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A B S T R A C T   

Pyroptosis, a recently identified type of cell death, and apoptosis are fundamental and complex biological pro
cesses that underlie a multitude of diseases. However, the crosstalk between pyroptosis and apoptosis, as well as 
their molecular regulatory mechanisms governing decision-making, remain to be fully elucidated. In particular, 
comprehending how internal driving forces, including vital components of life such as proteins and reactions, 
collaborate with the environment to dictate cell fate remains an ongoing challenge. To address these issues, a cell 
death decision module model of the crosstalk between pyroptosis and apoptosis was developed. Stability analysis 
revealed the presence of three steady-state attractors within the death decision system: the apoptosis state 
attractor, the pyroptosis state attractor, and the concurrence state attractor. Landscape theory was employed to 
study the stochastic dynamic and global stability of the death decision system, allowing us to quantitatively 
describe the uncertainty of cell death decisions by measuring the production of Shannon entropy. In addition, we 
identified the dominant kinetic paths among different death mode attractors. We found that the dominant kinetic 
paths between different cell death modes usually do not pass through the minimum potential point. Through 
quantifying the underlying driving force of the system's dynamics, we determined that this phenomenon is 
attributed to the dependence of the driving force in non-equilibrium systems on both the gradient force and the 
curl force. In summary, this study offers a natural and physical groundwork for understanding the crosstalk 
network between pyroptosis and apoptosis, providing valuable insights and therapeutic strategies for the 
regulation of cell death modes in mammals.   

1. Introduction 

Cell death is one of the most fundamental events in the life of an 
organism, playing a crucial role in numerous essential biological pro
cesses. These processes include the elimination of useless, redundant 
and diseased cells, the maintenance of normal development, tissue 
morphology and organismal homeostasis, as well as the defense against 
pathogen invasion [1]. Excessive cell death can lead to the destruction of 
tissues, the immune system, and the nervous system, potentially 
resulting in diseases like AIDS, Alzheimer's disease, and Parkinson's 
disease. Conversely, inadequate cell death can lead to uncontrolled cell 
growth, causing malignant tumors, viral infections, and a wide range of 
other related diseases [2,3]. In response to changes in their own internal 
state and surrounding environment, cells possess the ability to undergo 

death actively or passively by starting different intracellular signal 
pathways [4]. Over the past three decades, the study of cell death has 
been a hot research field in life science [5], among which apoptosis and 
pyroptosis are the two most widely studied modes of cell death in recent 
years [4]. Only after a thorough understanding of the molecular mech
anism of cell death, could we carry out drug intervention or even gene 
regulation on the proteins in the signal pathway to alleviate or cure 
these diseases. 

After GSDMD was identified as the executor of pyroptosis in 2015 
[6–8], pyroptosis has been gradually recognized as a very important 
programmed cell death mode. Pyroptosis causes massive release of 
cellular contents and induces inflammation. Many recent clinical studies 
show that people infected with COVID-19 are highly correlated with 
pyroptotic death signaling and inflammasomes [9–12]. Over the years, 
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some molecular drugs such as resveratrol and disulfiram have been 
developed in clinical trials of COVID-19 treatment to control pyroptotic 
cell death by inhibiting inflammasome assembly and modifying GSDMD 
to prevent pore formation [11,13,14]. Unlike pyroptosis, apoptosis does 
not induce an inflammatory response during the elimination of excess 
cells in the body, thereby avoiding the risk of over-immunity [15,16]. 
However, numerous experiments have reported the close relationships 
between pyroptosis and apoptosis. High levels of GSDMD expression can 
rapidly induce pyroptosis [17]. When GSDMD is deficiency, activation 
of caspase-1 initiates apoptosis in cells [18]. Zheng et al. observed that 
GSDMD can disrupt mitochondrial membranes, leading to the release of 
cytochrome C and subsequent induction of apoptotic cell death [19]. 
Zhang et al. and Li et al. recently showed that inflammasomes can 
induce not only pyroptosis but also apoptosis [20,21]. Singh et al. found 
that SARS-CoV-2 infection can result in the activation of apoptosis as 
well as pyroptosis [11]. Although great achievements have been made in 
the study of switching strategies of cell fates, fundamental questions 
regarding how crosstalk pathways generate specific cell fate and what 
their potential mechanisms of switching are, remain unclear. 

In the case of general dynamical systems, fluctuations are inevitable 
and they often need the exchange of energy, material and information 
with surrounding environment to maintain its stability [22]. Conse
quently, it becomes essential to investigate nonequilibrium dynamics to 
comprehend the fundamental principles and mechanisms. While the 
weight of the state can be quantified by potential landscape, the dy
namics of the system are influenced by both the landscape and the flux. 
The landscape plays a role in stabilizing the system towards states or 

basins of attraction with higher probability or lower potential, while the 
flux introduces an additional force based on the net flow into or out of a 
particular state. To quantify the speed and manner in which the dy
namics process occurs, a path integral formulation was previously 
developed [23]. Furthermore, one can quantify the dominant kinetic 
paths from one state to another. Due to the rotational nature of the flux 
force, the nonequilibrium transition states will be shifted away from the 
saddle point of the landscape. The kinetic rate is then determined by the 
effective barrier or action between the starting state and the nonequi
librium transition state. In addition to non-equilibrium dynamics, non- 
equilibrium thermodynamics can also be used to describe the natures 
of global emergence [24–26]. In fact, the thermodynamic cost for 
maintaining the function of the dynamical system can be quantified by 
the entropy production rate. From its definition, one can see that it is 
directly related to the rotational flux which is the nonequilibrium 
driving force [22]. Together with concepts and tools developed in other 
areas of nonequilibrium physics, significant progress has been made in 
unraveling the principles underlying efficient energy transport in cell 
cycle [27], as well as cell differentiation and development [28,29], 
aging [30], cancer [31–33], immune responses [33], neural networks 
and function of the brain [34], population dynamics and ecology [35], 
and evolution [36,37]. Here, we intend to explore how these theories 
work in the crosstalk between pyroptosis and apoptosis, which will 
provide a holistic view and physical explanation for the mechanistic 
understanding of death modes selection, offering potential therapeutic 
strategies for controlling various modes of cell death. 

Fig. 1. Modeling the death decision module between pyroptosis and apoptosis. (a) The coarse-grained cell death decision module. The network contains pyroptosis 
constituent caspase-1/GSDMD and apoptosis constituent caspase-8/9/3. (b) Comparison between experimental data (histograms) and simulation results (lines) of the 
effectors time-course responses. (c) The trajectories from 40 sets of initial conditions in the GD–C3 phase plane, in which every trajectory converges to one of the 
three stable steady states. (d) Red and blue curves indicate nullclines for GD and C3, respectively. The vector field is indicated by gray arrows. Filled and open circles 
denote stable and unstable steady states, respectively. The unit is arbitrary. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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2. Methods and results 

2.1. Cell death decision module between apoptosis and pyroptosis 

To investigate the regulatory mechanisms governing specific cell fate 
decisions, a coarse-grained cell death decision module based on the 
recently reported crosstalk between pyroptosis and apoptosis was 
developed. As shown in Fig. 1a, the module comprises two constituents, 
i.e., pyroptosis effector caspase-1/GSDMD and apoptosis effector 
caspase-8/9/3. In the pyroptosis constituent, caspase-1 cleaves and ac
tivates GSDMD to ignite pyroptosis [8]. However, the N-terminal frag
ment of GSDMD can also directly inhibit caspase-1, providing an 
efficient negative feedback loop for GSDMD activation [38]. In the 
apoptosis constituent, caspase-8/9 cleave caspase-3 and the cleaved 
caspase-3 also activate caspase-8/9, providing an efficient self- 
activation of this module for apoptosis induction [39–41]. Apoptosis 
and pyroptosis compete with each other. The apoptosis effector caspase- 
3 can suppress pyroptosis by inhibiting its effector, GSDMD [42]. In 
addition, GSDMD can indirectly block apoptosis by strongly inhibiting 
the intermediate processes involved in the activation of caspase-3. This 
is supported by recent experiments showing that apoptosis can occur in 
GSDMD deficient cells [6–8]. In addition, GSDMD can also inhibit 
caspase-3 by limiting the activation of its activators caspase-8/9 [18]. 

Based on the death decision module shown in Fig. 1a, we constructed 
a corresponding model described by two coupled ordinary differential 
equations (ODEs) presented below: 

dGD
dt

= kS GDS
(GDtot − GD)

n1

(GDtot − GD)
n1 + JS GD

n1
− k1GD

GDn2

GDn2 + JGD
n2

− k2C3
GDn3

GDn3 + JC3 GD
n3
− kGDGD,

(1)  

dC3
dt

= kS C3S
(C3tot − C3)n4

(C3tot − C3)n4 + JS C3
n4
− k3GD

C3n5

C3n5 + JGD C3
n5

+ k4C3
(C3tot − C3)n6

(C3tot − C3)n6 + JC3
n6
− kC3C3.

(2) 

GD and C3 respectively represent the activation levels of pyroptosis 
constituent and apoptosis constituent. The first term on the right-hand 
side of Eq. (1) represents the activation term of GD induced by stimu
lation S. The second term on the right-hand side of Eq. (1) corresponds to 
the self-inhibition of species GD. The last two terms on the right-hand 
side of Eq. (1) describe the negative feedback effect of C3 on GD and 
the degradation/inactivation of GD. Eq. (2) describes the dynamics of 
C3, where the first term describes the stimuli-induced activation of C3. 
The second term represents the negative feedback effect of GD on C3. 
While the last two terms represent the self-activation and the degrada
tion/inactivation of C3, respectively. GDtot and C3tot are the total levels 
of GD and C3. To obtain reliable model parameters, simulation was 
carried out and compared with the corresponding experimental data 
under the conditions of wildtype (WT) and GSDMD knockout (GDKO) 
(Fig. 1b) in BMMs. For WT BMMs (red histograms and lines), GSDMD is 
activated upon stimulation, and then GSDMD is cleaved and rapidly 
accumulated (Fig. 1b (i)) to trigger pyroptosis, whereas the apoptosis 
effector caspase-3 remain at rather low levels because of the inhibition 
effect of GSDMD (Fig. 1b (ii)). For GSDMD knockout BMMs (blue his
tograms and lines), caspase-3 is indirectly activated by stimulation, 
resulting in a shift from pyroptosis to apoptosis in the cells. Compared 
with WT, GSDMD knockout induces a delayed response of the apoptosis 
constituents (Fig. 1b (iii) and (iv)), resulting in a slower cell death 
pattern. 

Experimental analysis of cell morphology suggests that cells can 
exhibit the states of apoptosis, pyroptosis, or the concurrence of 
pyroptosis and apoptosis under certain conditions [21]. Multistability is 
a fascinating phenomenon that occurs in dynamic systems where, for a 
given set of parameters, the system can exist in different stable states. 

The particular stable state that the system settles into depends on the 
initial conditions of the system. To examine the stability of the death 
decision model, we assumed the 2D system starts from different initial 
values and numerically solve Eqs. (1) and (2). We chose 40 sets of 
different initial conditions in GD-C3 phase plane, and the results pre
sented in Fig. 1c show that their trajectories converge towards one of the 
three stable steady states, i.e., apoptosis state characterized by low GD 
and high C3 (blue point), concurrence state of apoptosis and pyroptosis 
characterized by medium GD and C3 (gray point), and pyroptosis state 
characterized by high GSDMD and low caspase-3 (red point). To un
derstand the dynamics of the 2D system graphically, we obtained the 
nullclines of GD and C3 by setting dGD/dt = 0 and dC3/dt = 0, and 
compute the vector field in the phase plane. As clearly depicted in 
Fig. 1d, the two nullclines intersect at five points, which represent two 
unstable steady states and three stable steady states, as the vector field 
indicates the system moves from any point towards one of the three 
stable states. Collectively, consistent with the experimental observa
tions, our steady-state results on the phase plain reveal that the 
apoptosis and pyroptosis death decision system exhibits tristability. 

2.2. Global stability analysis reveals the multi-death modes determined by 
stimulus 

We next employed bifurcation analysis to assess the expression level 
of protein and reactions that can induce the switch between different 
death modes in this section. We first took stimulus intensity (S) as the 
bifurcation parameter to investigate its effects on the effector proteins, i. 
e., C3 and GD. The corresponding bifurcation diagram is plotted in 
Fig. 2a. With the increase of stimulus intensity S, the system will go 
through five phases (phase I, II, III, IV, and V) with different numbers of 
stable states. In phase I (light blue region), the stimulus intensity S is 
small (< ~0.33) and the system exists a single stable state. The activated 
GD is stable at a low value (top panel in Fig. 2a), while the level of 
activated C3 is high (bottom panel in Fig. 2a). The timeseries of an 
illustrative example (point 1) when S = 0.2 in Fig. 2b indicate that cells 
will die only in the form of apoptosis. With the increase of stimulus 
intensity S (phase II enclosed by saddle node bifurcation points SN1 and 
SN2), the system exhibits bistability, i.e., two stable steady state (solid 
lines) separated by an unstable steady state (dashed line). SN1 is the low 
threshold of stimulus intensity S (~0.33) for GD activation and C3 
inactivation, while SN2 is the high threshold (~0.53) for GD inactiva
tion and C3 activation. In the bistable region, which steady state the 
system will reach mainly depends on the initial conditions. Small per
turbations of the initial condition may lead to different cell death modes. 
For example, at S = 0.4, the system finally evolves to a stable state with a 
high level of GD and a low level of C3 (Fig. 2b, point 2) from initial 
values of (0.5, 0.16), resulting in pyroptosis. If we drive the initial 
activation level of C3 from 0.16 to 0.17, the timeseries will converge to a 
low GD and high C3 steady-state values (Fig. 2b, point 3), resulting in 
apoptosis. 

As the stimulus intensity S gradually increases from 0.53 to 0.63 
(phase III, light yellow region), a new stable steady state with both high 
level of GD and C3 (Fig. 2b, point 4) is observed compared with region II, 
indicating the concurrence of apoptosis and pyroptosis. As the stimulus 
is further increased to orange region of phase IV (0.63 < S < 0.85), the 
steady-state representing apoptosis annihilate. When the stimulus in
tensity S is large enough (> ~ 0.85), the system exhibits a stable state 
and the activated GD maintains at a high level, which gradually in
creases with the increase of stimulus intensity (phase V, light pink re
gion), while C3 is stable at a quite low level, occurring pyroptosis only. 
Bifurcation analysis above suggest that the stimulus intensity S play a 
crucial role in determining the mode of cell death, whether it be 
apoptosis, pyroptosis or a concurrence of both. These results are sup
ported by our previous observed experimental data in RAW-asc cells 
upon lethal toxin (LT) stimulation [21]. As shown in Fig. 2c, occurrences 
of pyroptosis and apoptosis were measured by the release of lactate 
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Fig. 2. Bifurcation diagram and global stability of the death decision system. (a) Bifurcation diagram of GD and C3 as a function of stimulus intensity S. Solid lines 
indicate stable steady states, and dashed lines indicate unstable steady states. According to the number of steady states, the diagram can be divided into five phases. 
(b) Time series of GD and C3 corresponding to points 1, 2, 3 and 4 in fig. (a), respectively. (c) LDH release and caspase-3 activity with LT concentration increases. (d) 
Potential landscape changes when stimulus intensity (S) is 0.2 (i), 0.4 (ii), 0.6 (iii), 0.8 (iv), 0.9 (v), respectively. (e) The well depth of apoptosis, pyroptosis and co- 
occurrence state change as stimulus intensity changes. A, apoptosis state; P, pyroptosis state; I, concurrence state of apoptosis and pyroptosis. 
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dehydrogenase (LDH) and relative activity of caspase-3. With increasing 
LT concentration, the release of LDH increases gradually (Fig. 2c (i)), 
while caspase-3 activity exhibits a gradual increase followed by a sub
sequent decrease (Fig. 2c (ii)). This means that cells will only die in the 
form of apoptosis with low dose of LT. With the increase of LT con
centration, cells will die of apoptosis, pyroptosis, or the concurrence of 
apoptosis and pyroptosis. 

The mode of cell death is influenced by intrinsic or external fluctu
ations [43,44]. In order to comprehensively investigate the stochastic 
properties of the death decision system, the generalized potential 
landscape [26,45] was used to characterize the system's dynamic 
behavior in phase space from a global perspective. The stochastic dy
namics can be described by Langevin equation, i.e., dCi(t)/dt = Fi(C) +
ηi(t), where Ci represents the concentration of species. Fi(C) represents 
the driving force that describing the dynamics of the system. The term 
ηi(t) represents fluctuation or noise force, which obeys Gaussian distri
bution with correlation function <ηi (t) ηj(t’) ≥ = 2Dij δij δ(t- t’), where 
δij is the Dirac delta function, and D is the diffusion coefficient matrix 
characterizing the strength of the fluctuations. Here, we assumed the 
isotropic and homogeneous case D11 = D22. The probability evolution P 
for the system can be reflected by Fokker-Planck equation: 

∂P(C, t)
∂t

= −
∑

i

∂
∂Ci

[Fi(C)P(C , t)] +
∑

i
Di

∂2

∂Ci
2 P(C, t) (3) 

The global steady-state probability distribution Pss of the state space 
can be obtained by solving the steady-state solution of above Fokker- 
Planck equation. The corresponding dimensionless potential U can be 
calculated by the Boltzmann relation, U = − log(Pss). Since the compu
tational efficiency limits the direct access to the probability density 
through the evolution of the Fokker–Planck equation. We used the self- 
consistent mean field approximation method [46] to replace the steady- 
state probability distribution. 

The effects of stimulus intensity (S) on the global stability of the 
system was investigated and the corresponding potential landscapes on 
GD-C3 phase panel are shown in Fig. 2d. The basin with lower potential 
or higher probability represents a mode of cell death. When S = 0.2, the 
system exhibits a monostable landscape, implying that cells will die only 
in the form of apoptosis no matter what initial levels of the constituent 
are (Fig. 2d (i)). However, with a relative high stimulus intensity (S =
0.4), the landscape exhibits two basins of attraction, which characterizes 
apoptosis state and pyroptosis state (Fig. 2d (ii)). Noise can drive cells to 
switch between these two death modes, but cells tend to stay in 
apoptosis state due to lower potential. As the stimulus intensity further 
increases to 0.6 (Fig. 2d (iii)), a new basin representing coexistent state 
of apoptosis and pyroptosis is observed. The relative stability of the 
three stable states is correlated to the depth of potential valley. As S 
increases further (S = 0.8), the apoptosis state becomes less stable and 
finally disappears (Fig. 2d (iv)). Finally, the system evolves to a single 
pyroptosis landscape at S = 0.9 (Fig. 2d (v)). To quantify the landscape 
topology, we measured the well depth, the difference between basin and 
maximum potential surface. As the results shown in Fig. 2e, too small (<
~ 0.33) or too large (> ~ 0.85) intensity of S respectively induces the 
sole occurrence of apoptosis or pyroptosis. The depth of the apoptosis 
basin is decreased with the increase of S (black line), while the depth of 
pyroptosis basin is increased (blue line). The basin representing coex
istent state of apoptosis and pyroptosis appears with the deepest in the 
region of 0.53 < S < 0.85, indicating cells tend to die in the form of co- 
occurrence. Compared to bifurcation analysis, potential landscape 
analysis enables not only the observation of multistability, but also the 
accurate description of the transition dynamics of the system by quan
titatively calculating the potential of each basin. The application of 
potential landscape analysis provides a more convenient approach to 
understand the stochastic dynamics and global stability of the death 
decision system. 

2.3. Shannon entropy quantifies the uncertainty of multi death modes 

In cell death decision system, the dynamics of multi death modes can 
be observed at appropriate stimulus intensity, as the two or three basins 
shown in Fig. 2d. To measure the switching ability of the system among 
different states, Shannon entropy (SE), defined as SE = −

∑
ipilog2pi, 

was used to quantify the uncertainty of cellular fate decisions [47]. pi 

represents the probability of different death modes. When SE ––0, the 
system presents a single ordered state. The larger the value of SE is, the 
more disordered the system is. The produce for calculating SE shown in 
Fig. 3a. Firstly, the time series of variables was recorded by running the 
corresponding Langevin equation of the deterministic system with 
random initial state. Here we selected C3 because of its identifiability in 
cell death modes. Then the relative frequency of C3 was fitted with 
mixed Gaussian function. Finally, we used the normalized area under 
each peak of mixed Gaussian function as the probability of corre
sponding death mode to further calculate SE. As shown in Fig. 3b, the 
generated frequency distributions of C3 vary with stimulus intensities. 

The quantified Shannon entropy of the expression level of C3 and GD 
in regulating coexistent dynamics are shown in Fig. 3c, revealing that 
highly disordered states are more easily observed in the high level re
gions of C3 and GD. The colour region other than blue is the coexistence 
transition region and the colour codes indicate the degree of transition 
among different death modes. The red region presents a highly disor
dered state and high entropy production of the system. With further 
increase of GDtot and C3tot, SE gradually decreases, and apoptosis and 
pyroptosis becomes dominated. A more intuitive landscape topography 
transition is shown in Fig. 3d when GDtot is fixed at the value of 1.3. 
When C3tot = 0.5, the system presents a highly ordered state, i.e., only a 
pyroptosis basin (Fig. 3d (i)). As C3tot increases to 1.05 and 1.12, the 
cell fate switches from ordered pyroptosis to disordered state among 
different cell death modes (Fig. 3d (ii) and (iii)). With further increase of 
C3tot, the depth of apoptosis basin gradually exceeds that of pyroptosis 
basin, suggesting that C3tot biases the cell fate towards apoptosis 
(Fig. 3d (iv)). The transitions of Shannon entropy and potential land
scape topography with different GDtot are also investigated with C3tot 
is fixed at 1.1 (Fig. 3e). In contrast to C3tot, increase of GDtot results in 
the uncertainty of cell fate switches from ordered apoptosis to highly 
disordered state, giving the depth of apoptosis basin decreased and 
pyroptosis basin increased. This result is qualitatively supported by the 
experimental observations that pyroptosis occurs in cells with a high 
GSDMD expression level, such as macrophage and the small intestine in 
mice, while apoptosis occurs in cells with a low GSDMD expression level, 
for example, spinal cord and L929 cells [18]. 

Therefore, C3 and GD expression levels also can act as the driving 
forces to selectively control the mode of cell death. The system exclu
sively executes apoptosis at low GD level and pyroptosis at low C3 level. 
Increase of C3 and GD significantly elevates entropy production. The 
death decision system is highly disordered and will selectively undergo 
different death modes, depending on the expression conditions. Coex
istent dynamics regulated by stimulus intensity S and the expression 
level of C3 or GD are shown in Fig. S1, indicating that we can selectively 
control the mode of cell death by adjusting the stimulation intensity and 
the level of C3 or GD. 

2.4. Quantifying the dominant kinetic paths among different death modes 

In above section, we utilized Shannon entropy to quantify the un
certainty of coexistence death mode, and the greater Shannon entropy, 
the more frequent the system switches among attractors. Based on large 
deviation theory, transition path theories were used to quantify the most 
probable path for the transition between attractors [48,49]. To further 
reflect the dynamical process of transition from one attractor to another, 
we resorted to path-integral approach [46,50] to minimize the transition 
actions and obtain the most probable switching path, known as 
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Fig. 3. Shannon entropy quantifies the uncertainty of cell fate decisions. (a) Illustration of the calculation procedure of Shannon entropy. (b) Statistics and dis
tribution of C3 under five representative stimulus intensity. (c) The quantified Shannon entropy of coexistent dynamics in GDtot-C3tot phase plane. (d) and (e) The 
potential landscape topography of death modes with GDtot = 1.3, and C3tot at 0.5, 1.05, 1.12, and 1.5 respectively (d), and the level of C3tot at 1.1 with GDtot = 0.5, 
1.1, 1.2, and 1.5 respectively (e). 
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dominant kinetic path. 
Based on the path-integral approach [46,50], we have  

where Pt represents the transition probability, S(x(t)) is the action, and L 
(x(t)) is the Lagrangian. To calculate the most probable transition path 
from one stable state to another one, we need to minimize the action S to 
maximize the transition probability. Here, the Lagrangian is written as 

L(x) =
1

4D
x⋅

2
+V(x) −

1
2D

F(x)⋅x⋅ , (5)  

where V(X) = 1
4DF2 + 1

2∇⋅F(x). So, we can write the generalized mo
mentum and Hamiltonian 

Pm(x) =
∂L
∂x⋅

=
1

2D
(x⋅ − F(x) ), (6)  

and 

H(x) = − L(x)+Pm(x).x
⋅
= Eeff . (7) 

Here, we chose Eeff = -Vmin, with Vmin being the minimum of effective 
potential. In this case, the path connects two stable states, so V will reach 
its minimum when x is the most stable state among multiple stable 
states. 

Then, we substituted Eq. (7) into the action and obtain S(x) =
∫
(Pm(x).x

⋅
− H(x) )dt. To calculate the action of the path, we need to 

transform the formulations into a different representation in x space and 
discretize the integral. The target function can be written as 

S =
∑N− 1

n=1

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Eeff + V(n)

)/
D

√

−
1

2D
Fl(n)

)

Δln,n+1 + λP, (8)  

where N is the total number of points on the transition path and P is a 
penalty function keeping all the length elements close to their average, 
where 

Fig. 4. The dominant kinetic paths between different attractors. The landscape and kinetic paths in the GD-C3 plane shown in three-dimensional (a) and two 
dimensional (b) figures. The cyan curves denote the dominant kinetic paths between A state and P state, the red lines denote the dominant kinetic paths between A 
state and I state, and the green lines denote the dominant kinetic paths between P state and I state. (c) Influence of stimulus intensity S on the dominant kinetic paths. 
A, apoptosis state; P, pyroptosis state; I, concurrence state of apoptosis and pyroptosis. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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P =
∑N− 1

n=1

(
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)2
,
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(Δl)2
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∑

i
(xi(n + 1) − xi(n) )2

,

Fl(n) =
∑

i
Fi(x(n) )(xi(n+ 1) − xi(n) )

/

Δln,n+1,
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∑

i

(
1

4D
F2(xi)+

1
2
∑

j

∂Fj(xi)

∂xj

)

,

where N represents the number of components (here N = 2) and i is the 
index for different dimensions. In this way, we can calculate the tran
sition action of any path. Finally, we can obtain the dominant kinetic 
path by minimizing the transition action S. 

We calculated the dominant kinetic path between neighboring stable 
states under standard parameters. The dominant kinetic paths are shown 
on the potential landscape in Fig. 4a, wherein Fig. 4b is a vertical view of 
the three-dimensional potential landscape of Fig. 4a. Three distinct ba
sins emerged on the potential landscape, characterizing three stable cell 
states including apoptosis (A), pyroptosis (P), and concurrence of 
apoptosis and pyroptosis (I) according to the death decision system. The 
lines connecting two different stable states represent the dominant 

kinetic paths, and the arrows indicate the directions of the transition. It 
is notable that the forward and backward dominant kinetic paths are 
irreversible. The dominant kinetic paths between pyroptosis state (P) 
and concurrence state (I) (green lines) tends to pass through the saddle, 
while the dominant kinetic paths between A state and P state (cyan 
lines), A state and I state (red lines) are not. We further explored the 
influence of stimulus intensity S on the dominant kinetic paths (Fig. 4c). 
It is suggested that the position of I state changed obviously, while the A 
state and P state changed only slightly. With the increase of S, the 
dominant kinetic paths between I state and P state shift to the right (top 
panel in Fig. 4c), while the dominant kinetic paths between A state and P 
state shift upward (bottom panel in Fig. 4c). Among them, the dominant 
kinetic path from A state to P state changes more obviously than that 
from P state to A state. Compared with these dominant kinetic paths, the 
dominant kinetic paths between A state and I state have negligible 
variations (middle panel in Fig. 4c). 

We next tried to investigate the underlying mechanism responsible 
for the differences of dominant kinetic paths among cell fate. As shown 
in Fig. 5a, the green solid and dotted lines represent the dominant ki
netic paths from P state to I state and from I state to P state, respectively, 
where the maximum potential points in the dominant kinetic paths are 
indicated by magenta dots. Connecting these two maximum potential 
points will result in a ridge (blue line in Fig. 5a) that separates the two 
valleys, P and I. It can be clearly seen from the potential curve corre
sponding to the ridge that the dominant kinetic paths pass through its 
minimum potential point (Fig. 5b). Further, we selected a series of blue 

Fig. 5. Mechanism analysis of the dominant kinetic paths among apoptosis state (A), pyroptosis state (P), and concurrence state of apoptosis and pyroptosis (I). 
Dominant kinetic paths between P state and I state are represented by green lines in (a), between I state and A state by red lines in (d), and between P state and A state 
by cyan lines in (g). The maximum potential points in the dominant kinetic paths are indicated by magenta dots. Blue lines represent the corresponding ridges. White 
lines are the dominant kinetic paths restricted to passing through the blue points in the ridges. (b), (e) and (h) are the potential curves of the corresponding ridges in 
(a), (d) and (g), respectively. (c), (f) and (i) are the action curves of the dominant kinetic paths passing through the ridge in (a), (d) and (g), respectively. (j) 
Illustration of dominant kinetic path and flux among three basins of attraction in death decision system. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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points along the ridge and calculate the dominant kinetic paths passing 
through these points. The dominant kinetic paths from P state to I state 
and from I state to P state are represented by white solid lines and dotted 
lines, respectively, in Fig. 5a. The action of these dominant kinetic paths 
is displayed in Fig. 5c, where the horizontal ordinate indicates the 
dominant kinetic path passing through the point with the same GD in the 
ridge line in Fig. 5a. These outcomes also confirmed that the dominant 
kinetic paths (green lines in Fig. 5a) between P state and I state have the 
smallest action (magenta dots in Fig. 5c). 

Unexpectedly, further analysis of the dominant kinetic paths be
tween I state and A state (Fig. 5d) and between P state and A state 
(Fig. 5g) shows that they do not pass through the minimum potential 
point (Fig. 5e and h), but their action is also the smallest (Fig. 5f and i). 
To address this issue, we quantified the steady-state probability flux of 
the cellular fate decisions landscape in Fig. 5j. The driving force, rep
resented by black arrows, in this non-equilibrium system is decomposed 
into steady-state probability flux and the negative gradient of the po
tential landscape, which are represented by white and purple arrows, 
respectively. The direction of the arrow and the length of the line 
segment indicate the direction and magnitude of the force respectively. 
These results indicated that the dynamics of cell-fate decisions network 
are not only determined by the gradient of the underlying landscape but 
also by the curl force from the non-equilibrium current flux [24,50,51]. 
As can be seen from Fig. 5j, the curl force from the steady-state proba
bility flux plays a leading role in most region, resulting the dominant 
kinetic paths to deviate from the conventionally expected potential 
gradient paths. Although the forward and backward dominant kinetic 
paths are irreversible, implying the irreversiblility of selection process of 
cells between two different fates, each of them follows the principle of 
minimum action. 

Mean first-passage time (MFPT) was widely employed to quantify 
the average escape time of the alternations from one attractor to 
another, describing the stability of attractors [52,53]. With stochastic 
dynamical trajectories spanning a lengthy time window, we can esti
mate the time required for the cell death decision module model to 
transition from one attractor to another for the first time and obtain the 
first passage time (FPT). In this context, an attractor region is approxi
mately defined as a small ellipse centered on the local minimum, and the 
transition is considered complete once the stochastic trajectory enters 
the target ellipse [54]. Subsequently, MFPT is defined as the average of 
FPT by samplings. Fig. 6 shows the MFPT between different death 
attractors induced by different intensities of noise under standard pa
rameters. We can see that all the MFPTs between different cell death 
attractors are decreased with the increasing of noise intensity (D). It is 
consistent with our cognition that greater noise intensity can lead to 
greater instability in the steady state, and noise will make it easier for 

cells to escape from the steady state. Although all MFPTs decrease with 
the increasing noise intensity, the MFPT from A state to I state (black 
line) is the smallest, suggesting that cells prefer to exist in I state 
compared to A state. 

3. Discussion 

Cellular death is a fundamental and complex biological process that 
is an underlying driver for many diseases [2,3]. Although extensive 
studies have focused on understanding the molecular mechanisms of 
various forms of cell death, emerging evidence suggests intricate 
crosstalk among different cell death pathways [38,55]. To dissect how 
different pathways collaborate to determine specific cell fate within the 
crosstalk network of apoptosis and pyroptosis, we developed a coarse- 
grained cell fate decision model based on recent experimental findings 
and data in this study. Stability analysis, bifurcation analysis, landscape 
theory, and Shannon entropy were employed to systematically quantify 
how each component and reaction within the crosstalk network 
contribute to the transitions between different death modes. Further
more, we utilized path integral theory to describe the most probable 
transition paths and their feasibility among different death modes. 

The state of a cell that performs a certain function corresponds to the 
attractor of a dynamic system. Stability analysis indicates that there are 
three attractors, i.e., three different cell fates in our model and we can 
adjust the different cell fates through the initial expression levels of GD 
and C3. Nevertheless, stability analysis can only reveal the final fate of 
cells. While with bifurcation analysis, we further manifest that both 
constituents and reactions in the death decision system can efficiently 
induce multi-death modes (Fig. S2). A single-parameter bifurcation 
analysis discusses the system's stable state with all other parameters at 
standard values, whereas the phase diagram can illustrate the syner
gistic modulation of two parameters on the number of stable states. We 
explored the distribution of stable states concerning any two of the re
action parameters (Fig. S3). Specifically, the distribution concerning 
kS_GD and kS_C3 reveals that the number of stable states can undergo 
three-state switching (from monostability to bistability, back to mono
stability) (Fig. S3a, blue line), and five-state switching (from mono
stability to bistability, then to tristability, back to bistability, and finally 
to monostability) (Fig. S3a, red line), with an increase in kS_GD, 
depending on the value of kS_C3. Similar results of state distribution are 
observed in other phase diagrams containing the parameter kS_GD 
(Fig. S3a-g), indicating the intricate role of kS_GD in mediating diverse 
transitions of stable states. Moreover, in most phase diagrams involving 
parameter kC3, it is observed that the parameter space for multistability 
is relatively small (Fig. S3g, r, v, y-aa), suggesting a limited role of kC3 in 
regulating the occurrence of multiple death modes. While the phase 
diagram with respect to k1 and kS_C3 (Fig. S3ab) exhibits a large multi- 
stable space, enabling efficient modulation of the switch from trist
ability to bistability when k1 is small. Compared with stability analysis 
and bifurcation analysis, potential landscape can intuitively provide 
global characterization and stability measurement to capture the dy
namic principle of cell state transition. The application of potential 
landscape deepens our understanding of biological functions. However, 
it is still difficult to solve a high-dimensional Fokker-Planck equation to 
obtain the evolution probability because of the huge state space of the 
complex system. Thus, the self-consistent mean field approximation 
method is a good choice to solve the above problems [46]. 

Potential landscape transforms the study of complex systems, shift
ing the focus from following individual trajectories to tracking the 
evolution of system states [22]. The whole system can be characterized 
by the states with weights, which are determined by the depths of the 
underlying landscape. The different energy basins or valleys represent 
possible functional states of the protein and their importance is reflected 
by their associated weights [56–58]. For equilibrium systems, the en
ergy landscape theory put forward a new viewpoint of protein folding: 
there are multiple pathways that guide the system towards the folded 

Fig. 6. The MFPTs between different cell death attractors with the increase of 
noise intensity. A, apoptosis state; P, pyroptosis state; I, concurrence state of 
apoptosis and pyroptosis. 
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state during the early stages. As the folding progresses, local traps 
become influential, offering distinct routes for the folding process. The 
introduction of biasing greatly accelerates the search for the native state, 
effectively resolving the protein folding paradox through the concept of 
a funnel landscape [59]. The statistical energy landscape approach gave 
a new way to define the specificity for binding, which is used to generate 
the optimized scoring function for reaching both high affinity and 
specificity for ligand binding, protein-RNA(DNA) binding, and pro
tein–protein binding [60]. The new way has been successfully applied to 
the drug discovery for identifying the lead compounds with specificity 
against the targets [61–66]. The funneled landscape can also be used to 
predict the function and stability for protein binding and folding. It is 
probable that the evolutionary process has predominantly explored a 
limited portion of the state space available to folded and functional 
proteins. Consequently, a completely random search is unlikely. In 
addition to random mutations, the evolution and selection of proteins 
and their interactions are influenced by environmental constraints. 
These factors, in alignment with Darwin's theory of natural evolution 
based on the survival of the fittest, play a crucial role [67,68]. 

Coexistence dynamics in crosstalk networks with different death 
modes have also been widely explored. We previously investigated the 
coexistence dynamics between pyroptosis and secondary pyroptosis 
[69], pyroptosis and apoptosis [21,55], necroptosis and apoptosis 
[47,70], by constructing corresponding regulatory signaling networks. 
Compared with the previous work, we established a cell death decision 
module model of the crosstalk between pyroptosis and apoptosis, and 
well reproduced the experimental observations. In addition, the path 
integral theory was applied to the cell death model for the first time and 
the dominant kinetic transition paths among different death modes was 
successfully dissected. We found that the forward and backward domi
nant kinetic paths between two stable state are irreversible, and the 
dominant kinetic paths do not always pass through the saddle (Fig. 5). 
This is because the driving force of the non-equilibrium system is 
determined by the gradient of the underlying landscape and the curl 
force from the non-equilibrium current flux, which together determine 
the minimum action of the dominant kinetic path. At the same time, we 
also found that the transition between apoptosis and pyroptosis go 
through the coexistence state of apoptosis and pyroptosis and stay for a 
period of time (Fig. 4b), and then its final fate is determined according to 
the newly accumulated evidence, which provides us with ideas for 
regulating the fate of cells. 

Our bifurcation analysis unveils the pivotal role of GD expression 
levels in triggering the switch between cell death modes, encompassing 
apoptosis or pyroptosis alone, as well as the concurrent occurrence of 
apoptosis and pyroptosis (Fig. S2). This is corroborated by previous 
experimental observations in RAW-asc cells, where the activities of 
GSDMD and caspase-1 can be detected, while the apoptotic transducers 
caspase-3 remain inactive, indicating that the cells undergo cell death in 
the form of pyroptosis [21]. Conversely, the activation of caspase-3 is 
detected in Gsdmd deletion cells, indicating a switch from pyroptosis to 
apoptosis. Microscopy experiments further underscore the pivotal role 
of GSDMD in switching cell death mode from pyroptosis to the 
concurrence of apoptosis and pyroptosis, and ultimately to apoptosis. 
However, as of now, there is no direct evidence supporting our other 
predictions, such as the dominant kinetic paths and escape time between 
these three death attractors. We anticipate that the new insights un
covered in this study can be substantiated through future experiments. 
Furthermore, we hope these findings will provide guidance for potential 
strategies and drug development related to diseases associated with 
apoptosis and pyroptosis. 
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