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Abstract 

Inferring the de v elopmental potential of single cells from scRNA-Seq data and reconstructing the pseudo-temporal path of cell de v elopment 
are fundamental but challenging tasks in single-cell analysis. Although single-cell transcriptional diversity (SCTD) measured by the number of 
expressed genes per cell has been widely used as a hallmark of de v elopmental potential, it may lead to incorrect estimation of differentiation 
states in some cases where gene expression does not decrease monotonously during the de v elopment process. In this study, we propose 
a no v el metric called single-cell transcriptional complexity (SCTC), which draws on insights from the economic complexity theory and takes 
into account the sophisticated str uct ure information of scRNA-Seq count matrix. We show that SCTC characterizes developmental potential 
more accurately than SCTD, especially in the early stages of de v elopment where cells typically ha v e lo w er div ersity but higher complexity than 
those in the later stages. Based on the SCTC, we provide an unsupervised method for accurate, robust, and transf erable inf erence of single-cell 
pseudotime. Our findings suggest that the complexity emerging from the interplay between cells and genes determines the de v elopmental 
potential, providing new insights into the understanding of biological development from the perspective of complexity theory. 
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Introduction 

Single-cell RNA sequencing (scRNA-seq) technology ( 1–3 )
has emerged as a powerful tool for profiling gene expression
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he technique can only obtain a snapshot of cells at the time
f collection. This snapshot reflects a wide range of differen-
iation stages and cell states but lacks explicit temporal in-
ormation ( 7 ). Hence, inferring the developmental potential
f single cells from scRNA-Seq data and subsequently recon-
tructing the pseudotime of cell development is a fundamen-
al and challenging task in the field of single-cell research ( 8–
2 ). In the context of this task, a significant finding ( 13 ) has
hown that the single-cell transcriptional diversity (SCTD),
hich is measured by the number of expressed genes per cell,

an serve as a hallmark of cellular developmental potential.
pecifically, the expression level of genes in individual cells
enerally decreases as cells undergo progressive differentia-
ion, thereby providing a theoretical basis for developing a
omputational framework known as CytoTRACE based on
cRNA-seq data to predict single-cell developmental potential
 13 ). CytoTRACE has been widely used to infer the differen-
iation state of cells and has shown good performance in most
atasets ( 13–16 ). Nonetheless, it has been reported that gene
xpression levels may not always monotonically decrease dur-
ng development, particularly in the earliest stages where cells
ay exhibit a lower number of expressed genes compared to

ater stages ( 17 ). In such cases, we have found that the results
btained from gene diversity-based method like CytoTRACE
annot reliably reflect the true developmental potential and
ay lead to inaccurate estimations of single-cell pseudotime.
his limitation may stem from the fact that gene diversity is
olely based on the number of expressed genes, overlooking
ore subtle structural properties of gene expression, such as

ene ubiquity, which refers to the number of cells that express
 given gene. Consequently, a more sophisticated metric that
ccounts for these nuanced features may be more suitable for
haracterizing the developmental potential of single cells. 

This issue is reminiscent of economic complexity the-
ry, which provides a powerful framework for constructing
redictors of a location’s developmental potential ( 18–21 ).
pecifically, in the context of global trade, a country’s ex-
ort diversity, measured by the number of products it exports,
an only partially reflect its level of developmental potential,
ince some countries with the same number of exported prod-
cts have significantly different developmental potential due
o differences in the technical sophistication of their products.
o account for more nuanced structural properties beyond
he diversity of country export baskets, a novel pair of mea-
ures known as the Economic Complexity Index (ECI) and
roduct Complexity Index (PCI), have been proposed ( 18 ,19 ).
hese measures have been successfully applied to characterize
 country’s level of development and developmental potential,
nd to explain cross-country variations in economic growth,
roviding important insights into patterns of economic
evelopment. 
Drawing on the analogy of economic complexity theory, we

ntroduce the concept of single-cell transcriptional complexity
SCTC) to quantify the complexity of gene expression patterns
n individual cells. In this analogy, we view a cell as analo-
ous to a country, and the genes expressed by a cell as anal-
gous to the products exported by a country. We define the
th-order complexity of a cell as its diversity, i.e., the number
f genes expressed by that cell, and the 0th-order complexity
f a gene as its ubiquity, i.e., the number of cells that express
hat gene. By interpreting scRNA-seq data as a bipartite net-
ork in which cells are connected to the genes they express, we

an define higher-order complexities of cells and genes by cor-
recting low-order complexities with more sophisticated net-
work structure information. Additionally, we introduce two
measures, namely the Cell Complexity Index (CCI) and Gene
Complexity Index (GCI), to quantify the SCTC, as has been
done in economic complexity theory. We demonstrate that the
high-order complexities and CCI are more predictive of a cell’s
developmental potential than the 0th-order complexity, par-
ticularly during the early stages of development when cells
exhibit low gene expression but high complexity. Our study
indicates that the complexity emerging from the interplay of
cells and genes governs the developmental potential of cells,
offering a novel framework for reconstructing the pseudotime
of cell development and providing a new perspective from
the viewpoint of complexity theory to understand biological
development. 

Materials and methods 

Data preparation 

We computed the SCTC metric on four scRNA-seq datasets.
The first dataset, named Human Neuron Differentiation
(HND) ( 17 ), was collected at 0, 1, 5, 7, 10 and 30 days dur-
ing human neuron differentiation. We filtered the dataset by
removing cells with more than 15% mitochondrial gene ex-
pression and excluding mitochondrial genes, resulting in a re-
fined dataset containing 604 cells and 13 771 genes. The sec-
ond dataset, referred to as Zebrafish Embryonic Cells (ZEB)
( 22 ), comprises 63 530 cells and 30 667 genes obtained at
seven time points (4, 6, 8, 10, 16, 18 and 24 hours post-
fertilization) during zebrafish embryonic development. The
third and fourth datasets, Human Spermatogenesis (HSG) and
Macaque Spermatogenesis (MSG), were extracted from the
original scRNA-seq datasets of human and macaque testes
( 23 ), and include data of four stages of spermatogenesis: sper-
matogonia (denoted as stage 0), spermatocyte (stage 1), round
spermatid (stage 2), and elongating spermatid (stage 3). The
HSG dataset comprises 10 115 cells and 45 159 genes, and
the MSG dataset comprises 19 467 cells and 22 863 genes.
The selection criteria of these four datasets were based on
the observation that the brain, testis and embryonic tissues
are highly enriched in tissue-specific genes ( 24 ), which are
known to play important roles in cellular differentiation and
development ( 25 ). 

The four datasets underwent a three-step preprocessing ap-
proach using the Python package Scanpy ( 26 ,27 ). First, we
filtered out cells that had no gene expression and discarded
genes that were not expressed in any cells. Next, we nor-
malized the gene expression values using the Scanpy func-
tion ‘pp.normalize_total’. Finally, we applied a log 2 trans-
formation to the normalized data using the Scanpy function
‘pp.log1p’ to make the data more suitable for downstream
analysis. 

Methodology 

Inspired by economic complexity theory ( 18–20 ), we propose
a method to quantify the complexity of cells and genes based
on scRNA-seq data, and then infer the developmental poten-
tial of cells based on their complexity. Our method originates
from two fundamental concepts: cell diversity ( k c , 0 ) and gene
ubiquity ( k g , 0 ). Cell diversity is quantified as the sum of its
gene expression levels across all genes, while gene ubiquity is
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calculated by the sum of its expression across all cells: 

k c, 0 = 

∑ 

g 

M cg (1)

k g, 0 = 

∑ 

c 

M cg (2)

where M cg is the element of the gene expression matrix, rep-
resenting the expression level of gene g in cell c . 

The scRNA-seq gene expression matrix can be conceptual-
ized as a bipartite network, where cells and genes represent
two types of nodes. Edges in this network indicate gene ex-
pression in cells, with the edge weights denoting expression
levels. Therefore, k c , 0 and k g , 0 correspond to the degrees of
cell and gene nodes, respectively. They serve as the initial met-
rics for quantifying complexity, which we define as 0th-order
complexity. 0th-order complexity measures the connectivity
of nodes solely based on the number of connections, ignoring
the heterogeneity of connections. For example, consider two
cells with the same total expression level. If one cell expresses
a large number of high-complexity genes and the other ex-
presses low-complexity genes, 0th-order complexity will fail
to capture the difference in their complexity. 

To overcome this limitation, it is necessary to adjust cell
complexity based on gene complexity, and vice versa. This
leads to a recursive relationship: a cell has high complexity
if the genes it expresses have high complexity, and a gene has
high complexity when the cells that express it have high com-
plexity. This recursive relationship can be formalized into two
equations, which are known as the reflection method in the
literature of economic complexity theory ( 18 ,20 ): 

k c,N 

= 

1 

k c, 0 

∑ 

g 

M cg k g,N−1 (3)

k g,N 

= 

1 

k g, 0 

∑ 

c 

M cg k c,N−1 (4)

where k c , N 

and k g , N 

represent the N th-order complexity of
the cell c and the gene g , respectively. Equation ( 3 ) indicates
that the N th order complexity of a cell is determined by the
average ( N − 1)th order complexity of the genes it expresses,
and vice versa for gene complexity. 

Based on Equations ( 3 ) and ( 4 ), we iteratively compute
higher-order complexities starting from 0th-order complexity
through recursive adjustments. This recursive process progres-
sively incorporates information not covered by lower-order
complexity. For example, the 0th-order complexity of a cell
is only related to the number of genes it connects to, reflect-
ing only the structural information of its nearest neighbors.
In contrast, the first-order complexity considers which genes
the cell connects to and which cells the connected genes con-
nect to, integrating structural information from both nearest
and next-nearest neighbors. Therefore, higher-order complex-
ity integrates structural information from a wider range of the
network, capturing the topological features of cells and genes
in their connectivity network more accurately. 

To illustrate the SCTC calculation process in a clear and
concise way, we introduce a toy model in Figure 1 . This model
consists of four cells expressing four genes, forming a bipartite
network where gene expression levels act as edge weights con-
necting cells and genes (Figure 1 A). Based on this network, we
can recursively compute each order of complexity. Figure 1 B
shows how the 0th-order complexity for a cell or gene is cal- 
culated by simply summing the weights of its connected links.
Higher-order cell complexity is then obtained by averaging 
the previous order’s gene complexity, weighted by the edge 
weights. Conversely, gene complexity is obtained by averag- 
ing the previous order’s cell complexity, again weighted by the 
edge weights. Figure 1 C demonstrates this process for calcu- 
lating first-order complexity based on 0th-order complexity.
Finally, cells and genes are ranked based on their complexi- 
ties at each order, as shown in Figures 1 D and E. This ranking 
information then enables downstream analyses, such as infer- 
ring cell pseudotime. 

The recursive method allows us to compute the complexity 
for each order . However , we have found that the complexity of 
cells (or genes) converges to a constant value once the order N 

exceeds a specific threshold N th . This convergence poses chal- 
lenges in selecting an optimal order N that accurately repre- 
sents the developmental potential of cells. An alternative ap- 
proach, as demonstrated in studies on economic complexity 
( 19 ,20 ), is to find an analytical solution to Equations ( 1 - 4 ). 

Substitute ( 4 ) to ( 3 ) to obtain 

k c,N 

= 

1 

k c, 0 

∑ 

g 

M cg 
1 

k g, 0 

∑ 

c ′ 
M c ′ g k c ′ ,N−2 (5) 

which can be rewritten as: 

k c,N 

= 

∑ 

c ′ 

˜ M cc ′ k c ′ ,N−2 (6) 

where 

˜ M cc ′ = 

∑ 

g 

M cg M c ′ g 

k c, 0 k g, 0 
(7) 

Equation ( 6 ) has a trivial solution, k c , N 

= k c , N − 2 = 1,
which corresponds to the eigenvector of matrix 

˜ M cc ′ asso- 
ciated with its largest eigenvalue. This eigenvector, with all 
entries being identical, does not provide any meaningful in- 
formation and is thus ignored. We consider the eigenvector 
associated with the second-largest eigenvalue as the principal 
metric of cell complexity, denoted as 

−→ 

K . Each entry of 
−→ 

K rep- 
resents the complexity of a cell. However, −−→ 

K is also an eigen- 
vector of ˜ M cc ′ corresponding to the same eigenvalue but in 

the opposite direction to 

−→ 

K . To choose the correct eigenvec- 
tor, we utilize information from cell diversity. Since cell diver- 
sity is positively correlated with cell developmental potential,
we calculate the Spearman Correlation Coefficient (SCC) be- 
tween the cell diversity vector 

−−→ 

K c, 0 = ( k c 0 , 0 , k c 1 , 0 , k c 2 , 0 , …) and 

each of 
−→ 

K and −−→ 

K separately. The eigenvector with a posi- 
tive SCC value is selected as the measure of cell complexity.
Without loss of generality, assuming 

−→ 

K has a positive SCC,
we define CCI via normalizing 

−→ 

K : 

C C I = 

−→ 

K − min ( 
−→ 

K ) 

max ( 
−→ 

K ) − min ( 
−→ 

K ) 
(8) 

where max ( 
−→ 

K ) and min ( 
−→ 

K ) are the maximum and minimum 

components of 
−→ 

K , respectively. 
Gene Complexity Index (GCI) can be defined analogously 

to Equation ( 7 ) by swapping cell and gene indices. However, to 

avoid ambiguities arising from directionality concerns similar 
to the 

−→ 

K / −−→ 

K choice, we instead calculated GCI based on 
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Figure 1. Toy model of single-cell transcriptional complexity. ( A ) The scRNA-seq count matrix can be represented as an adjacency matrix of a bipartite 
network, where gene expressions serve as edge weights connecting cells and genes. ( B ) Calculating 0th-order complexities of cells and genes by 
summing the weights of the edges connecting them. Examples are shown for cell c 2 and gene g 0 . ( C ) Calculating 1st-order complexities of cells and 
genes by averaging over the the 0th-order complexities, weighted by the edge weights of the bipartite network, illustrated by the examples of cell c 2 
and gene g 0 . ( D ) Ranking cells by their complexity at different orders N . ( E ) Ranking genes by their complexity at different orders N . 
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CI as described in Equation ( 4 ): 

Q g = 

1 

k g, 0 

∑ 

c 

M cg C C I c (9)

Then we defined the normalized 

−→ 

Q as GCI: 

GCI = 

−→ 

Q − min ( 
−→ 

Q ) 

max ( 
−→ 

Q ) − min ( 
−→ 

Q ) 
(10)

here max ( 
−→ 

Q ) and min ( 
−→ 

Q ) are the maximum and minimum

omponents of 
−→ 

Q , respectively. 
In summary, two methods are available for computing

ingle-cell transcriptomic complexity through the scRNA-seq
xpression matrix. The first is a recursive iterative method that
calculates the complexity of cells and genes from the 0th to
N th order. The steps are as follows: 

(1) Compute k c , 0 and k g , 0 using Equations ( 1 ) and ( 2 ). 
(2) Calculate k c , 1 and k g , 1 using Equations ( 3 ) and ( 4 ). 
(3) For N = 2, 3, ..., repeat step 2 to obtain the complexity

of each order. 
(4) Normalize the complexity obtained from each order. 

The second method is an analytical approach, which in-
volves: 

(1) Construct the matrix 

˜ M cc ′ using Equation ( 7 ). 
(2) Calculate the eigenvector 

−→ 

K corresponding to the
second-largest eigenvalue of ˜ M cc ′ . 

(3) Compute cell diversity vector 
−−→ 

K c, 0 , and calculate SCC be-
tween 

−→ 

K and 

−−→ 

K c, 0 . If SCC < 0, set 
−→ 

K = −−→ 

K . 
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(4) Normalize 
−→ 

K to obtain the Cell Complexity Index (CCI).

(5) Compute 
−→ 

Q using Equation ( 9 ). 

(6) Normalize 
−→ 

Q to obtain the Gene Complexity Index
(GCI). 

Both methods offer insights into the intricacies of cells
and genes. In this study, we specifically employ the recursive
method to evaluate the efficacy of low-order and high-order
complexity in deducing cell developmental potential. In most
other scenarios, we utilize the analytically derived CCI and
GCI as benchmarks for estimating cell developmental poten-
tial and inferring pseudotime. 

Results 

Comparison of pseudotime inferred by SCTD and 

SCTC 

We compared the performance of SCTD and SCTC meth-
ods in pseudotime inference using four scRNA-seq datasets
(HND, ZEB, HSG, and MSG). For each dataset, we computed
the following metrics: normalized cell gene diversity, Cyto-
TRACE pseudotime based on SCTD, and CCI pseudotime
based on SCTC. 

Cell gene diversity refers to the number of expressed genes
in a cell. CytoTRACE operates under the assumption that cell
diversity reflects developmental potential. Initially, it identi-
fies genes whose expression levels highly correlate with the
overall cell gene count. These selected genes are then used to
compute the average expression level in each cell, known as
the gene count signature (GCS). Next, CytoTRACE calculates
and smoothes the GCS for each cell. Finally, the smoothed
GCS is transformed into ranks, providing an indication of cell
potency and allowing inference of cell pseudotime ( 13 ,28 ). 

We employed the ‘CytotraceKernel’ function from the
Python package CellRank ( 29 ) to compute the CytoTRACE
pseudotime. Additionally, we utilized the CytoTRACE R
package v0.3.310 ( 13 ) for pseudotime calculations and com-
pared the results with those obtained using CellRank. Al-
though there were minor discrepancies between the two soft-
ware tools, these variations did not impact the conclusions
drawn in our study ( Supplementary Figure S1 ). 

In the SCTC method, we utilize the CCI c defined in Equa-
tion ( 8 ) as the measure of cell c ’s developmental potential, and
we define the pseudotime of the cell c as 1 − CCI c . This trans-
formation ensures a negative correlation between CCI and de-
velopmental time, since higher CCI values correspond to ear-
lier stages of development. 

It’s noteworthy that both our method and CytoTRACE pro-
duced less than 1% ties in the results. Due to the small num-
ber of duplicates compared to the total number of time la-
bels, their influence on the final outcomes is negligible. Con-
sequently, we did not implement any additional processing to
address these ties. For tied rankings, we maintained their orig-
inal order in the input data, which aligns with the default prac-
tice in other pseudotime inference algorithms ( 28 ). 

The results are presented in Figure 2 and Supplementary 
Figures S2 . We observe that in the HND, ZEB, and MSG
datasets, cells in the early developmental stages expressed
fewer genes than those in the later stages (boxplots of gene di-
versity in Figure 2 A, B and D). Consequently, the CytoTRACE
pseudotime inference method, which is based on a negative
correlation between cell developmental time and gene diver-
sity, results in inaccurate estimations, particularly in the early 
stages. In contrast, the CCI pseudotime inference method,
which is based on SCTC, offers a more reliable inference 
of pseudotime in the early developmental stages (Figure 2 A,
B and D). 

Regarding the HSG dataset, we observed a monotonous de- 
crease in the number of genes expressed by cells with the sper- 
matogenesis process (Figure 2 C). Hence, the inferred pseudo- 
times from both CytoTRACE and CCI align well with the 
temporal order of development. However, we found that the 
pseudotime distribution of the first stage of development in- 
ferred by CCI exhibited lower heterogeneity and greater sep- 
aration from the second stage compared to the pseudotime 
inferred by CytoTRACE, suggesting that cell complexity met- 
rics can more accurately distinguish the developmental poten- 
tial of cells in the early stages. Notably, the pseudotime dis- 
tributions inferred by gene diversity are significantly different 
between HCG and MCG cells, whereas those inferred by cell 
complexity are similar, indicating that SCTC can efficiently 
identify the same tissue-of-origin genetic characteristics in dif- 
ferent species, rather than SCTD. 

To evaluate the generalizability of the SCTC method, we 
additionally assessed its performance on 56 independent 
datasets. These diverse datasets included benchmarks used by 
CytoTRACE ( 13 ), Quasildr (a single-cell trajectory inference 
method) ( 12 ,30 ), and NCG (a single-cell pseudotime inference 
method) ( 31 ), as well as several other single-cell developmen- 
tal studies ( 23 , 32 , 33 ). Compared to CytoTRA CE on a total of
60 datasets, SCTC outperformed it on 39 (65%), indicating 
the advantage of SCTC method ( P -value = 0.035). Details of 
the 60 datasets and the performance comparison are presented 

in Supplementary Table S1 and Supplementary Figure S3 . 

Relationship between cell complexity and gene 

expression patterns in gene space 

Taken together, our finding shows that SCTC is a more effec- 
tive method for characterizing the developmental potential of 
cells and identifying their developmental stage in various cell 
environments, as compared to SCTD. This superiority may 
stem from SCTC’s ability to capture the more-sophisticated 

structural features of gene expression patterns within cells.
Specifically, cells in early developmental stages require greater 
flexibility to have more opportunities to differentiate into vari- 
ous cell types and this flexibility is determined by the complex- 
ity of gene expression patterns within cells, rather than sim- 
ply the overall expression levels of individual genes. This per- 
spective finds its analogy in the economic complexity theory,
where a country’s potential for development depends more on 

the complexity of its production structure rather than solely 
on the quantity of its products ( 18 ). This is because the com- 
plexity of a country’s production structure reflects its ability 
to access a wider range of resources and knowledge, which ul- 
timately enhances its production capacity and provides more 
opportunities for future development ( 34 ). 

In the context of economic complexity theory, the complex- 
ity of a country’s productive structure is reflected in the distri- 
bution of its products within the ‘product space’, a network of 
relationships among different products. Research has shown 

that countries with higher development potential tend to pro- 
duce products that are located at the core of this network with 

stronger connectivity ( 34 ). This positioning advantage enables 
them to expand their production capabilities through numer- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
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C

D

Figure 2. Comparison of CytoTRACE (CT) and CCI pseudotime for scRNA-seq data from ( A ) human neuron differentiation (HND), ( B ) z ebrafish embry onic 
cells (ZEB), ( C ) human spermatogenesis (HSG) and ( D ) macaque spermatogenesis (MSG). For each dataset, UMAP or PCA plots of time point labels are 
presented, along with box plots showing normalized gene diversity, CT pseudotime and CCI pseudotime at each time point. 
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us connections, thereby enhancing their potential for future
rowth. Inspired by this concept, we have introduced the idea
f a ‘gene space’, allowing for a deeper exploration of the rela-
ionship between cell complexity and gene expression patterns
rom the perspective of gene-gene interactions. 

To define the gene space, we draw an analogy between cells
nd countries, and between genes and products. Then we cal-
ulated the Revealed Comparative Advantage (RCA) ( 35 ) of
ene g expressed by cell c : 

RCA c,g = 

x c,g / 
∑ 

g x c,g ∑ 

c x c,g / 
∑ 

c,g x c,g 
(11)

hich measures whether a cell c expresses gene g more promi-
ently, relative to its overall gene expression, compared to
he ‘average’ cell. If RCA c , g > 1, it means that the cell has a
igher relative advantage in expressing that specific gene. Sub-
equently, the proximity φ between genes i and j is defined as
he minimum value of the pairwise conditional probabilities
f a cell expressing gene i significantly, given that it also ex-
resses gene j significantly: 

φi, j = min P(RC Ax i | RC Ax j ) , P(RC Ax j | RC Ax i ) (12)
where 

P(RC Ax i | RC Ax j ) = 

∑ 

c [ RC A c,i ≥ 1& RC A c, j ≥ 1] ∑ 

c [ RC A c, j ≥ 1] 
(13)

The proximity matrix, calculated using Equation ( 12 ), can
be used as the adjacency matrix of the gene network. More-
over, we computed the maximum spanning tree of this net-
work to represent the gene space, allowing us to simplify
the network structure while preserving its critical connectiv-
ity patterns. We provide an example of the gene space in
Figure 3 A and B, where we randomly selected 10% of the
genes from the HND dataset for visualization. By utilizing
the scRNA-seq count matrix, we determined the cell com-
plexity using Equation ( 8 ) and constructed the gene space
using Equation ( 12 ). Afterwards, we mapped the gene ex-
pression profiles of cells with the highest complexity (Fig-
ure 3 A) and lowest complexity (Figure 3 B) onto the gene
space. We observed that cells with higher complexity ap-
peared to exhibit denser and more concentrated gene ex-
pression patterns in the gene space, whereas cells with lower
complexity seemed to display sparser and more dispersed
patterns. 
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A C

D

B

E

Figure 3. Relationship between cell complexity and gene expression patterns in gene space. ( A, B ) Gene expression profiles of cells with the highest (A) 
and lo w est (B) comple xity are mapped to the gene space, where each node represents a gene. Green nodes indicate genes not e xpressed in the cell, 
while red nodes signify expressed genes. ( D, E ) Scatter plots illustrating the correlations between the mean degree of genes expressed by cells and 
three cellular metrics: CCI (C, PCC = 0.844), normalized gene expression level (D, PCC = 0.390), and CytoTRACE score (E, PCC = 0.733). 
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To further confirm this observation quantitatively, we de-
rived the gene space from the complete HND dataset and cal-
culated the average degree of the genes expressed by each cell.
Subsequently, we examined the Pearson Correlation Coeffi-
cients (PCC) between the average degree and three metrics:
cell complexity measured by CCI, cell expression levels, and
CytoTRACE scores. The analysis revealed a strong correlation
between cellular complexity and average degree, as depicted in
Figure 3 C (PCC = 0.844). Conversely, the correlation between
cell expression levels and average degree was found to be con-
siderably weaker (Figure 3 D, PCC = 0.390). Although the use
of the CytoTRACE algorithm significantly improved the cor-
relation compared to cell expression alone, it failed to capture
the structural features of gene expression patterns at day 0
(Figure 3 E, PCC = 0.733). 

These findings indicate that SCTC can effectively cap-
ture the complex structural information of the scRNA-seq
count matrices, thereby providing a more accurate estima-
tion of cell developmental potential. Specifically, SCTC in-
tegrates topological information of the network at a global
level through iterative computation, reflecting the distribu-
tion pattern of cellular genes within the gene space. Cells
of higher complexity tend to express genes clustered in the
core region of the gene space. These core genes have a high
degree of connectivity and interact more with other genes,
thus they may play a crucial role in biological processes such
as gene regulation. The complexity of these gene expres-
sion patterns potentially provides cells with the capability to
adapt to diverse environmental demands. This adaptability of-
fers broader possibilities for cellular diversification and dif-
ferentiation, consequently leading to a higher developmental
potential. 
Impact of complexity order on the inference of 
developmental potential 

To investigate the impact of complexity order on the infer- 
ence of developmental potential, we employed recursive cal- 
culations based on Equations ( 1 - 4 ) (Figure 4 ) to determine the 
cell complexity as a function of complexity order N . As the 
even-order complexities of cells display negative correlations 
with the odd-order complexities ( Supplementary Figure S4 ) 
( 18 ), we focused on the even orders of cell complexity and the 
odd orders of gene complexity. Figure 4 A depicts the relation- 
ship between the average cell complexity and the complexity 
order N at different time points across the four scRNA-seq 

datasets. Our analysis revealed that cell complexities at lower 
orders ( N < 8 for HND, N < 4 for ZEB and MSG, and N
< 2 for HSG) inadequately reflected the actual developmen- 
tal stages and failed to accurately characterize the develop- 
mental potential of cells. With increasing complexity order N ,
the average cell complexity exhibits better alignment with the 
actual time points, indicating that higher-order complexities 
more accurately captured the developmental potential of cells.
However, beyond a certain threshold ( N th = 16 for HND, N th 
= 28 for ZEB, N th = 52 for MSG, and N th = 60 for HSG),
further increases in the complexity order N caused the cell 
complexity to converge to the same value through recursion 

( Supplementary Figure S5 ). 
To compare the results of numerical and analytical cal- 

culation methods, the 14th-order complexity was chosen to 

infer the pseudotime of cells in four datasets. As shown in 

Supplementary Figure S6 , the pseudotime of the CCI obtained 

by analytical calculation is consistent with the numerical cal- 
culation results k c ,14 , indicating that the second eigenvector 
of Equation ( 7 ) accurately captures the information related to 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
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A B

C

Figure 4. Cell complexity as a function of complexity order N . ( A ) Average cell complexity at different time points as a function of complexity order N . ( B ) 
604 HND cells ranked by N th-order complexity and CCI. ( C ) Box plots of pseudotime of ZEB cells inferred by cell complexity with different order N . 
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igh-order cell complexity. Therefore, the CCI can serve as a
riterion for selecting an appropriate value of N when apply-
ng N th-order complexity. To calculate the correlation (SCC)
etween each order of complexity and the CCI, the N value
orresponding to a sufficiently large SCC, or the N value with
he highest SCC within a broader range, can both serve as ap-
ropriate criteria of complexity ( Supplementary Figure S7 ). 
Figure 4 B presents the ranking results of the 604 HND cells

ased on their N th-order complexity, where the last column
epresents the rankings obtained using CCI. The color scheme
sed follows that of the HND data in Figure 4 A and corre-
ponds to different time points. It is clear that as the com-
lexity order N increases, the cells undergo a continuous re-
rrangement process, eventually reaching a stable state that
ligns with the rankings obtained using CCI. This trend indi-
ates that higher-order complexities result in a more accurate
anking of cells based on their developmental progression. 

In Figure 4 C, we present the inferred pseudotime of ZEB
ells using different orders of cell complexity ( N = 0, 2 and
, respectively). As expected, the inferred pseudotime corre-
ponding to the 0th-order complexity is incorrect. However,
fter four rounds of recursion, the cells can be efficiently
anked using the fourth-order complexity (Figure 4 C), demon-
trating the effectiveness of higher-order complexities in cap-
uring development-relevant information in cells. 

Higher-order complexity plays a crucial role in accurately
nferring the developmental potential of single cells due to its
bility to encompass a wider range of information. Each high-
rder complexity, as determined by Equations ( 1 - 4 ), is ob-
ained through the iterative calculation of the average value
f previous-level properties of neighboring nodes using the
ethod of reflections ( 34 ). This methodology allows us to in-

egrate structural information from a bipartite network that
includes a broader range of cells and genes, effectively cor-
recting the information captured by lower-order complex-
ities. This approach shares similarities with methods com-
monly employed in deep learning, which has been widely ap-
plied in single-cell research in recent years ( 36–38 ). Convo-
lutional neural networks (CNNs) ( 39 ) and graph neural net-
works (GNNs) ( 40 ,41 ) are common models in deep learn-
ing that aggregate information from neighboring nodes to en-
hance feature extraction accuracy. 

Due to the complexity and nonlinearity of model param-
eters, the aggregated information in deep learning models
is often uninterpretable. In contrast, our model provides in-
terpretable explanations for complexity metrics by explicitly
defining multi-order measures. Table 1 presents the interpreta-
tions of the first three orders complexity of cell and gene ( 18 ),
highlighting that high-order complexity integrates a broader
range of information than low-order complexity. For exam-
ple, k c ,1 only considers the ubiquity of genes expressed by cell
c , focusing on the expression profile information of a single
cell, whereas k c ,2 considers diversity of other cells with simi-
lar gene expression profiles to cell c , and characterizes cell c
from a population perspective, thereby encompassing a wider
range of information. 

As the order of complexity increases, interpreting its mean-
ing becomes increasingly challenging. However, in the field
of economic complexity theory ( 18 ), analytically solving the
recursion Equations ( 1 - 4 ) reveals that N th-order complexity
captures the characteristics of nodes in the network by com-
bining the properties of its neighbors, and the coefficients of
the linear combination being the probability of a random walk
reaching these neighboring nodes after N steps. This implies
that a node located centrally within the network will have
higher N th-order complexity. Through N steps of random

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
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Table 1. Interpretation of the first three orders complexity of cell and 
gene 

Definition Description Interpretation 

k c , 0 
(Diversity) 

Number of genes 
expressed by cell c . 

How many genes are 
expressed by cell c ? 

k g , 0 
(Ubiquity) 

Number of cells 
expressing gene g . 

How many cells express 
gene g ? 

k c , 1 Average ubiquity of the 
genes expressed by cell c . 

How common are the 
genes expressed by cell c ? 

k g , 1 Average diversity of the 
cells expressing gene g . 

How diverse are the cells 
that express gene g ? 

k c , 2 Average diversity of cells 
with a gene expression 
profile similar to cell c . 

How diverse are cells 
expressing genes similar 
to those of cell c ? 

k g , 2 Average ubiquity of the 
genes expressed by cells 
that express gene g . 

How ubiquitous are the 
genes expressed by cells 
expressing gene g ? 
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walks, such a node can reach numerous neighbors with high
complexity. Therefore, the N th-order complexity effectively
measures the significance of nodes within a network. 

As we previously observed gene expression patterns in the
gene space (gene–gene network), cells or genes with high-order
complexity are also found to be located at the core of the
cell-gene interaction network. These cells or genes potentially
play significant roles in biological development and exhibit
higher developmental potential. The superior performance of
higher-order complexity over lower-order complexity in infer-
ring cell developmental potential underscores the fact that cel-
lular development is more influenced by intricate interactions
between cells and genes than solely by gene expression levels.
This interpretation of complexity metrics enhances our un-
derstanding of the key factors determining cell developmental
potential. 

Evaluating gene di ver sity and complexity for 
distinguishing developmental stages 

Gene diversity was previously defined as the number of genes
expressed by a cell. We now denote the average GCI of genes
expressed by an individual cell as the gene complexity of the
cell. To evaluate the discriminative ability of gene diversity
and gene complexity in distinguishing different developmental
stages, we conducted a comparative analysis of these measures
in four datasets (HND, ZEB, HSG and MSG). 

Figure 5 A illustrates the marginal distributions of gene di-
versity (X-axis) and gene complexity (Y-axis) for cells at each
developmental stage. The marginal distribution of gene di-
versity exhibits a wide range of variability and overlapping
regions, making it insufficient to differentiate developmental
stages by gene diversity alone. In contrast, the marginal distri-
bution of gene complexity displays pronounced separations,
especially during the early stages of development. In these
early stages, gene complexity values are notably higher com-
pared to the later stages. This demonstrates the role of com-
plexity metrics in effectively discerning stages of cell develop-
ment, particularly in distinguishing the early developmental
stages. 

Figure 5 A clearly demonstrates the significant heterogeneity
in gene expression levels among cells during the early stages of
development. A large number of cells in the first stage exhibit
considerably lower expression levels compared to the subse-
quent stages. This pattern is particularly evident in the ZEB
dataset (Figure 5 A, top right). Remarkably, despite the lower 
expression levels during this stage, these cells display a high 

level of complexity, with complexity values falling within a rel- 
atively narrow range. This suggests that cells in the early devel- 
opmental stages possess higher regulatory complexity and po- 
tential functional diversity, primarily determined by the struc- 
ture of gene expression patterns rather than the overall gene 
expression levels. 

In contrast, the majority of cells in the final stage of develop- 
ment are clustered within the third quadrant, as indicated by 
the two dashed lines (Figure 5 A). This positioning signifies the 
presence of low levels of both gene diversity and complexity in 

these differentiated cells, suggesting a less intricate gene regu- 
lation relationship compared to earlier developmental stages. 

We further investigated the joint distributions of gene di- 
versity and complexity across different orders ( N = 1, 3, 5,
7) using the ZEB dataset (Figure 5 B). The results demonstrate 
that as the order of gene complexity increases, the ability to 

discriminate between different cell differentiation stages im- 
proves, particularly for early developmental stages. To quanti- 
tatively evaluate this observation, we calculated the Silhouette 
coefficient ( 42 ), a metric that assesses the distinctiveness and 

separation of clusters. This analysis was performed using the 
developmental stage labels in reverse temporal order and the 
average gene complexity of cells with orders N ranging from 

1 to 11. Additionally, we computed the Silhouette coefficient 
for gene diversity (represented by N = 0) and the CytoTrace 
score for comparison purposes. 

The results from the ZEB dataset are presented in Fig- 
ure 4 C. As shown, the discriminatory power of gene complex- 
ity at the first order surpasses that of gene diversity and Cyto- 
TRACE in distinguishing cell developmental stages. Further- 
more, the Silhouette coefficient increases with higher complex- 
ity order N . Similar trends are observed in the other datasets 
( Supplementary Figure S8 ), providing further validation of the 
effective discrimination of cell developmental stages by higher- 
order complexity. 

Genes with different complexity are associated 

with specific developmental stages 

In the CytoTRACE model, genes are ranked based on the 
correlation between their expression levels across cells and 

the CytoTRACE scores of those cells ( 13 ). In our model,
leveraging the symmetry of the cell–gene bipartite network,
we can computationally determine the multi-order complex- 
ity for both cells and genes using the reflection method 

(Equations ( 1 )-( 4 )). Alternatively, the CCI (Equations ( 8 )) 
and the GCI (Equations ( 10 )) can be analytically derived.
This enables ranking genes based on their inherent multi- 
order complexity measures or overall GCI values, contrast- 
ing with the correlation-based gene ranking approach used in 

CytoTRACE. 
To evaluate the association between gene complexity and 

developmental stages, we identified marker genes for each 

stage in the scRNA-seq dataset using the Wilcoxon rank-sum 

test in Scanpy ( 26 ,43 ). For each stage, the top 10 genes with 

the most significant differential expression were selected. We 
then examined the relationship between the complexity-based 

ranking of these genes and their actual stage assignments. 
Figure 6 A shows the gene rankings in the MSG dataset 

based on different complexity measures. The first and last 
columns correspond to the rankings by cytoTRACE and GCI,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
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A B

C

Figure 5. Evaluating gene diversity and complexity for distinguishing developmental stages. ( A ) The diversit y-complexit y diagrams of single-cell gene 
expression, with unique colors representing cells from different developmental stages. The dashed lines indicate the mean gene diversity and mean 
gene complexity averaged over all cells. ( B ) The diversit y-complexit y diagram as a function of gene complexity order N for the ZEB data. ( C ) Silhouette 
coefficient of gene complexity as a function of complexity order N for the ZEB data, where N = 0 represents the gene diversity. The dashed line 
indicates the Silhouette coefficient of CytoTRACE score. 
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espectively . Notably , the rankings by cytoTRACE and first-
rder complexity exhibit an inverse relationship with the ac-
ual developmental stages for stages 0 and 1. However, at
he third-order complexity, the rankings become consistent
ith the true developmental trajectory. During this transi-

ion, a considerable number of genes undergo significant rank-
ng jumps, indicating that higher-order complexity integrates
rucial topological information to align with developmental
rogression. 
Similar trends were observed across the other datasets as

ell. In Figure 6 B, we calculated SCC between the gene rank-
ngs and the actual temporal orderings using four datasets. Ex-
ept for the HSG dataset, where different metrics yielded com-
arably high SCC values, the rankings based on higher-order
omplexity and CCI demonstrated closer agreement with the
evelopmental trajectory than lower-order complexity and
ytoTRACE in the other three datasets. This reveals that, by

ncorporating global topological characteristics, higher-order
ene complexity provides a more intrinsic measure for re-
ealing the developmental regulation and temporal expression
atterns of genes. 
To further investigate the association between gene com-

lexity and developmental stages, we examined the stage dis-
ributions of genes ranked highest and lowest in terms of com-
lexity. As illustrated in Figures 6 C and D using the ZEB
ataset, the 6 genes with the highest GCI preferentially ex-
ress in the earliest developmental stage, whereas the six genes
ith the lowest GCI are primarily enriched in the final stage.
his distinct distribution pattern was consistently observed
cross all four datasets ( Supplementary Figure S9 ). Addition-
lly, analyzing the expression of the highest 100 GCI genes
and the lowest 100 GCI genes in each dataset revealed high-
complexity genes are selectively expressed in early develop-
ment, while low-complexity genes show specificity for later
stages (Figure 6 E and Supplementary Figure S10 ). 

Collectively, these results demonstrate genes with different
developmental stage specificities are inherently characterized
by varying complexity levels. The complexity spectra provide
a quantitative and intrinsic metric to map dynamic gene regu-
lation across cell fate trajectories, which may help to uncover
mechanisms controlling cell potency and lineage commitment.

Transferability and robustness evaluation of the 

single-cell transcriptional complexity model 

In our model, cell and gene complexity are defined recursively
based on each other through Equations ( 3 ) and ( 4 ). This en-
ables computing cell complexity from gene complexity, and
vice versa. Moreover, many genes are shared across differ-
ent single-cell datasets. Therefore, the gene complexity derived
from one dataset can be utilized to calculate the cell complex-
ity of another dataset, demonstrating the transferability of our
model. 

To evaluate this, we first merged the HSG and MSG
datasets into a mixed dataset containing 29 591 cells and
14 405 shared genes. The UMAP visualization and nor-
malized gene diversity distribution of this combined dataset
are shown in Figure 7 A. We then computed the pseudo-
times using CytoTRACE and SCTC method. As depicted
in Figure 7 B, SCTC maintained the correct temporal order-
ing of human and macaque cell types, while CytoTRACE
showed more disordered results. This comparison highlights

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
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A C

D

EB

Figure 6. Genes with different complexity are associated with specific developmental stages. ( A ) Rankings of the marker genes identified for each 
de v elopment al st age in the MSG dat aset, based on CytoTRACE score, multi-order complexit y (odd order N from 1 to 9), and Gene Complexit y Index 
(GCI). ( B ) Spearman Correlation Coefficient (SCC) between gene rankings and actual developmental orderings across four datasets. Rankings are based 
on CytoTRACE score, multi-order complexity (odd order N from 1 to 9), and GCI. ( C ) The 6 genes with the highest complexity in the ZEB data exhibit 
preferential expression in the earliest developmental stage. ( D ) The six genes with the lowest complexity mainly express in the last developmental stage 
for ZEB data. ( E ) The highest 100 complexity genes in the ZEB data are selectively expressed in early development (left), while the lowest 100 
complexity genes show specificity for later stages (right). 
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the higher robustness of our SCTC model on heterogeneous
datasets. 

Interestingly, we have observed that the CCI-inferred pseu-
dotime distribution of human sperm cells is lower than
that of macaque sperm cells (Figure 7 B, right), implying
that human sperm cells possess higher overall complexity.
This phenomenon is even more pronounced when visualized
through the diversity-complexity diagrams ( Supplementary 
Figure S11 ), aligning with a previous hypothesis ( 25 ) that the
increased complexity of humans is not only present at the phe-
notypic organismal level but also extends to the genomic and
cellular levels. Our results provide single-cell resolution evi-
dence supporting the view that human cells have more com-
plex regulation at the transcriptional level compared to other
primate species. 

We then divided the mixed dataset into new HCG and
MCG datasets containing only human and macaque cells, but
sharing all 14 405 genes. Next, we calculated GCI for each
dataset separately. Leveraging Equation ( 3 ), the human and 

macaque GCIs were utilized to derive human CCI pseudo- 
time (Figure 7 C), and vice versa for macaque CCI pseudo- 
time (Figure 7 D). The high consistency between CCI pseudo- 
times calculated using GCIs from the same versus different 
datasets demonstrates the transferability of our complexity 
model. Consequently, the conserved gene complexity ranking 
across species suggests new insights into extending develop- 
mental potential inference across different model organisms 
using the complexity theory framework. 

Stability and robustness of SCTC to dropouts and 

imputations 

Dropout is a common phenomenon observed in scRNA-Seq 

datasets ( 44 ). It refers to missing values in sequencing data 
due to technical limitations. To assess its impact on the SCTC 

method and compare it with the CytoTRACE, we simulated 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
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A B

DC

Figure 7. Transferability and robustness e v aluation of the single-cell transcriptional complexity model. ( A ) UMAP plot and normalized gene diversity 
distribution of the merged dataset. “h” denotes Human and “m” denotes Macaque. ( B ) B o x plots of CytoTRACE pseudotime (left) and CCI pseudotime 
(right) of the merged dataset. ( C ) Human CCI pseudotime computed by Human GCI (left) and by Macaque GCI (right). ( D ) Macaque CCI pseudotime 
computed by Macaque GCI (left) and by Human GCI (right). 
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ropout events at varying dropout rates (e.g., 0.1–0.9) on four
atasets. Specifically, elements of the scRNA-seq count matrix
ere randomly set to zero according to the specified dropout

ate. We then evaluated the performance of both methods
n inferring cell pseudotime under these dropout conditions,
uantifying their accuracy using SCC. For each dataset, ten
ropout simulations were conducted, and the results were av-
raged to assess algorithm stability. 

Figure 8 A compares the performance of CytoTRACE and
CTC methods in inferring cell pseudotime under differ-
nt dropout rates. Across multiple datasets, the CytoTRACE
ethod exhibits significant uncertainty in response to dropout

vents. Specifically, in the HND and MSG datasets, its accu-
acy notably declines when dropout rates reach 0.9. How-
ver, for the ZEB and HSG datasets, increasing the dropout
ate shows a slight improvement in accuracy. Moreover, Cy-
oTRACE shows larger variations in results across repeated
omputations on the same dataset, compared to SCTC. 

In contrast, the SCTC method shows a slight decrease in
ccuracy as the dropout rate increases, but it still signifi-
antly outperforms CytoTRACE overall. Moreover, the rela-
ionship between accuracy and dropout rate exhibits a consis-
ent pattern for SCTC across different datasets. Additionally,
he SCTC results show negligible variation among different
amples from the same dataset. These findings demonstrate
he stability of the SCTC method compared to CytoTRACE
n handling dropout events. 

In single-cell studies, researchers often utilize imputation
ethods to address the dropout issue, which involves estimat-

ng missing gene expression values to more accurately recon-
truct single-cell data ( 45 ,46 ). To compare the influence of im-
utation on pseudotime inference for CytoTRACE and SCTC
ethods, we selected the MAGIC imputation algorithm ( 45 )

o apply to four datasets. Specifically, we applied the MAGIC
lgorithm for imputation on the original datasets without
rior dropout simulation, and on datasets with dropout events
imulated at dropout rates of 0.1, 0.2 and 0.3, respectively. 

The top row of Figure 8 B displays the results of Cyto-
RACE across four datasets. We observed considerable vari-
bility in the impact of imputation on CytoTRACE pseudo-
time inference across different datasets. Overall, imputation
significantly decreased the accuracy of CytoTRACE pseudo-
time inference. Notably, for ZEB, HSG and MSG datasets, the
inferred pseudotime exhibited a negative correlation with true
time points after imputation. These findings suggest that im-
putation methods are dataset-specific and may occasionally
hinder downstream analysis performance, aligning with pre-
vious research ( 46 ). 

As shown in the bottom row of Figure 8 B, the SCTC
method demonstrates minimal sensitivity to imputation com-
pared to CytoTRACE. With the exception of the original
HND dataset (dropout rate = 0.0), where imputation actually
improved SCTC’s performance, its impact on CCI pseudotime
inference is negligible in other cases. This resilience may stem
from the SCTC’s ability to incorporate a wide range of net-
work topological information, rather than relying solely on lo-
cal details from individual nodes (such as gene expression lev-
els). This feature enables SCTC to extract relatively universal
and invariant characteristics from scRNA-seq data, demon-
strating notable resilience to interference and robust stability.

Discussion 

The emergence of single-cell RNA sequencing at an unprece-
dented level of resolution presents both new opportunities and
challenges in understanding complex biological processes. In
this work, we introduce the concept of single-cell transcrip-
tional complexity to infer pseudotime trajectories and devel-
opmental potential. Our findings demonstrate that this novel
metric of complexity can effectively capture intricate devel-
opmental processes like neurogenesis and spermatogenesis.
Our approach is inspired by the economic complexity theory,
which has been successfully applied to evaluate countries’ de-
velopment levels and potential. Transplanting complexity the-
ory to the cellular context may offer fresh insights into the
understanding of cellular developmental processes. 

Our investigation demonstrates that during early develop-
mental stages, while cells may exhibit relatively low gene ex-
pression levels compared to later stages, their complexity at
appropriate orders of N is significantly high. This discovery
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A

B

Figure 8. St abilit y and robustness of SCTC methods to dropouts and imput ations. ( A ) Comparative accuracy of pseudotime inference using CytoTRACE 
and SCTC methods across four datasets (HND, ZEB, HSG and MSG) subjected to dropout simulations at different dropout rates ranging from 0.1 to 0.9. 
Dotted lines represent the mean results obtained from ten sampling calculations, while shaded regions illustrate the standard deviation across ten 
dropout simulations. ( B ) The performance of CytoTRACE and SCTC was evaluated on four datasets both without (blue) and with imputation (orange). 
These datasets were subjected to dropout simulations before imputation with dropout rates of 0.0, 0.1, 0.2 and 0.3, respectively. The error bars 
represent the standard deviation across ten sampling experiments. 
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unveils the complexity as a more robust indicator of a cell’s
developmental potential than mere diversity. The underlying
principle is that the coordinated interaction of pluripotency
genes within highly interconnected networks, rather than the
expression intensity of genes associated with pluripotency,
shapes the cellular developmental potential ( 47 ). This intricate
aspect can be quantified through our complexity measures. 

Building upon transcriptional complexity, we have de-
veloped an unsupervised and efficient approach for single-
cell pseudotime inference. Our model relies solely on the
count matrix, without needing to select the highly variable
genes ( 29 ). The pseudotime trajectory obtained through our
complexity-based method exhibits a more accurate align-
ment with the actual temporal labels of cells compared to
the diversity-based CytoTRACE (Figure 2 ). This improvement
is particularly notable in the earliest developmental stages,
where cells may express fewer genes than in later stages. This
discrepancy can be attributed to the fact that CytoTRACE’s
fundamental assumption based on gene diversity does not
hold true under these circumstances. 

In addition to CytoTRACE, the dedicated computational
tools have recently emerged for inferring single-cell devel-
opmental potential, such as CCAT ( 48 ) and FitDevo ( 49 ).
While these supervised methods have surpassed CytoTRACE
on some datasets, their reliance on prior knowledge or train-
ing data may limit their generalization ability. As demon-
strated in Supplementary Figure S12 , our unsupervised SCTC
method performs comparably to FitDevo on its training data
(HND) and significantly outperforms FitDevo on non-training
datasets (ZEB, HSG, and MSG). Notably, FitDevo shows in-
accurate early-stage inference in ZEB data, similar to Cyto-
TRACE. This is because zebrafish was excluded from Fit-
Devo’s training set due to the limited homology with mam- 
mals ( 49 ). Therefore, our unsupervised complexity approach 

may be better suitable for such uncovered datasets, underscor- 
ing the importance of techniques like SCTC in scenarios lack- 
ing reliable training data. 

Moreover, the robustness of our method extends to hetero- 
geneous datasets, which is evident in its successful applica- 
tion to mixed data. This resilience to dataset heterogeneity and 

the transferability of our method across datasets enable cross- 
species exploration of cellular and gene complexity. Addition- 
ally, the stability and robustness of SCTC methods to dropout 
and dropout imputation imply that SCTC metrics capture rel- 
atively universal and invariant information within scRNA-seq 

data. 
Our approach integrates the concept of economic complex- 

ity into the field of single-cell analysis, yielding meaningful in- 
sights that suggest certain inherent similarities between biol- 
ogy and economic complex systems. Furthermore, the breadth 

of theories and techniques covered within the field of eco- 
nomic complexity ( 20 , 34 , 50 , 51 ) offers an exciting avenue to
extend these methods to single-cell studies and beyond. This 
cross-disciplinary exchange may offer new insights into un- 
derstanding biological development from the perspective of 
complex systems ( 52 ,53 ). 

Data availability 

The source code and the data of filtered human neuron 

differentiation (HND) are available at https://github.com/ 
hailinphysics/sctc , and at the Zenodo repository ( https://doi. 
org/ 10.5281/ zenodo.10777275 ). The raw data of HND ( 17 ) 
can be accessed from Gene Expression Omnibus (GEO) 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae340#supplementary-data
https://github.com/hailinphysics/sctc
https://doi.org/10.5281/zenodo.10777275
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hrough the accession number GSE102066. Zebrafish embry-
nic cells (ZEB) ( 22 ) dataset can be accessed from GEO un-
er accession number GSE112294. Human and macaque sper-
atogenesis datasets ( 23 ) are available under the GEO acces-

ion number GSE142585. 

upplementary data 

upplementary Data are available at NAR Online. 
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