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Abstract

Aging is a complex and heterogeneous biological process at cellular, tissue, and individual levels. Despite extensive effort in scientific
research, a comprehensive understanding of aging mechanisms remains lacking. This study analyzed aging-related gene networks,
using single-cell RNA sequencing data from >15 000 cells. We constructed a gene correlation network, integrating gene expressions
into the weights of network edges, and ranked gene importance using a random walk model to generate a gene importance matrix.
This unsupervised method improved the clustering performance of cell types. To further quantify the complexity of gene networks
during aging, we introduced network structural entropy. The findings of our study reveal that the overall network structural entropy
increases in the aged cells compared to the young cells. However, network entropy changes varied greatly within different cell subtypes.
Specifically, the network structural entropy among various cell types may increase, remain unchanged, or decrease. This wide range
of changes may be closely related to their individual functions, highlighting the cellular heterogeneity and potential key network
reconfigurations. Analyzing gene network entropy provides insights into the molecular mechanisms behind aging. This study offers
new scientific evidence and theoretical support for understanding the changes in cell functions during aging.
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Introduction
The emergence of complex biological processes is typically not
caused by a single molecule, but results from the disruption of
cellular signaling or the multifaceted responses to the external
environment, driven by dynamic changes in the interactions
between numerous molecules [1]. In biological networks, the
interactions between molecules constitute the edges of the
network and form the basis of biological functions and signal
transduction [2]. Therefore, it is crucial to explore the dynamic
changes in molecular interactions and gain a comprehensive
understanding of molecular networks. The transcriptional
regulation of genes underpins all fundamental cellular processes.
Interactions between genes form gene regulatory networks
(GRNs) that control cell identity and fate determination, and
play significant roles in the development of various diseases [3].
Consequently, the changes in GRN may alter the state or the
function of cells [4–6], thereby triggering the onset of diseases
[7, 8]. Constructing GRNs helps researchers to better understand
the interactions between genes.

To construct GRNs, researchers have exerted considerable
effort and applied a variety of modeling methods [9–11]. Tradi-
tionally, scientists often focused on analyzing a limited number of
signaling pathways [12]. However, with the rise of systems biology,

the scope of the research has expanded to the entire genome.
In particular, the advancement of single-cell transcriptomics
technology has provided us with an unprecedented ability to
observe gene expression changes across different cell types and
organs [13–15]. Research on biological systems generally focuses
on exploring significant variations in gene expression during
biological processes [16]. However, studies have shown that even
small changes in the expression of non-differentially expressed
genes can lead to substantial biochemical effects and play a
key role in a variety of biological functions [17–19]. Therefore,
network-based exploration of differential molecular interactions
rather than differential expression can reveal the underlying
dynamic changes in molecular regulatory relationships, thereby
better characterizing the transformation of biological functions
[20]. Currently, researchers have developed a variety of models,
including Bayesian network models [21, 22], graphical Gaussian
models [23], and correlation networks [24], to directly extract
information of gene interactions from expression profiles and
determine potential regulatory relationships [25]. These models
provide a comprehensive perspective for understanding the
mechanisms of complex disease pathogenesis from a network-
based viewpoint [26–29].

Aging is a complex and multifactorial biological process
associated with various diseases such as malignancies, diabetes,
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cardiovascular diseases, and neurodegenerative disorders [30].
The occurrence of aging is profoundly influenced by intracellular
gene regulation [31–33]. With the application of single-cell
transcriptomics [34–37], researchers have extensively explored
gene expression changes during aging [38, 39]. Although existing
studies have partially revealed ongoing changes in gene expres-
sion and signaling pathways during aging [40], our understanding
of this complex process remains limited. Traditional methods
often focus on a single aspect of gene expression or gene networks,
which restricts understanding of the mechanisms of aging.
Therefore, an integrated approach that considers both gene
expression and network information is needed to gain a more
comprehensive and in-depth understanding of the aging.

In this study, we first adopted a single-cell gene importance
ranking method to construct an aging-related single-cell weighted
gene network [41, 42]. By constructing a gene correlation network
based on gene expression correlations at the single-cell level and
integrating gene expression information into the weights of the
network edges, we further utilized a random walk model to rank
the importance of genes, generating a gene importance matrix
(GIM). Additionally, we introduce the concept of network struc-
tural entropy to quantify the complexity of aging single-cell gene
networks, thereby providing a new perspective for understanding
the structural and dynamic changes of gene networks during
aging. This study aims to construct a gene network through aging-
related single-cell data and explore the potential value of single-
cell gene importance ranking and network structural entropy in
aging research, with the expectation of providing new scientific
evidence and theoretical support for a deeper understanding of
aging mechanisms.

Materials and methods
Data
During the aging process, the skin, which is the largest organ of
the human body, undergoes various changes such as thinning,
reduced elasticity, wrinkles, and pigmentation. As a highly com-
plex and heterogeneous organ composed of various cells and tis-
sues [43], the aging of the skin is also complex and heterogeneous
[44]. To investigate the intrinsic mechanisms of skin aging, in
this study, we utilized the single-cell RNA sequencing (scRNA-seq)
dataset by Llorençet al. [45], which specifically excludes the inter-
ference of external environmental factors such as photoaging.
The dataset comprises 15 457 cells of 13 different types (Table 1),
collected from five independent skin samples from the inguinal
iliac region of male donors of different ages.

Data preprocessing
In single-cell data analysis, preprocessing the data is a crucial
step to ensure data accuracy and reliability. In this study, the
raw data have passed quality control. We further normalized
and logarithmically transformed the dataset and obtained the
preprocessed Gene Expression Matrix (GEM).

Construction of single-cell gene correlation
networks
Previous research has demonstrated that studying cell-specific
networks using single-cell data is effective for analyzing cellular
heterogeneity and complexity [46]. Therefore, we use single-cell
data to construct gene correlation networks.

The schematic representation of the preprocessed GEM is
shown in Fig. 1a. The element of GEM, Ek

i , denotes the expression
level of gene i in cell k in the GEM. To construct a gene correlation

network, we first need to identify the correlations between
gene pairs. Typically, researchers use statistical methods to
quantify these correlations [42, 47]. In this process, based on
the independence assumption between gene pairs, we calculated
GEM for all gene pairs. Taking gene i and gene j as an example, we
mapped the expression value of gene i, Ei, and the expression
value of gene j, Ej, of each cell into a two-dimensional gene
expression space, forming a scatter plot, as shown in Fig. 1b (left
side). In this scatter plot, each point represents an individual cell,
with its position determined by the expression levels Ei and Ej of
genes i and j, respectively.

For further analysis, we define two neighborhoods around cell
k, corresponding to the expression values neighborhoods of gene
i and gene j, respectively. Here, nk

i represents the number of cells
where the expression level of gene i is close to the expression level
Ek

i of gene i in cell k; nk
j represents the number of cells where the

expression level of gene j is close to the expression level Ek
j of gene

j in cell k; nk
ij represents the number of cells in the intersection

of these two neighborhoods, i.e. those cells whose expression
levels of both genes i and j are close to the corresponding gene
expression levels in cell k. In cell k, the independence index
statistic ρk

ij for genes i and j is given by the following formula:

ρk
ij =

nk
ij

nC
− nk

i

nC
·

nk
j

nC
, (1)

where nC represents the total number of cells in the GEM. For
simplification, nk

i and nk
j are preset to be 0.1nC. Previous studies

[47] have shown that the statistic ρk
ij can be used to analyze gene

associations Aij
k at the single-cell level, where Aij

k is defined
as shown in Equation (S1). In the process of constructing the
gene correlation network, the existence of each edge indicates
that the statistical independence index ρk

ij between gene i and
gene j is greater than or equal to the significance level, 0.01, as
shown in Fig. 1b (right). In this study, the significance level, set
consistently at 0.01 as the threshold, serves as the criterion for
assessing the correlation between two genes within individual
cells, aligning with previous relevant reports [18, 47, 48]. By repeat-
ing this process for all gene pairs and all cells, we can ultimately
construct nC gene correlation networks for nC cells based on the
gene correlations matrix A.

Gene expression–weighted gene correlation
edges
Although gene networks constructed through correlations can
reveal interaction patterns between genes, this method may have
limitations. It might overlook the quantitative information of gene
expression levels, thereby leading to the loss of critical expression
details, as shown in Fig. 1c (right side). To remedy this defi-
ciency, we introduce the concept of weighted edges, assigning gene
expression levels as weights to the connections between gene
pairs, thereby obtaining a weighted single-cell gene correlation
network, as shown in Fig. 1c (left side). When there is a correlation
between genes i and j in cell k, the corresponding edge weight Wk

ij

can be defined as

Wk
ij = Ek

i∑
m∈Lk

j
Ek

m
, (2)

where Ek
m represents the expression level of gene m and Lk

j denotes
the set of neighboring genes of gene j in cell k. For any gene
i connected to gene j within the gene set, we not only identify
whether there is a correlation but also assign a quantitative
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Figure 1. Schematic diagram of constructing the single-cell gene correlation network. (a) Data preprocessing. The preprocessed single-cell GEM consists
of nC cells and nC genes. (b) Gene correlation identification. Scatter plots are created for every gene pair in the matrix, resulting in nG ∗ (nG − 1) /2 scatter
plots, each containing nC points (cells). In the scatter plot for genes i and j, the neighborhoods around cell k are represented by two boxes for genes i and
j, respectively. The number of cells within the boxes are nk

i and nk
j , with nk

ij being the number of cells in the intersection. Based on this, the independence

statistic ρk
ij and correlation Ak

ij are calculated. (c) Construction of weighted gene correlation network. For each cell k, a network is constructed based

on the gene correlations matrix A. The weight of the edge between genes i and j is calculated based on gene expression levels. A total of nC networks
are constructed. (d) Generation of single-cell GIM. A random walk model is constructed for each gene-weighted correlation network, and a ranking
algorithm is used to determine the importance ranking of genes in the cells, ultimately resulting in a GIM that includes all cells. (e) Construction of
cell-type-specific networks with age variation. (f) Calculation of network structural entropy. The adjacency matrix of marker genes and the degree d(G)
of corresponding gene nodes are obtained, along with the probability p(d) of each degree, to compute the network structural entropy HS.
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Table 1. Details of the dataset

Cell type Number of cells Number of young cells Number of old cells

Diff. keratinocytes 1399 130 1269
EpSC and undiff. progenitors 1187 182 1005
Erythrocytes 310 272 38
Lymphatic EC 294 65 229
Macrophages + DC 2228 680 1548
Melanocytes 123 34 89
Mesenchymal 594 347 247
Pericytes 1220 808 412
Pro-inflammatory 1793 592 1201
Secretory-papillary 1675 454 1221
Secretory-reticular 1886 399 1487
T cells 1281 1054 227
Vascular EC 1467 437 1030
Total 15 457 5454 10 003

weight to the correlation edge based on the expression level of
gene i. Additionally, it is important to note that an unsupervised
method is used to analyze the preprocessed data, which means
that we reveal the intrinsic structure of the data itself, rather than
being based on any specific model or expected outcome.

Quantifying gene node importance using
random walks
Next, in the analysis of single-cell gene correlation networks, we
employ the PageRank algorithm to evaluate the importance of
genes [49]. This algorithm relies on two fundamental assump-
tions: (i) the quantity assumption, which posits that the impor-
tance of a web page increases with the number of inbound links
it receives from other pages; and (ii) the quality assumption,
which posits that the importance of a web page also increases
when it is linked by multiple high-quality pages. Specifically,
the PageRank algorithm quantifies the importance of each gene
node by calculating its score through the formula (S2). In a gene
network, if a gene node has more associated edges, or is connected
to more than one key gene node, it usually has a higher PageRank
score, indicating that it is more biologically important. However,
the traditional PageRank method does not fully consider the
expression values of the gene nodes. To further incorporate the
information of the expression level of a gene, we introduce a
weighting mechanism to balance and enhance the assessment of
node importance. The weighted PageRank value PRWk

i considering
the gene expression weight Wk

ji is calculated using the following
formula:

PRW(T + 1)k
i = (

1 − d
) + d

∑

j∈Lk
i

PRW(T)k
j · Wk

ji, (3)

where Wk
ji is obtained from Equation (2) and represents the weight

of gene j associated with gene i in cell k. PRW(T + 1)k
i denotes

the PageRank value of gene i in cell k at iteration T + 1, which
integrates the gene expression weight Wk

ji. PRW(T)k
i represents

the PageRank score of gene j in cell k at iteration T. The iter-
ation stops when the number of iterations reaches 100 or the
convergence accuracy reaches 1.0e−6. By employing this method,
we can calculate the GIM, as shown in Fig. 1d. Given that we
have constructed a unique gene network for each cell, to ensure
comparability of gene networks across different cell types, we
integrate and normalize the gene networks of all cells of a specific

cell type to form a representative network by Equation (S3), as
shown in Fig. 1e.

Structural entropy for characterizing complexity
of gene correlation networks
To gain a deeper understanding of the complex characteristics of
gene networks during aging, we employed the method of quanti-
fying network structural entropy [50–52], as illustrated in Fig. 1f.
First, in cell k, based on the gene correlation network constructed
from the gene correlation matrix A, we calculated the degree d(G)
of each gene node. Then, we counted the number of nodes nk(d) for
each degree in the network. Subsequently, we divided the number
of nodes for each degree by the total number of gene nodes nG

in the network to obtain the degree probability pk(d). The degree
probability is defined as

pk(d) = nk(d)

nG
. (4)

Then, based on the distribution characteristics of these
degrees, we quantified the network structural entropy. The gene
network structural entropy Hk

S for cell k is calculated using the
following formula:

Hk
S = −

nG−1∑

d=0

pk(d) · log pk(d). (5)

Results
The gene importance matrix more accurately
reveals single-cell age differences
Based on the preprocessed GEM, we performed a detailed analysis
of the cellular composition of human skin and identified 13 differ-
ent cell types, as shown in Fig. 2a (left side). Then, we conducted a
comparative analysis of the cell types captured in young and aged
cells, with results presented in Fig. 2a (middle) and Fig. 2a (right).
The results indicate that all 13 cell types were captured in both
young and aged cells.

Aging is a complex physiological process, one of the char-
acteristics of which is a persistent inflammatory response
[53–55]. The senescence-associated secretory phenotype is a
hallmark of cellular senescence, which functions by promot-
ing local inflammation and recruiting immune cells. In this
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Figure 2. Visualization of human skin scRNA-seq data. (a) t-SNE visualization of 13 cell types in human skin. (b) Age-dependent changes in gene
expression of pro-inflammatory cells. (c) Age-dependent changes in gene expression of macrophages + DC.

process, pro-inflammatory cells and macrophages + DC cells
play unique roles [56]. Pro-inflammatory cells generally refer to
those cells that play a critical role in inflammatory responses
by secreting pro-inflammatory cytokines and chemokines,
which initiate and propagate inflammation. In contrast, the
role of macrophages + DC cells in inflammatory diseases is
more complex. Macrophages, depending on their function and
activation status, can execute either pro-inflammatory or anti-
inflammatory actions through cytokine secretion, and play a key
role in immune responses and immune regulation through phago-
cytosis and antigen presentation to defend against pathogen
invasion [57, 58]. However, aging macrophages and dendritic
cells may experience physiological gene regulation changes and
functional impairments [59–62]. Therefore, understanding the
changes in these cells during aging is crucial for the prevention
and treatment of related diseases. Based on this, we analyzed

pro-inflammatory cells and macrophages + DC cells, and the
results are shown in Fig. 2b and 2c. Figure 2b illustrates the gene
expression differences in pro-inflammatory cells between young
and aged skin. On the left side of the figure, the cluster analysis
distinguishes the cells in the young and old groups, forming
two distinct clusters. In the middle of the figure, CytoTRACE
was used to perform pseudotime trajectory analysis [63], which
simulates the continuous change of cell state and thus infers
the developmental trajectory of the cell with age. The results
show that the age distribution of pro-inflammatory cells is
consistent with their developmental trajectory, i.e. young cells
eventually develop into senescent cells. Additionally, single-
cell RNA velocity analysis was also performed to infer cell
developmental trajectories [64]. The results of RNA velocity
analysis on the right side of Fig. 2b further verify the direction and
rate of cell state change, revealing the dynamic process of young
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Figure 3. Visualization analysis of single-cell GIM. (a) Pro-inflammatory cells. (b) Macrophages + DC cells. Left: distribution of young and aging cells in
the PC2 versus PC4 combination space in the PCA. Middle and right: top 10 marker genes with the most significant expression differences between
young and aging cells identified by t-test, along with their ranking.

cells transitioning into aging cells. This provides strong support
for understanding the dynamic changes of cells during aging.
Similarly, we performed the same analysis on macrophages + DC
cells and obtained consistent conclusions, and the results are
depicted in Fig. 2c.

Next, we evaluated the performance of the GIM, with the
results presented in Fig. 3. Compared to the analysis results in
Fig. 2, which used only gene expression information, the new
method integrates gene expression and gene correlation network
data, demonstrating superior performance. Specifically, the visu-
alization results in Fig. 3a (left) and Fig. 3b (left) clearly distinguish
between young and aging cells in pro-inflammatory cells and
macrophages + DC cells, with more tightly clustered cell groups.
The visualization results of other cell types are shown in Figs. S1
and S2 in the supplementary materials. Furthermore, to quantita-
tively compare the performance of GIM and GEM in distinguishing
young and aging cells, we used Adjusted Rand Index (ARI) and
Normalized Mutual Information (NMI) as evaluation metrics and
performed the analysis for each cell type [48, 65]. As shown in Fig.
S3, the results indicate that GIM consistently outperforms GEM
across all combinations of principal components (PCs) considered.
Notably, GIM performs particularly well in the combined space of
PC2 and PC4, which is superior to other combinations of principal
components. In addition, we also compared the Gene Correlation
Network Degree Matrix method [47] and evaluated it using ARI,
Fowlkes–Mallows Index, and NMI. Our results further confirm the
superior performance of GIM, as shown in Fig. S4.

The results of Fig. 3a (right) and Fig. 3b (right) particularly
emphasize the key roles of specific genes in the aging. We found
that the gene MPPED2 and gene FBXO43 play important roles
in the regulation of aging pro-inflammatory cells. Studies have
confirmed that the gene MPPED2 plays a crucial role in cell

proliferation, migration, and invasion [66]. At the same time,
the gene FBXO43 is also involved in the regulation of the cell
cycle [67], and its function may be related to the increased
proliferation of pro-inflammatory cells such as Th17 during aging
[68]. Similarly, we found that the gene FCER1A plays a crucial
role in aging macrophages + DC cells. The protein encoded by
the gene the function of FCER1A in dendritic cells is critical
for the regulation of immune responses [69]. Dysfunction of
FCER1A during aging may lead to abnormal immune responses,
affecting pathogen clearance and inflammation control. For
young macrophages + DC cells, the gene SEMA5A shows its
unique role, with its encoded protein being highly related to
cell growth and development [70]. Additionally, SEMA5A can
regulate the proliferation of immune cells, thereby modulating
immune responses [71]. Furthermore, if a gene exhibits significant
differences between sample and control sample at the network
level rather than the gene expression level, we refer to this gene
as a “dark” gene [47]. Based on the GIM, we revealed several “dark”
genes in pro-inflammatory cells and macrophages + DC cells, as
shown in Fig. S5. Although at the level of gene expression, these
genes did not show differences between different cell groups and
showed low expression levels, they may play an important role in
cell biological functions. For example, MT1F has been confirmed
to be associated with cell migration and invasion [72].

Gene network analysis reveals cell specificity
The GIM not only reveals differences in gene expression
among different cell types but also uncovers disparities in
gene networks between different cell types. To further explore
cellular heterogeneity, we constructed a mixed network that
integrates young and aging marker genes. This strategy allows
us to simultaneously investigate the heterogeneity between

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data


Network structural entropy for scRNA-seq data during skin aging | 7

Figure 4. Integrated gene network of young and aging cells. (a) Pro-inflammatory cells. (b) Macrophages + DC cells. The upper panel displays the complete
gene network containing all genes, where nodes represent genes and the size of the nodes reflect the relative size of the node degree. Network edges
represent the correlation between gene pairs, and the weight of the edge is the ratio of the sum of the number of cells with correlated gene pairs in all
cell networks to the number of all cells. That is, the thickness and color of the network edges represent the strength of the association and probability
between genes. The lower side shows the marker gene network.

different cell types, as well as the heterogeneity within the
same cell type, by comparing the young cell network and the
aging cell network, and examining their dynamic changes over
time. Figure 4 illustrates the weighted gene correlation networks
of pro-inflammatory cells and macrophages + DC cells. Due
to cellular heterogeneity, these networks were normalized to
ensure comparability among gene networks from different cells.
However, as shown in Fig. 4a (upper), despite normalizing the
full gene networks of young and aged pro-inflammatory cells,
the complexity of the network still makes it challenging to
intuitively display information about nodes and edges. Therefore,
to overcome this challenge, we simplified the network structure
by focusing on the top 10 marker genes in young and aged cells.
Figure 4a (bottom) displays the network of the pro-inflammatory
cells. By comparing the marker gene networks of young and aged
pro-inflammatory cells, significant differences are observed.

In aging pro-inflammatory cells, the degree of some nodes
remained relatively unchanged, possibly indicating that gene
interactions remain stable during aging. Additionally, the
interaction probabilities between nodes also changed, which
may indicate a restructuring of the gene network in aging
cells. For example, the increased interaction probability between
CDC42SE1 and FBXO43 may be related to the proliferation of
pro-inflammatory cells in aging cells [67]. At the same time,
the decreased interaction probability between the RNF157 and
MPPED2 genes may be related to the regulation of inflammatory
and immune responses [73].

For macrophages + DC cells, Fig. 4b presents similar results.
Compared to young cells, aging macrophages + DC cells exhibit
significantly different network characteristics, where the degree
of some marker gene nodes decreases, which may reflect a reduc-
tion or loss of interactions between these genes during aging,
such as reduced phagocytic and antigen-presenting capabilities.
Nevertheless, we also observed that the interaction probabilities
between certain genes increased in aging macrophages + DC cells.

Specifically, the interaction probability between gene THBS2 and
gene UBFD1 significantly increased in aging cells. THBS2, an
extracellular matrix glycoprotein, may influence immune cell
migration and localization by regulating interactions between
immune cells and the extracellular matrix [74]. The gene UBFD1
participates in the degradation of intracellular proteins [75], and
its expression in immune cells is closely linked to cell cycle reg-
ulation and stress responses. The enhanced interaction between
these specific genes may be related to extracellular matrix remod-
eling, adjustment of immune cell migration, and maintenance of
intracellular protein balance in macrophages + DC cells.

Quantifying cellular network complexity through
gene network entropy
Network structural entropy, as a key indicator of the complexity of
networks, provides a new perspective for understanding changes
in gene interaction patterns during aging. In network analysis,
entropy holds significance at both macroscopic and microscopic
levels: at the micro level, it focuses on the connectivity character-
istics of individual nodes; at the macro level, it emphasizes the
heterogeneity of the entire network [50]. This study quantified
the entropy values by analyzing the degree distribution of gene
nodes. Firstly, we constructed weighted gene networks for each
cell of every cell type. Based on these networks, we then generated
gene link matrices for each cell. Subsequently, we calculated the
degree of each gene node in each cell and analyzed the frequency
distribution of the degrees in each cell. We then normalized these
frequencies to form the probability distribution of the degrees.
Finally, based on this probability distribution, we calculated the
network structural entropy of the gene network for each cell to
quantify the complexity of the network.

By applying this method, we delved into the structural char-
acteristics of gene networks in pro-inflammatory cells and pre-
sented the distribution of node degrees and entropy in networks
with varying numbers of marker genes in Figs. 5a, 5b, and 5c. The
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histograms on the left show the overall degree distribution of
the gene networks in young and aging cells. The results indicate
that the degree distribution in aging cells is similar to that in
young cells. The shape of the degree distribution, as well as the
mean and standard deviation, remain relatively stable during the
aging, as shown in Fig. S6a. This suggests that the GRN in pro-
inflammatory cells remains highly stable and consistent during
aging. The middle part of the figure details the degree distribution
of specific gene nodes. For example, the degree distribution of the
gene NR4A3 and gene IGJ node in aging cells is similar to that
in young cells. This observation indicates that the gene NR4A3
and gene IGJ plays a crucial role in regulating inflammatory
responses in both aging and young cells [76]. This finding aligns
with the phenomenon of inflammatory responses in aging cells.
It suggests that pro-inflammatory cells have an inherent stability,
maintaining a certain gene expression pattern during aging.

The right side of Fig. 5 shows the distribution of network
entropy in the gene networks of young and aging cells. The results
indicate that there is no significant difference in the average
structural entropy of gene networks between young and aging
pro-inflammatory cells, and the average entropy of aging cells
remains stable. The white squares in the center of the violin plots
clearly indicate the positions of the averages. This indicates that
the gene network structure of pro-inflammatory cells is basically
stable and maintains its pro-inflammatory function. Studies have
shown that senescent cells maintain a higher inflammatory
response. Additionally, studies have shown that a moderate
inflammatory response is important for clearing pathogens and
damaged tissues and promoting tissue repair [77]. Aging cells
can help to maintain tissue homeostasis by secreting cytokines
and growth factors [78]. This adaptability is crucial not only for
the survival of the cells themselves but also for the health and
function of the entire organism.

Additionally, we also specifically calculated the degree and
entropy distributions of the weighted correlation networks for 10,
50, and 100 marker genes in macrophages + DC cells. The results
on the left side of Fig. 6 indicate that the degree distribution of
aged macrophages + DC cells is broader and more diverse, sug-
gesting the presence of more nodes with high connectivity in the
network. Figure S6b further confirms this, showing that the mean
and standard deviation of the degree in aging macrophages + DC
cells significantly increase, revealing an increase in the variability
and instability of gene interactions. The degree distributions of
specific gene nodes in the middle sections of Fig. 6 provide more
concrete evidence of this phenomenon. Genes such as RP11-
111F5.4, FCER1A, and SEMA5A exhibit higher connectivity in aging
macrophages + DC cells. Moreover, the gene network structural
entropy of aging macrophages + DC cells is also relatively higher,
indicating that their network structure is more complex and
disordered. Studies have shown that with aging, macrophages in
the immune system may be subject to more diverse and persistent
extracellular signals, which may disrupt coordinated immune
gene expression, resulting in age-related circadian and homeo-
static immune dysfunction [79]. Aging macrophages have reduced
calcium uptake, which triggers an inflammatory response [80].
This suggests that the GRN in aging cells may not respond to exter-
nal stimuli in an orderly manner. These observations suggest that
during aging, macrophages + DC cells may experience changes
or losses in the function of key genes, and the precision of their
regulatory mechanisms may be compromised, which may reflect
a reduction in adaptability. Studies have shown that macrophages
play a critical role in tissue regeneration, and aging can lead to
a decline in tissue regenerative function, affecting the effective
repair of tissue damage [57, 81].

Finally, we further explored the changes in GRN of other cell
types during aging. We selected 50 marker genes as the basis
and calculated the distribution of network structural entropy in
different cell types. As shown in Fig. S7, we observed an increas-
ing trend in network structural entropy in aged differentiated
keratinocytes, pericytes, secretory-papillary cells, and secretory-
reticular cells. This phenomenon suggests that as these cells age,
their GRNs are tending toward a more disordered state, which
may be accompanied by potential loss and disorder of genomic
information and function [45, 82–84]. Meanwhile, in Fig. S7, we
observed that the gene network structural entropy of Epithelial
Stem Cells (EpSCs) and undifferentiated progenitors, T cells, and
vascular Endothelial Cells (EC) did not exhibit significant changes.
This suggests that these cells may maintain a certain degree of
gene interaction patterns during aging, thereby preserving the
stability of gene function [43]. For example, the maintenance of
T-cell homeostasis is the key to the body’s resistance to aging and
the maintenance of health [85–87].

Notably, we observed an interesting phenomenon in aged
melanocytes and mesenchymal cells: The structural entropy of
gene networks in these aged cells showed a decreasing trend
compared to young cells, as shown in Fig. 6d. This decrease
in network structural entropy indicates that the gene network
patterns become more simplified and ordered. Figures S6c, S8, and
S9 in the supplementary information provide strong evidence that
the mean and standard deviation of the network degree in aging
melanocytes significantly decrease, and the degree distribution
becomes more concentrated and uniform, indicating a reduction
in the complexity and uncertainty of the gene regulatory network.
The orderliness of this gene network suggests that these cells
are more inclined to perform specific functions during aging,
rather than exhibiting the higher functional diversity and
plasticity as young cells do. For example, aging melanocytes
show reduced differentiation ability and plasticity, with a higher
degree of differentiation, greater specificity, and more functional
specialization [88]. Moreover, this process may also involve
functional decline and loss, such as the decrease in the ability
of melanocytes to maintain skin pigmentation balance and resist
UV damage during aging [89].

Furthermore, we analyzed the overall gene network structural
entropy of all cells. As the fundamental units of life, cells need
maintain a highly ordered state of function and structure [90].
However, as the organism ages, the molecular mechanisms and
structures within cells may gradually deteriorate. This deteriora-
tion may be accompanied by metabolic disorders and functional
failures, leading to an increase in the entropy (i.e. disorder) within
the cells [91, 92]. In Fig. 6e, we present the changes in gene network
structural entropy during aging across all types of cells, which are
consistent with the above viewpoint. Our findings suggest that
the changes in gene network structural entropy during aging are
complex.

Discussion and conclusions
Aging exhibits significant heterogeneity, with different individu-
als, tissues, cell types, and even processes within cells showing
distinct aging patterns [93, 94]. Studies have revealed remodel-
ing and functional changes in cellular networks during aging
[95–97]. These studies indicate that aging not only affects the
internal gene network structure of cells but also alters the reg-
ulatory relationships between genes, which may be maintained,
enhanced, or weakened, in turn affecting specific or general bio-
logical functions of cells [98, 99]. Furthermore, the transcriptional
profile of gene pathways changes with aging, and this change

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data
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Figure 5. Gene network structural entropy of pro-inflammatory cells. (a) Top 10 marker genes. (b) Top 50 marker genes. (c) Top 100 marker genes. The
left panel shows the frequency of the degree of gene nodes in the network, the middle panel displays the distribution of the degree of gene nodes, and
the right panel shows the distribution of gene network structural entropy between young and aging cells. The white box and number in the violin plots
represent the mean value.

shows differences across cell populations and is regulated in
a cell type–specific manner [93]. These findings highlight the
diversity of different cell types in performing distinct functions
and the complexity of gene regulation during aging. Traditional
gene network methods often overlook the heterogeneity among
different cell types, treating tissues or cell populations as homoge-
neous entities [100], which may restrict our understanding of the
comprehensiveness of GRN. The advent of scRNA-seq allows for a
deeper understanding of cellular network systems at the single-
cell level [101, 102]. In this study, we used the method of single-cell
gene importance ranking to construct weighted gene correlation
networks related to aging to reveal the complex heterogeneity and
dynamic changes within cell populations during aging.

Because relying solely on gene correlation network analysis
may to some extent lose information about gene expression,
we adopted an approach that simultaneously considers gene

expression and gene networks to generate the GIM. GIM not
only improves the clustering performance of cell types but
also successfully reveals “dark” genes that are difficult to
discover in traditional gene expression analysis, as shown in
Fig. S5. These genes may not exhibit significant differences in
expression levels but could play a pivotal role in the gene network,
significantly influencing network regulation. Current research
has targeted these “dark” genes to treat various diseases, including
neurodegenerative diseases, cancer, autoimmune diseases, and
aging [103]. Our research provides new insights in identifying and
understanding these frequently neglected “dark” genes.

Although researchers have extensively studied cell fate
through gene expression analysis, the cell fate is not only
determined by the gene expression level but also controlled by
the underlying GRN [104]. Currently, our understanding of age-
related changes in cellular networks remains limited. To delve

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data
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Figure 6. The distribution of degree and gene network structural entropy. (a) Top 10 marker genes for macrophages + DC cells. (b) Top 50 marker genes
for macrophages + DC cells. (c) Top 100 marker genes for macrophages + DC cells. (d) The distribution of gene network structural entropy for the top 50
marker genes in melanocytes and mesenchymal cells. (e) The distribution of gene network structural entropy across all cell types.

deeper into this issue, we constructed cell-type or state-specific
weighted GRN within individual samples. The results in Fig. 4 and
Fig. S10 demonstrate that during aging, not only do different types
of cells exhibit heterogeneity, but even cells of the same type show
heterogeneity between young and aged states. Compared to gene

expression from single-cell data, the cell-specific networks we
constructed provide a reliable characterization of the transition
process of aging in different cell types.

The dynamism of GRN is a key mechanism by which cells
respond to external stimuli and maintain the balance of cellular

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae698#supplementary-data
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functions [3]. Therefore, a deep understanding of the changes in
these networks is crucial for revealing the molecular mechanisms
underlying the disease occurrence. In this study, we introduced
the concept of network entropy to quantify the uncertainty or dis-
orderliness of node connection patterns within the network [105].
Previous studies have utilized network entropy to quantify the
differentiation potential of single cells and distinguish between
normal and cancer stem cell phenotypes [106–108]. Studies have
also shown that cells with lower degrees of differentiation exhibit
higher “disorder” in their intracellular states [109]. In this study,
we observed complex changes in the network structural entropy
of cells during aging, which may be closely related to the different
functions performed by these cells. As shown in Fig. 6, the network
structural entropy of aging macrophages + DC cells is relatively
high, which is consistent with the increased inflammatory lev-
els and dysfunctional phenomena of macrophages during aging
[30, 80]. Notably, the results in Fig. 6d show a decrease in the
network structural entropy of aging melanocytes and mesenchy-
mal cells, which contradicts our conventional understanding of
entropy increase in biological systems. Typically, as organisms
age, the intracellular molecules and structures may gradually
degrade, and metabolic processes become more disordered, lead-
ing to an increase in entropy [90–92]. The changes in network
structural entropy of all cells shown in Fig. 6e support this view.
Here, the decrease in network structural entropy in aged cells
may suggest a reduction in nonessential gene expression during
aging, thereby simplifying the gene network. This simplification
might prompt cells to adopt more energy-efficient regulatory
mechanisms, reducing energy consumption in complex regula-
tory processes and maintaining core functions by optimizing gene
expression patterns.

In summary, the quantification of gene network structural
entropy provides a powerful tool for measuring the hetero-
geneity of gene networks. This indicator could help us identify
complex network reconstructions that may occur during aging.
Importantly, our study highlights the complexity of entropy
changes during aging: Entropy can increase, remain unchanged,
or decrease, and these changes are closely related to the functions
of different cell types. By analyzing the changes in gene network
structural entropy, we gain insights into the dynamic evolution
of GRN from young to old age. Through this method, we can
better understand the functional changes in cells during aging
and provide new strategies for slowing the aging and treating
age-related diseases.

Key Points

• The weighted gene correlation network integrating gene
expression and gene network information was con-
structed by using single-cell RNA sequencing technology,
providing a new analytical perspective for the study of
cell aging.

• The Gene Importance Matrix was obtained based on the
access probability of gene nodes by applying a random
walk model. The Gene Importance Matrix enhanced cell
type clustering performance and identified key genes
involved in the aging process.

• The complexity of gene networks during aging was
quantitatively analyzed by introducing network struc-
tural entropy. It was found that the overall network
structural entropy of aging cells exhibited an increasing

trend, while different functional cell subtypes showed
diverse changes.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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