-
tion of UNet-Att in denoising the two-photon microscopic 
images, and benchmark the denoising effectiveness for the 
live neuronal imaging with a systematic comparative study. 
Finally, Sect. 5 offers conclusions and outlines prospective 
avenues for future investigations.

Related work

Advanced algorithms based on different networks have 
been developed to further enhance performance in different 
aspects and for various application requirements, including 
reducing computation time, improving algorithm general-
ization, and enhancing accuracy for specific tasks. There are 
often trade-offs between accuracy, generalization, and com-
putation time. For applications that demand high accuracy 
in recovering structural details and maintaining the integ-
rity of original image features during denoising, specifically 
tailored algorithms are being prioritized and extensively 
explored for corresponding applications. In this section, we 
introduce previous related work in image denoising meth-
ods based on deep learning, which is also summarized in 
Table 1 with the proposed method in this work.

Supervised image denoising based on CNNs

Supervised image denoising methods using CNNs have 
been extensively explored in the realm of biofluorescent 
microscopic imaging. CNNs exhibit significant advantages 
in the realm of two-dimensional image processing, primar-
ily due to their properties of translational invariance, local 
connectivity, and weight sharing [30]. These characteris-
tics contribute to the simplicity of computations, reduced 
complexity, and the ability to leverage GPU acceleration 
for faster processing. Furthermore, increasing the width and 
depth of CNNs enables the extraction of higher-dimensional 
and deeper features, thus enhancing denoising performance. 
However, the expansion of neural network layers can lead to 
training challenges such as gradient explosion and gradient 
vanishing.

To address these issues, Ioffe et al. [39] introduced Batch 
Normalization (BN), which stabilizes the training process 
by normalizing the inputs of each layer. Additionally, He et 
al. [40] proposed the ResNet model, incorporating residual 
connections to effectively mitigate these training difficulties, 
thereby easing the training of deeper networks. These inno-
vations marked a significant maturation of CNN architec-
tures, paving the way for more sophisticated models. Mao 
et al. [31] developed a fully convolutional encoder-decoder 
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limited by their reliance on ground-truth images, which are 
often difficult to obtain in practice.

U-net-derived supervised denoising for fluorescence 
microscopic images

In the domain of fluorescence microscopy image denoising, 
CNNs have also outperformed traditional image denoising 
methods. Ronneberger et al. [32] introduced the renowned 
U-Net architecture. U-Net employs a concatenation tech-
nique to merge deep and shallow features through multi-
scale information extraction and skip connections. This 
design allows U-Net to effectively handle complex biomed-
ical images, even with limited data, making it a staple in the 
biomedical imaging field. Its versatility and superior per-
formance in various tasks have cemented U-Net as a classic 
neural network model in this domain.

Building on the success of U-Net, Weigert et al. [42] 
proposed the Content-aware Image Restoration (CARE) 

network for image denoising and restoration. This network 
consists of symmetrical convolutional and deconvolutional 
operators, learning an end-to-end mapping from noisy 
images to clean images. This architecture laid the founda-
tion for deeper neural networks in image denoising. Building 
on this progress, Zhang et al. [41] introduced the DnCNN 
model, one of the most renowned CNN-based algorithms 
for image denoising. The network employs a series of con-
volutional layers to learn the residual noise in images. By 
focusing on the residual noise, DnCNN achieves superior 
denoising performance, surpassing all traditional denoising 
methods of its time.

While DnCNN and similar models have achieved 
remarkable performance, they often struggle with preserv-
ing intricate details and textures in highly noisy images. 
Additionally, the increased network depth and complex-
ity can result in higher computational demands and longer 
training times. These supervised methods are inherently 

Method Approach Focus Key innovations Contributions
DnCNN (Zhang 
et al.) [41]

Supervised 
CNN

Regular 2D image 
denoising

Residual learning, batch 
normalization, and blind 
denoising

PSNR improvement 
over traditional 
denoising methods

Mu-net (Lee et 
al.) [43]

Supervised3D 
U-Net

Two-photon 
microscopic image 
denoising

End-to-end learning Effective denois-
ing with limited 
ground-truth images

CARE (Weigert 
et al.) [42]

Supervised 
CNN

Fluorescence 
microscopic image 
restoration

Content-aware neural 
networks

High-quality 
denoising with 
clean references

Noise2Noise 
(Lehtinen et al.) 
[38]

Self-super-
vised U-Net

General 2D image 
restoration

Training without clean data Foundation for self-
supervised methods

Noise2Fast 
(Lequyer et al.) 
[51]

Self-super-
vised CNN

Real-time denois-
ing in fluorescence 
microscopy

A novel chequerboard don-
wsampling technique

Higher-speed 
denoising

DeepCAD (Li 
et al.) [36]

Self-super-
vised 3D 
U-Net

Spatiotemporal 
enhancement of 
calcium imaging

Temporal redundancy in 
3D

Improved restora-
tion accuracy for 
neuron extraction 
and spike inference

DeepCAD-RT 
(Li et al.) [52]

DeepCAD Real-time denois-
ing in fluorescence 
microscopy

Model simplification and 
data augmentation

Significant reduc-
tion in denoising 
time

UniFMIR (Ma 
et al.) [37]

Transfer 
learning

Fluorescence 
microscopic image 
restoration

Multihead and multitail 
network architecture, and 
swin transformer-based 
feature enhancement 
module

Improved gen-
eralization and 
increased versatility

SRDTrans (Li et 
al.) [53]

Self-
supervised, 
lightweight 
spatiotemporal 
transformer

Fluorescence 
image SNR 
enhancement

Spatial redundancy 
sampling strategy and 
lightweight spatiotemporal 
transformer architecture

High-frequency 
information 
restoration

UNet-Att (This 
work)

Self-
supervised, 
UNet + + with 
attention

Denoising of com-
plex hierarchical 
structures

Specifically designed 
hierarchical feature 
preservation with attention 
mechanisms

Improved denoising 
accuracy for low 
SNR images with 
complex hierarchi-
cal structures

Table 1  Related image denoising 
methods
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extraction and spike inference. In the context of calcium 
imaging, DeepCAD explores the temporal redundancy 
inherent in video-rate imaging. It posits that any two con-
secutive frames can be considered independent samples of 
the same underlying discharge pattern. Consequently, image 
pairs composed of consecutive frames can be utilized for 
training the denoising model. However, the necessity for a 
specialized imaging system to generate high and low SNR 
pairs may not be practical for all research settings, limiting 
the method’s general applicability.

Attention mechanisms in deep learning for image 
denoising

Attention mechanisms have been successfully integrated 
into deep learning models to enhance performance in vari-
ous applications, including image denoising. These mech-
anisms enable models to focus on significant parts of the 
data and thereby enhance their performance in critical fea-
ture extraction and preservation. Attention mechanisms are 
typically categorized into two types: hard attention and soft 
attention. Hard attention, as described by Xu et al. [48], 
involves the model focusing on a fixed position within the 
input sequence. In this type of attention, the model selects 
a specific location in the input sequence as the focal point, 
extracting necessary information from this position while 
ignoring other locations. However, the non-differentiable 
nature of hard attention makes it challenging to optimize 
during training, thereby limiting its applicability. In con-
trast, soft attention allows the model to consider all input 
positions, assigning different weights to each position. 
These weights indicate the importance of the information 
at each location, enabling the model to focus on various 
parts of the input data with varying intensities. The output 
of the model in soft attention is a weighted sum of all input 
positions. Soft attention is more commonly used due to its 
differentiable nature, facilitating easier optimization during 
training.

Several studies have successfully employed soft atten-
tion mechanisms to enhance image processing tasks. Xiao et 
al. [35] introduced a spatial transformer module that trans-
forms spatial domain information within images to extract 
key features. SENet [49] focuses on the weight relation-
ships between channels, enhancing model performance by 
increasing the weights of important channels and reducing 
those of less significant ones. Oktay et al. [50] applied atten-
tion mechanisms to skip connections, boosting the impor-
tance of structural features within the images.

Other advanced algorithms based on the above work 
have been developed to further enhance performance in 
different aspects and for various application requirements, 
including reducing the computation time and improving 

method. CARE is a task-specific network framework based 
on U-Net, offering a user-friendly interface for researchers 
to perform fluorescence microscopy image denoising. This 
approach exemplifies the practical application of U-Net in 
enhancing the usability and effectiveness of image restora-
tion tools. Lee et al. [43] introduced the Mu-net method, 
which involves the sequential use of multiple U-Net net-
works combined with a Generative Adversarial Network 
(GAN) [44]. This hybrid approach achieved remarkable 
results in denoising three-dimensional two-photon micros-
copy images, demonstrating the potential of combin-
ing multiple neural network architectures for improved 
performance.

All these methods rely on supervised training strategies 
to achieve effective image denoising. Supervised training 
typically yields excellent results by utilizing paired datasets 
of noisy input images and clean target images [34]. In the 
field of fluorescence microscopy, obtaining paired datasets 
of noisy and noise-free images is challenging. Addition-
ally, the performance of supervised deep learning models is 
largely dependent on the characteristics of the training data-
set. While these models excel with data similar to the train-
ing set, their performance often degrades when applied to 
significantly different data. This limitation underscores the 
need for methods that can generalize better across diverse 
datasets.

Self-supervised image denoising approaches

To obviate the need for clean ground-truth image, self-
supervised image denoising methods have emerged as a 
powerful alternative [45–47]. In the domain of fluorescence 
microscopy image denoising, several innovative methods 
have employed self-supervised learning strategies to train 
their models effectively. Lehtinen et al. [36, 38] introduced 
the pioneering Noise2Noise method, which describes a self-
supervised training approach for denoising. Unlike super-
vised methods, Noise2Noise does not require clean images 
as targets for neural network learning. Instead, it only 
requires noisy images for training. This strategy is particu-
larly advantageous in the context of fluorescence micros-
copy, where a long noise-free exposure can be approximated 
by a series of short, independent noisy exposures. Under 
this framework, even though the neural network learns from 
noisy images, it can still extract the clean signal from a 
series of temporally stacked noisy images.

Building on this concept, Li et al. [36] proposed the 
DeepCAD method. DeepCAD utilizes a three-dimensional 
U-Net architecture, significantly improving the signal-
to-noise ratio of two-photon microscopy images by more 
than tenfold. Additionally, this method enhances the accu-
racy of subsequent image processing tasks, such as neuron 
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consistently across the image, irrespective of the pixel’s 
actual intensity [55].

The experimentally detected signal at the pixel i for the 
two-photon microscopy imaging process can be represented 
as [56]:

Xi = aϕ (Si) + ε i � (1)

where Xi  is the measured signal, Si  is the underlying true 
signal, and φ (Si) denotes the signal under the influence of 
shot noise. a  denotes the conversion factor, and ε i  denotes 
the detector noise. The shot noise-affected signal intensity 
φ (Si) adheres to a Poisson distribution centered around Si  
and randomly fluctuates by a standard deviation of 

√
Si

. The detector noise ε i , is generally characterized by a 
Gaussian distribution with a standard deviation that remains 
constant and is independent of the underlying signal. The 
Gaussian distribution is detector-dependent, and is centered 
around a baseline offset. The offset is pre-configured by 
most camera systems to preclude the occurrence of nega-
tive values in the Gaussian noise, which are inherently non-
physical, and this offset is consequently superimposed onto 
the measured signal. Both the quantum shot noise and the 
detector noise occur independently for each pixel without 
influencing its neighbors.

It is evident that in the presence of shot noise and detec-
tor noise, the signal acquired during each measurement is 
subject to fluctuate around the true signal. Over multiple 
acquisitions, the mean of these measurements is expected 
to converge towards the true signal. This characteristic can 
be harnessed using a self-supervised deep learning meth-
odology wherein a collection of image stack data is bifur-
cated into two distinct sets, predicated on individual frames. 
Each corresponding frame in these sets encapsulates iden-
tical underlying biological information, albeit affected by 
disparate noise intensities. By feeding these image stacks 
into a neural network as input and target data for learning, 
the network is trained to discern the average content within 
the stacks. This process enables the neural network to effec-
tively perform image denoising by learning to filter out the 
noise and recover the signal of interest.

Self-supervised method

By fully accounting for the distinct noise attributes inher-
ent in two-photon microscopy images, the proposed UNet-
Att was a sophisticated deep learning algorithm for image 
denoising, based on a self-supervised learning training strat-
egy, specifically tailored to address the noise issues charac-
terizing two-photon microscopy. To grapple with the dual 
challenges posed by the high noise levels and low signal 
strength that are hallmarks of such images, we take cues 

the algorithm generalization. Examples include Noise2Fast 
[51], DeepCAD-RT [52] for faster denoising with reduced 
requirement of computational resources and UniFMIR [37] 
for improving the generalization ability. There are often 
trade-offs between the accuracy, generalization, and com-
putation time. For applications that demand high accuracy 
in recovering structural details and maintaining the integ-
rity of original image features during denoising, specifically 
tailored algorithms are being prioritized and extensively 
explored for corresponding applications [53]. For syn-
chronized two-photon calcium imaging datasets with low 
SNR and complex hierarchical structures, existing methods 
still face limitations in preserving the structural details in 
denoising.

UNet + + is a notable enhancement of the original U-Net 
architecture, involving the integration of multiple U-Net 
models to achieve comprehensive feature fusion at each lay-
er’s output. This work aims to enhance the denoising effec-
tiveness of the calcium imaging with low SNR and complex 
hierarchical structures. By integrating specially designed 
UNet + + architecture with advanced attention mechanisms, 
our proposed method, UNet-Att, achieves a better perfor-
mance than mainstream denoising algorithms.

Method

This study is dedicated to proposing a deep learning-based 
method for enhancing the effectiveness of noise reduction 
and signal recovery in low SNR images of sophisticated 
hierarchical structures obtained from two-photon micros-
copy live imaging. To achieve this, the noise model was 
firstly described. Based on the insight of the noise charac-
teristics, the research develops a self-supervised method 
taking advantage of the powerful capability of hierarchical 
feature representation of UNet + + network and incorpo-
rating advanced attention mechanisms which augment the 
denoising effectiveness. The proposed network was named 
as UNet-Att.

Noise model

Two-photon microscopy images frequently encounter sig-
nificant noise issues. These issues predominantly arise from 
two sources: quantum shot noise and detector-related noise, 
both of which have distinct origins and characteristics. 
Quantum shot noise is an inherent property of the photon 
detection process, following a Poisson distribution math-
ematically. This type of noise is signal-dependent, resulting 
in higher noise levels in brighter regions due to increased 
photon counts [54]. Conversely, detector noise, which takes 
a Gaussian form, impacts each pixel independently and 
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methodology involves the dissection of a temporal sequence 
of 3D image stacks into two distinct sets, each comprising 
frames in close temporal succession. As depicted in Fig. 2a 
and b, the 3D stack consisting of odd frames is used as the 
input data of the network, and the 3D stack consisting of 
even frames is used as the learning target data of the network. 
Two-photon microscopic images are typically affected by 
two predominant and distinct types of noise: Gaussian noise 
and scattering noise. By leveraging this inherent noise inde-
pendence, our proposed self-supervised approach is adept 
at training models to denoise images without the need for 
pristine ground truth data. This strategy holds promise for 
enhancing the clarity and usability of two-photon micros-
copy images, which is a significant step forward in biomedi-
cal imaging analysis.

The overall architecture of UNet-Att is depicted in Fig. 2c 
and adopts a U-shaped structure with multiple dimensions. 
It comprises three key components: the downsampling mod-
ule, the attention module, and the multidimensional upsam-
pling module. The downsampling module is responsible for 
feature extraction at various scales and reducing the image 
resolution. The attention module scores the information of 
the shallow-layer pixels based on the deep-layer network’s 
feature information, enabling the shallow-layer network to 
better represent image structure features through the skip 
connections. Lastly, the multidimensional upsampling mod-
ule fuses the image information from both the deep and 

from the cutting-edge UNet + + architecture [57], integrat-
ing a multi-scale network design to adeptly handle intricate 
textures and details essential for high-quality biological 
image analysis. This enables us to extract features at differ-
ent scales while preserving image structure and effectively 
removing noise. Given the stronger occurrence of shot noise 
in regions with intensified signals, it is imperative to cir-
cumvent the pitfall of over-denoising, which can obliterate 
critical image details. This balance is especially crucial for 
preserving the integrity of subtle yet significant structures, 
such as neuronal synapses, which are vital for accurate 
biological interpretation. To effectively safeguard these 
essential elements, we have augmented our network with 
an attention mechanism. This attention module is adept at 
differentially weighting the salient structural features within 
the image, bolstering their retention during the denois-
ing process. Figure  1 provides an overview of the image 
denoising method of UNet-Att. Image data preprocessing 
was firstly performed to divide the data into input and tar-
get images for training the UNet-Att network. The trained 
model was utilized for the ultimate image denoising tasks.

Network architecture

In order to learn the structural details from the raw data with-
out clean counterpart images, image preprocessing proceeds 
before the model training. In the image preprocessing, our 

Fig. 1  Overview of the image denoising method of UNet-Att
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enabling the model to focus on image information at differ-
ent scales.

The input data consists of 3D data over time, represented 
by a matrix of size [t, H, W] (where t represents the number 
of time frames, H signifies the height of each image frame, 
and W denotes the width of each image frame). After apply-
ing the pooling layer, the image data is transformed into a 
matrix of size [t/2, H/2, W/2]. We utilize maximum pooling 

shallow networks, as well as the output image information 
from the low-dimensional network, thereby restoring the 
image resolution.

The network structure of the downsampling module 
is illustrated in Fig. 2d, which comprises a pooling layer, 
two convolutional layers, and an activation layer. The con-
volutional layers are responsible for extracting image fea-
tures, while the pooling layer downsamples the image data, 

Fig. 2  The network architecture of UNet-Att and the structure of each 
module. a. Data preprocessing. The 3D data of size (6000,512,512) is 
sliced into multiple 3D data of size (512,64,64) and divides the net-
work input data and the network learning target data. b. Delineation 
of network input data and target data. The 3D stack consisting of odd 
frames is used as the input data of the network, and the 3D stack con-
sisting of even frames is used as the learning target data of the network. 
c. The overall network architecture of UNet-Att. xEi  is the downsam-
pling module, xDi,j  is the multi-dimensional upsampling module, A is 

the attention module, and L is the loss function. (d) Downsampling 
module, where Pool is the pooling layer, Conv is the convolutional 
layer, and ReLU is the activation layer. (e) Attention module, where x 
is the input to the network, g is the reference base of the network, Conv 
is the convolutional layer, Sigmoid is the normalization function, and 
x̂  is the network output. (f) Multidimensional upsampling module, 
where concat is the channel connection layer, Conv is the convolu-
tional layer, and ReLU is the activation layer
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encoding layer with the output of the previous network 
layer. In this process, we pass the output of the correspond-
ing encoding layer through the attention module, which 
applies attention processing to the image information within 
the encoding layer. Subsequently, we perform information 
stitching with the output of the upper layer of the network, 
enabling the preservation of more image texture informa-
tion. The skip connections within our multidimensional 
upsampling module not only encompass the connections 
between the encoding and decoding layers of the U-shaped 
network in the same dimension but also involve connections 
between U-shaped networks of different dimensions. When 
establishing a skip connection within a higher-dimensional 
U-shaped network, the corresponding decoding layer of the 
lower-dimensional U-shaped network is passed through the 
attention module, processed by attention, and then stitched 
with the corresponding layer of the respective dimensional 
U-shaped network, as depicted in Fig. 2. After performing 
the information stitching between the corresponding encod-
ing layer of the same dimension, the decoding layer of the 
preceding layer, and all the corresponding decoding layers of 
lower dimensions, the information is fused through a series 
of convolutional layers to learn image features, reduce the 
number of channels to match the output channels of the fea-
ture map, and combine information from different channels. 
Additionally, another convolutional layer is applied with a 
consistent number of input and output channels to enhance 
the expressive capabilities of the network.

At the conclusion of the decoding layer within each 
dimension, the output of each dimensional network under-
goes a 1 × 1 × 1 convolutional layer. This step facilitates 
the integration of the results learned by the network across 
channels, generating an output of the same size as the net-
work input. Finally, we average the outputs of the U-shaped 
networks across different dimensions to obtain the overall 
network output.

Loss function

The loss function we use is the arithmetic mean of the L1 
parametric loss and L2 parametric loss with,

L1 =
∑ n

i=1
|yi − f (xi)| � (2)

L2 =
∑ n

i=1
(yi − f (xi))

2 � (3)

where yi  denotes the target pixel value and f (xi) denotes 
the estimated pixel value of the network. L1 parametric 
tends to minimize the absolute difference between the pixel 
value of the target image and the pixel value of the esti-
mated image, outliers do not cause particularly large losses, 

to emphasize the contours of the image information. In the 
first convolutional layer, feature extraction is performed 
on the pooled image data, maintaining the same number of 
input and output channels. This design allows the network 
to learn features within the same channel dimension. In the 
second convolutional layer, the number of input and out-
put channels differs, with the output channels being twice 
the number of input channels. This expansion in the feature 
learning dimension facilitates the network’s ability to learn 
additional dimensions of image information. The activation 
layer plays a crucial role in applying a non-linear mapping 
to the output of the convolutional layer, enhancing the rep-
resentational capability of the neural network. In this case, 
we employ the Rectified Linear Unit (ReLU) activation 
function, which accelerates network computation, mitigates 
the occurrence of overfitting, and alleviates the vanishing 
gradient problem.

The network structure of the attention module is depicted 
in Fig. 2e. The concept of attention mechanism is selectively 
focusing on specific data during the processing phase, rather 
than treating all data equally. This “focus” mechanism plays 
a crucial role in attention. In the context of image denoising, 
preserving the original information while reducing noise is 
of utmost importance. Hence, we introduce the idea of the 
attention mechanism in the denoising process of two-photon 
microscopy images.

To ensure the retention of overall structural information 
in the image after connecting the image information, we 
incorporate the attention module within the skip connec-
tion. Specifically, we assign the corresponding up-sampling 
module layer, denoted as x , and the output of the preced-
ing layer of the neural network, denoted as g, to different 
convolutional layer operations. Here, x  serves as the input 
to the attention module, while g acts as the reference for 
the attention module. By leveraging the overall structural 
information derived from the deeper network, the attention 
module applies varying degrees of attention to each pixel 
of x . The values are normalized using the Sigmoid func-
tion, with larger values of λ indicating a higher degree of 
attention assigned to a particular region. Then this attention 
coefficient is multiplied by x , resulting in the attention-pro-
cessed image. Finally, the image information is integrated 
through a 1 × 1 × 1 convolutional layer to obtain the atten-
tion module-processed image, x̂ .

The fundamental network structure of the multidimen-
sional upsampling module is illustrated in Fig. 2f. After the 
network extracts image features at different scales through 
downsampling, upsampling is required to restore the 
image resolution to its original form. Simply upsampling 
the output layer of the network can result in missing and 
distorted image information. To address this, we employ a 
skip connection, integrating the output of the corresponding 
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Data preprocessing

The high resolution of our dataset presents a challenge 
when training the neural network directly. Therefore, it is 
necessary to preprocess the image data by dividing it into 
smaller sub-stacks. This approach allows for more efficient 
feeding of the data into the neural network and facilitates 
iterative parameter updates. To enhance the transition infor-
mation within the data, we incorporate overlapping regions 
in all three dimensions during the subdivision process, as 
depicted in Fig. 2a.

After obtaining the sub-stacks, we adopt a specific data 
selection strategy for network learning, as illustrated in 
Fig. 2b. In our approach, the odd frames of the sub-stack 
are chosen as the input data, while the even frames serve as 
the target data. This selection result is designed to leverage 
deep learning self-supervision for model training. Our self-
supervised strategy operates on the principle that training 
with noisy target images yields noisy gradients. However, 
the average gradient across the entire training set approxi-
mates the true gradient, which is akin to the noise-free 
image. Since the time interval between consecutive images 
is only 0.02 s, we can consider them as two sets of data with 
distinct noise distributions captured simultaneously. As the 
noise in two-photon micrographs images is independently 
distributed around the actual signal, the average value of 
pixels over a certain time period tends to converge towards 
the true signal. Consequently, the average signal across the 
entire training set represents the real signal in its noise-free 
form, enabling the network to learn the characteristics of the 
true signal present in the training set.

Evaluation indicators

Noise reduction performance is commonly evaluated 
using two main categories of metrics: pixel-based statistics 
and structural feature similarity. In the pixel-based statis-
tics category, we employed two widely used metrics are 
Mean Square Error (MSE) and Peak Signal-to-Noise Ratio 
(PSNR) [58]. On the other hand, the Structural Similarity 
(SSIM) [59] was utilized as the structural feature similarity 
category metrics.

Since MSE values tend to be large and not directly inter-
pretable, they cannot be used as a direct quantifier of image 
quality. To address this, the root mean square error (RMSE) 
is obtained by taking the square root of MSE, and then nor-
malized to obtain the normalized root mean square error 
(NRMSE). NRMSE provides a more directly interpretable 
measure of image quality. Smaller NRMSE values indicate 
higher image quality.

PSNR represents the ratio of the maximum power of the 
signal to the power of the noise in the signal. It improves the 

fluctuations are small and stable, so it is more robust. L2 
parametric tends to minimize the squared error between the 
two, outliers have a large impact on the loss, so it makes the 
image smoother.

Experiments and results

To evaluate the performance of the proposed UNet-Att 
network, the architecture was trained using a sequence 
of two-photon micrographs depicting calcium activity in 
mouse brain cells. The dataset was divided into input and 
target images for network training. Using the trained model, 
denoising experiments were conducted on additional two-
photon microscopy images with low signal-to-noise ratios 
(SNR) from the same category. The effectiveness of the 
denoising was assessed using evaluation metrics such as 
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 
Index Measure (SSIM), and Normalized Root Mean Square 
Error (NRMSE). A systematic comparison study was also 
conducted with other leading denoising methods to bench-
mark the performance of the UNet-Att network.

Datasets

In two-photon microscopy applications, it is common to 
observe live cells over extended periods, necessitating 
a low-illumination experimental environment and rapid 
imaging by the microscope. Consequently, challenging data 
is frequently produced, characterized by temporal stacks of 
images and high levels of noise. As a result, complex data 
is frequently produced, including temporal stacks of images 
and significant levels of noise.

For our research, we utilize a dataset consisting of two-
photon micrographs from a three-dimensional data series 
captured over time. The current training set is derived from 
the publicly available dataset introduced by Li et al. [36]. 
Specifically, it consists of a sequence of two-photon micro-
graphs depicting calcium activity in mouse brain cells. The 
observed field of view spans 550 × 575 μm, with imaging 
conducted at depths ranging from 80 μm to 210 μm, encom-
passing cell bodies and dendrites. The utilized dataset com-
prised a total of 7 three-dimensional images, each containing 
6000 frames with a resolution of 512 × 512 pixels and an 
interval of 0.02 s per frame. More specifically, 85% of these 
images were designated as the training dataset, while the 
remaining 15% were allocated for evaluation purposes as 
the test dataset.
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value indicates a higher similarity between the denoised and 
noiseless images, less image distortion, better preservation 
of information in the denoised images, and superior perfor-
mance of the model.

In addition to the aforementioned metrics, the richness of 
image information can be assessed by calculating the image 
entropy [60]. When calculating, it is usually necessary to 
perform grayscale normalization on the image to ensure 
that the probability of each pixel value is between 0 and 1. 
Image entropy is similar to information entropy and mea-
sures the complexity and randomness of information within 
an image. A higher image entropy signifies a greater amount 
of information in the image, indicating more complexity 
and higher image quality.

Experimental results and analysis

After the network model is trained, we apply it to other two-
photon microscopy images with low signal-to-noise ratios 
from the same category as the training set. The estimation 
results are depicted in Fig. 3. Before denoising, two-photon 
microscopy images are heavily affected by noise interfer-
ence, resulting in poor image readability. However, after 
being processed by our algorithm, the image noise is effec-
tively removed, the image information is recovered, and 
image quality and readability improve significantly.

To validate the denoising efficacy of our proposed algo-
rithm, UNet-Att, on real noise images with low signal-to-
noise ratios in two-photon microscopy, we compare its 
performance with classical image denoising algorithms 
and mainstream fluorescence microscopy image denoising 
algorithms from recent years. We evaluate the effectiveness 
of UNet-Att based on three key metrics: PSNR, SSIM, and 
NRMSE. Additionally, we carefully examine the denoised 
images produced by each algorithm to assess the enhance-
ment effect of UNet-Att on image denoising by observing 
intricate image details. Furthermore, we conduct several 
ablation experiments to verify the effectiveness of each 
module within UNet-Att for the task of denoising two-pho-
ton microscopic images.

Comparison experiments

In comparison, we selected three algorithms: DnCNN, 
Noise2noise, and DeepCAD. These are classical deep learn-
ing denoising algorithms that have demonstrated notable 
performance in the field of fluorescence microscopy image 
denoising in recent years. To ensure fairness, we trained all 
algorithms using the same dataset and training parameters. 
Subsequently, we applied each algorithm’s model to esti-
mate the denoising of 3D two-photon microscopy images 
with low signal-to-noise ratios. The denoising results are 

sensitivity of the evaluation results by calculating the mean 
square error between the denoised and noiseless images and 
then converting it to the logarithmic domain. PSNR can be 
computed using Eq.  (6), where Imax  represents the maxi-
mum pixel value of the image.

PSNR = 10log10
Imax

MSE
� (4)

PSNR is used to measure the difference between the ground 
truth image and the noise reduction image, allowing for 
evaluation of the performance of the noise reduction algo-
rithm. A higher PSNR value indicates a better noise reduc-
tion effect.

SSIM represents the degree of structural similarity 
between two images, mainly focusing on the similarity of 
edges and textures in the images, which is more in line 
with human visual perception. SSIM calculates the sta-
tistical characteristics within the sliding window through 
sliding window operation, estimates the brightness of the 
image based on the mean of the image within the sliding 
window, and estimates the contrast and structural informa-
tion similarity of the image based on the standard devia-
tion and covariance of the image within the sliding window. 
Then move the window in pixels until the entire image is 
traversed, and calculate the global structural similarity. Its 
expression is given as:

SSIM = [l (x, y)]α · [c (x, y)]β · [s (x, y)]λ � (5)

where l (x, y)is the brightness contrast function, c (x, y)is 
the contrast function, s (x, y) is the structural information 
contrast function, where α、β and λ indicates the impor-
tance of three modules, with values greater than 0. The 
expressions for the three functions are:

l (x, y) =
2µ xµ y + C1

µ x
2 + µ y

2 + C1
� (6)

c (x, y) =
2σ xσ y + C2

σ x
2 + σ y

2 + C2
� (7)

s (x, y) =
2σ xy + C3

σ xσ y + C3
� (8)

In Eqs.  (6), (7), and (8), µ x  and µ y  represents the mean 
of the denoised image and the denoised image, respec-
tively, σ x  and σ y  represents the standard deviation of the 
denoised image and the noiseless image, respectively, σ xy  
represents the covariance of two images. C1、C2 and C3

is a very small constant to avoid having a denominator 
of 0. The SSIM value ranges from 0 to 1, where a higher 
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Furthermore, we conducted a visual comparison between 
the denoised images obtained by different algorithms and 
the noise-free images, which were obtained by averaging 
high signal-to-noise images. Figure 5 illustrates the results 
of this comparison. Prior to the denoising process, the two-
photon microscopy images suffer from significant noise 
interference, obscuring crucial information. The presence 
of shot noise not only affects the background with a cer-
tain level of noise but also introduces higher noise levels to 
the calcium material within the cells of interest, resulting in 
poor image readability.

However, after applying the image denoising algorithms, 
notable differences can be observed. DnCNN exhibits weak 
denoising capabilities, as residual noise remains in the 
image. Conversely, the other three algorithms successfully 
remove a substantial portion of the image noise. Regard-
ing the preservation of detailed information, such as the 
texture structure of the image, Noise2noise and DeepCAD 
exhibit inconspicuous and dark pixels in neuronal synapses, 
and encounter challenges like over-smoothing when han-
dling slender neuronal synapses. In contrast, our algorithm, 
UNet-Att, effectively recovers the brightness information 
of neuronal synapses with higher clarity. When examining 
the processing of neuronal cells, Noise2noise yields struc-
turally incomplete results, while DeepCAD suffers from 
insufficient contrast. In comparison, our algorithm produces 
results that closely resemble the real image. This further val-
idates the effectiveness of the UNet-Att algorithm, as it not 
only removes noise effectively but also preserves essential 
image information, resulting in images that closely resem-
ble the ground truth image.

presented in Table  2, which compares the metrics of the 
denoised images.

The results presented in Table 2 represent the mean values 
obtained from the algorithm models. Observing the PSNR 
metric, our algorithm produced the highest value, resulting 
in a 9.42dB increase in PSNR compared to the noise image. 
This demonstrates that our algorithm minimizes distortion 
and exhibits excellent noise removal capabilities. Similarly, 
our algorithm achieved the highest value in the SSIM met-
ric, indicating a superior structural similarity to the noise-
less image and preserving the image’s texture and structure. 
The improvement in structural similarity amounts to 0.1131 
when compared to the noisy image.

Furthermore, our algorithm attained the minimum value 
in the NRMSE metric, signifying the smallest pixel dif-
ference between our algorithm’s output and the noiseless 
image, and reducing the degree of difference by 0.3338. 
Consequently, our algorithm outperforms mainstream 
algorithms for fluorescence microscopic image denoising, 
as demonstrated by the comparison between the denoised 
images and the noise-free images. Additionally, we com-
puted the image entropy of the denoised images to assess 
the information richness achieved by different algorithms, 
as depicted in Fig. 4. It is evident that our algorithm effec-
tively restores the image’s information richness to an opti-
mal level through the denoising process.

Table 2  Comparison of indicators of denoising results of different 
algorithms
Methods PSNR/dB↑ SSIM↑ NRMSE↓
Raw 32.19 0.8553 0.5047
DnCNN 41 37.52 0.9436 0.2737
Noise2Noise 38 39.61 0.9591 0.2155
DeepCAD 36 41.36 0.9679 0.1758
UNet-Att (ours) 41.61 0.9684 0.1709

Fig. 3  Model denoising results. The left image is the original noisy image, and the right image is the image after denoising by the algorithm in 
this chapter
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Fig. 5  Visualization comparison of this algorithm with other algo-
rithms. a shows the original noisy image; b shows the denoised image 
of the comparison method DnCNN; c shows the denoised image of 

the comparison method Noise2noise; d shows the denoised image of 
the comparison method DeepCAD; e shows the denoised image of the 
algorithm in this chapter; f shows the corresponding noise-free image

 

Fig. 4  Comparison of image entropy of denoising results of different algorithms. The vertical coordinate is the image entropy value of the denoised 
image and the horizontal coordinate is the different image groups
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the downsampling and multidimensional upsampling 
modules. The resulting network structure is depicted in 
Fig. 6a.

2)	 The multidimensional structure in the multidimensional 
upsampling module was removed, resulting in a network 
architecture biased towards a unidimensional U-shaped 
network. This variant is represented Attention-Unet, 
and the network structure is shown in Fig. 6b.

3)	 A partial arrangement of the attention module was 
reduced by removing the attention module from the net-
work layer of the multidimensional upsampling mod-
ule. This variant, referred to as UNet-Att without DA. 
The network structure is depicted in Fig. 6c.

Ablation experiments

To investigate the role of each module in the two-photon 
microscopic image denoising task, ablation experiments 
were conducted on the algorithm proposed in this paper. 
Ablation experiments involve removing or modifying spe-
cific components of the system to assess their impact on the 
overall performance. In this paper, the ablation experiments 
focused on three variations of the network structure:

1)	 The attention module was removed from the net-
work architecture, resulting in a UNet + + type net-
work. This network configuration solely employed 

Fig. 6  Structure of each network of the ablation experiment and visual 
comparison of denoising results of ablation experiments. a shows the 
structure of the ablation network after removing the attention module; 
b shows the structure of the ablation network after removing the mul-
tidimensional structure in the multidimensional upsampling; c shows 
the structure of the ablation network after removing the attention mod-
ule between the upsampling layers in different dimensions; d shows 

visual comparison of denoising results of ablation experiments: (i) 
is the original noisy image; (ii) is the denoised image of the ablation 
network UNet++; (iii) is the denoised image of the ablation network 
Att-UNet; (iv) is the denoised image of the ablation network UNet-Att 
without DA; (v) is the denoised image of the algorithm in this chapter 
image; (vi) is the corresponding noise-free image
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UNet-Att harnesses the power of self-supervision and 
leverages an attention module to prioritize structural integ-
rity, combined with multi-scale feature extraction capa-
bilities inherent in the UNet + + framework. It employs a 
downsampling module to distill multi-scale image features, 
an attention module to accentuate structural information, 
and a multi-dimensional upsampling module to recon-
struct image details with precision. We validate our algo-
rithm on three-dimensional two-photon microscopy images 
characterized by a low signal-to-noise ratio, successfully 
eliminating image noise while maintaining the structural 
information.

Through exhaustive comparative evaluations, our UNet-
Att algorithm demonstrates superior denoising efficacy 
relative to prevailing methods utilized in fluorescence 
microscopy image denoising. Ablation studies further vali-
date the indispensability of each integrated module within 
our algorithm. While image analysis remains a cornerstone 
of our study, we acknowledge the parallel importance of 
theoretical modeling in understanding gene/protein sig-
naling network dynamics. By a combination of our image 
analysis with network dynamics modeling, we aim to a 
more profound comprehension of regulatory mechanisms, 
potentially unveiling novel therapeutic targets for diseases 
intervention.

The proposed method UNet-Att gives priority to the 
denoising accuracy. The network architecture of the denois-
ing algorithm in this study is more complicated and intri-
cate, resulting in a trade-off for increased training time. 
However, after the training process, the denoising process 
didn’t take more time compared with the mainstream meth-
ods. The ability to obtain clearer images with preserved 
details supports cutting-edge research in neuroscience, cell 
biology, and other biomedical fields. This can lead to new 
discoveries and advancements in understanding complex 
biological systems. The denoising efficiency would be fur-
ther enhanced with the combination with diffusion method, 
transformer, and large language model (LLM) for future rel-
evant exploration work. Recently the advanced diffractive 
neural network relying on stacked intelligent metasurfaces 
(sim) has been proposed for image reconstruction [64]. The 
sim-based diffractive neural network can perform edge 
detection and image enhancement directly in the optical 
domain, which could speed up preprocessing steps in com-
puter vision pipelines. The integration of such a network 
holds the potential in future development of high-speed 
image denoising methods.
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The results of the ablation experiments, presented as mean 
metrics across algorithmic iterations, are summarized in 
Table  3. The comparative data unambiguously demon-
strate that the denoising capabilities of UNet-Att surpass 
its counterparts across all three evaluative criteria: Peak 
Signal-to-Noise Ratio (PSNR), Structural Similarity Index 
Measure (SSIM), and Normalized Root Mean Square Error 
(NRMSE). Consequently, employing the attention module 
and the multidimensional upsampling module both con-
tribute to improving the efficacy of two-photon microscopy 
image denoising. Furthermore, the overall arrangement of 
the attention module proves great advantage in enhancing 
the denoising performance.

In addition, a visual comparison was conducted to assess 
the result of the ablation experiments, as illustrated in 
Fig. 6d. The results reveal significant insights into the effec-
tiveness of each module. Notably, removing the attention 
module leads to a noticeable loss of information, indicating 
its crucial role in preserving image details. Similarly, the 
removal of the multidimensional upsampling module also 
results in substantial information loss, which is visually evi-
dent. Moreover, eliminating the attention module arrange-
ment in the upsampling network layer reduces the denoising 
ability of the algorithm, allowing residual noise to persist 
in the image. Consequently, it can be concluded that the 
careful configuration and placement of each module in our 
UNet-Att algorithm are instrumental in achieving effective 
image denoising and preserving the essential information. 
These design choices significantly enhance the denoising 
performance of two-photon microscopic images.

Conclusion and discussion

The quantitative analysis of cellular and tissue imagery is of 
pivotal for elucidating their functional dynamics [61–63]. 
This paper presents a novel denoising algorithm, UNet-Att, 
specifically designed to address the denoising challenges 
encountered in two-photon microscopic images. By com-
bining the concepts of the UNet + + network and attention 
mechanism, our proposed algorithm effectively suppresses 
noise while preserving the essential texture and structural 
information in fluorescent microscopic images.

Table 3  Comparison of indicators of denoising results of ablation 
experiments
Methods PSNR/dB↑ SSIM↑ NRMSE↓
Raw 32.19 0.8553 0.5047
UNet++ 40.73 0.9643 0.1910
Attention-Unet 38.37 0.9484 0.2503
UNet-Att without DA 38.63 0.9553 0.2415
UNet-Att 41.61 0.9684 0.1709
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