
Swarm and Evolutionary Computation 87 (2024) 101567

2210-6502/© 2024 Elsevier B.V. All rights reserved.

oBABC: A one-dimensional binary artificial bee colony algorithm for
binary optimization

Fangfang Zhu a,b, Zhenhao Shuai c, Yuer Lu c, Honghong Su d, Rongwen Yu c, Xiang Li a,
Qi Zhao e,*, Jianwei Shuai c,f,*

a Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
b National Institute for Data Science in Health and Medicine, and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen
University, Xiamen, 361005, China
c Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
d Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, China
e School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
f Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China

A R T I C L E I N F O

Keywords:
Artificial bee colony
Binary optimization
Swarm intelligence
UFLP
Max-Cut

A B S T R A C T

Artificial bee colony (ABC) algorithm is a widely utilized swarm intelligence (SI) algorithm for addressing
continuous optimization problems. However, most binary variants of ABC (BABC) algorithms may suffer from
issues such as invalid searches and high complexity when applied to binary problems. To address these chal
lenges, we first establish a set of criteria for developing a BABC algorithm. Following these criteria, we propose a
novel BABC algorithm, denoted as oBABC, which not only adheres to the defined criteria but also successfully
inherits the advantages of original ABC algorithm. To evaluate the performance of oBABC and verify its effec
tiveness, experiments are conducted on two typical binary problems: uncapacitated facility location problem
(UFLP) and maximum cut problem (Max-Cut). The experimental results reveal the following findings: 1) The
validity of the criteria and the accuracy of the theoretical analysis are confirmed. oBABC exhibits high search
efficiency with an invalid learning rate (ILR) of 0 %, while the ILRs of other BABC algorithms almost exceeds 20
%. 2) In terms of search efficiency and capability, oBABC exhibits a significant improvement in search efficiency
and consistently ranks at the top in terms of optimization capability. These results suggest that oBABC may be a
highly efficient and effective tool for solving binary problems.

1. Introduction

Optimization problems are ubiquitous in engineering fields and arise
in a multitude of tasks such as hyperparametric search [1,2], filter
design [3], resource allocation [4,5], classification problem [6], clus
tering problem [7], and biological signal processing [8,9], among
others. Due to their vast state space, many of these problems are
considered NP-hard (Non-deterministic Polynomial-time hard), indi
cating no existing algorithms can efficiently solve them within poly
nomial time. SI algorithms emerge as a promising alternative for
addressing such challenges [10], which including particle swarm opti
mization (PSO) [11,12], ant colony optimization (ACO) [13], artificial
bee colony (ABC) [14,15], firefly algorithm (FA) [16], gray wolf opti
mization (GWO) [17], bat algorithm (Bat) [18], battle royale

optimization (BRO) [19], and many others. Among them, ABC stands
out as a prominent member of SI algorithms, successfully addressing
optimization problems with various characteristics [20]. It models the
collective intelligence of a honey bee colony during a foraging task, with
the objective of maximizing nectar collection from food sources. Not
only does it possess a simple structure and easy adaptability to different
problems, but it also exhibits several outstanding features. First, the
solution search formula updates only one dimension value at a time,
enabling a finer-grained search around the current solution and
enhancing the algorithm’s exploitation performance. Second, employee
bees recruit onlooker bees to profitable sources through positive feed
back, which facilitates the exploitation of better suboptimal solutions
and accelerates convergence speed. Finally, over-exploited solutions are
reset by scouting bees through negative feedback, allowing the ABC

* Corresponding author.
E-mail addresses: zhaoqi@lnu.edu.cn (Q. Zhao), shuaijw@wiucas.ac.cn (J. Shuai).

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

https://doi.org/10.1016/j.swevo.2024.101567
Received 23 September 2023; Received in revised form 11 March 2024; Accepted 31 March 2024

mailto:zhaoqi@lnu.edu.cn
mailto:shuaijw@wiucas.ac.cn
www.sciencedirect.com/science/journal/22106502
https://www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2024.101567
https://doi.org/10.1016/j.swevo.2024.101567
https://doi.org/10.1016/j.swevo.2024.101567

Swarm and Evolutionary Computation 87 (2024) 101567

2

algorithm to escape local optimal solutions and introduce fluctuation. In
summary, the ABC algorithm is an excellent optimization algorithm that
balances exploitation and exploration capabilities through positive
feedback, negative feedback, and fluctuation properties.

These advantages have positioned the ABC algorithm as a new
research hotspot [21–24]. All of them focus on improving the search
efficiency and convergence characteristics of ABC algorithms. Some
variants introduce multi-strategies to guide search by using multi-elite
guidance without losing population diversity [25,26]. Some introduce
the strategy of multi-dimensional updates at different stages of ABC
algorithm to accelerate the convergence of the algorithm and enhance
the exploration ability of the algorithm [26,27]. Some hybridize the
search engine of ABC algorithm with that of other SI algorithms,
combining the advantages of each algorithm to achieve better perfor
mance [28]. However, most of the research is devoted to improving the
performance of ABC algorithm in continuous optimization problems,
and only a few are devoted to exploring the application of ABC algo
rithm in binary problems.

1.1. Motivations

Binary optimization problems differ from continuous optimization
problems as the solutions are belong to a binary space where variables
take values of either 0 or 1. Most SI algorithms are originally proposed
for continuous domain problems, where the solution search formula
yields real-valued solutions. Therefore, when applying SI algorithms to
solve binary problems, it is necessary to address the mapping issue be
tween the real domain and the binary domain. Most SI algorithms have
corresponding binary versions, such as binary versions of PSO [29,30],
binary DE [31], discrete FA [32], binary BRO [33], BABC [27,34-36],
and others. To the best of our knowledge, there is a lack of well-defined
design criteria for the development of binary versions of SI algorithms,
particularly for algorithms like ABC that rely on one-dimensional up
dates. This characteristic brings new challenges to the development of
binary versions. Therefore, the main aim of this work is to present
comprehensive criteria for the development of binary versions of SI al
gorithms. Moreover, based on these criteria, we try to propose a novel
binary version of the ABC algorithm.

1.2. Contribution

In this work, we define the key criteria for developing binary ver
sions of SI algorithms and propose oBABC algorithm. The main contri
butions of this work are as follows:

i) We initially offer criteria for developing binary versions of SI
algorithms, which encompass three aspects: (I) minimizing
computational complexity, (II) maximizing space efficiency, and
(III) employing appropriate bionic strategies. Criterion I empha
sizes the importance of reducing the complexity of the search
formula. Criterion II necessitates the design of a search formula
that ensures exploration of new solution spaces. Criterion III calls
for the incorporation of more intelligent strategies to enhance the
likelihood of discovering optimal solutions within a limited
number of epochs.

ii) The optimal solution search formula is derived for one-
dimensional updated BABC algorithm, enabling exploration of
previously unvisited rich sources. Any binary SI algorithm with
one-dimensional update characteristic should adopt this formula,
otherwise it will result in invalid search.

iii) Multiple interaction models for selecting the direction of move
ment have been developed in oBABC. A decision model is
developed to decide whether to move towards or away from the
neighborhood solution, which enhances the exploitation perfor
mance of oBABC.

1.3. Organization

The rest of this paper is structured as follows: Section 2 provides a
comprehensive review of the relevant literature. Section 3 offers a
detailed introduction to the basic ABC algorithm. Section 4 outlines the
essential criteria for binarization and introduces oBABC algorithm.
Experimental results and their discussion are presented in Section 5. The
paper concludes with Section 6, summarizing the study’s findings and
suggesting potential avenues for future research for both scholars and
practitioners.

2. Literature review

There are two ways to develop binary versions of SI algorithms:
mapping-based method and binary-operator method. Recently, several
BABC algorithms have been introduced, which are discussed below.

2.1. Mapping-Driven binary variants

In the mapping-based approach, search agents navigate a continuous
solution space, with candidate solutions being converted into binary
form prior to objective function evaluation. This approach serves as a
straightforward post-processing technique to binarize SI algorithms,
exemplified by the discrete PSO (DPSO) [29] and binary differential
evolution (BDE) [31]. The first binary version of the basic ABC algo
rithm, known as DABC, is based on mapping-based method, which has
been successful in feature selection [37]. Additionally, various binary
ABC algorithms utilizing transfer functions have been introduced,
including the angle-modulated ABC (AMABC) [34] and ABCbin [38].
AMABC utilizes angle modulation to create a homomorphic mapping
between continuous and binary spaces, enhancing optimization for nu
merical functions. Nonetheless, the adoption of transfer functions es
calates computational complexity due to the extensive use of
floating-point and even exponential operations. While ABCbin at
tempts to mitigate this complexity by implementing a mod-round-mod
operation for mapping, it still incurs a higher computational load
compared to methods based on binary operations.

2.2. Binary-operator-driven binary variants

In the binary-operator method, search agents navigate a binary-
structured space directly, eliminating the need for mapping between
disparate spaces. This method functions as a preprocessing strategy,
characterized by its low computational complexity. Notable examples of
the binary-operator method are binABC [35], bitABC [36] and PBABC
[27], which incorporate logical operations such as ’and’, ’or’, and ’not’,
along with their combinations. This approach replaces the arithmetic
operations—’add’, ’subtract’, ’multiply’, and ’divide’—typical of the
ABC algorithm’s continuous variants. By foregoing the mapping process,
this method significantly reduces computational complexity, allowing
computations to be executed directly within the binary space and
maintaining the inherent binary characteristics of the solution. This
ensures efficient processing without necessitating further trans
formations or conversions. Additional algorithms based on the
binary-operator method, including DisABC [39], NBABC [40], ibinABC
[41] iBABC [42] and GBABC [43], apply statistical theory to mutate
multiple bits of the solution. This maintains the search updates strictly
within the binary space and obviates the need for conversions between
different numerical spaces. However, a significant challenge of this
approach is the redesign of the search operator for binary contexts.
Although insights can be drawn from the continuous versions, the
distinct characteristics of binary spaces necessitate a cautious and
deliberate approach in the design of binary-specific search operators.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

3

2.3. Binary variants of ABC

While numerous BABC algorithm have been developed, they still face
challenges that compromise their effectiveness on binary problems. A
notable feature of the ABC algorithm is its one-dimensional update
mechanism [14,20,44], wherein search agents adjust only one variable
dimension at a time. This approach enhances the algorithm’s granu
larity, enabling closer proximity searches without missing adjacent su
perior solutions. However, this feature significantly increases the
likelihood of invalid searches across all BABC variants, such as DABC
[37], binABC [35], bitABC [36], ABCbin [38], etc., that adopt this
one-dimensional update strategy. We will delve into this issue in depth
and propose relevant design criteria in the following sections. Moreover,
the one-dimensional update characteristic of the ABC algorithm slows
down convergence due to the minimal Euclidean distance covered per
search step. This challenge can be mitigated by adopting
multi-dimensional updates, as seen in algorithms like DisABC [39],
NBABC [40], ibinABC [41] iBABC [42] and GBABC [43]. These ap
proaches improve convergence speed but may compromise the algo
rithm’s precision, leading to premature optimization. An alternative
strategy involves simulating intelligent population behavior to more
accurately direct search efforts. In response to these challenges, oBABC
algorithm employs the binary-operator method alongside multiple
interaction models for directional selection. This innovation holds
promise for enhancing optimization across a variety of problems,
including data analysis [45] and prediction [46,47], positioning oBABC
as a pivotal tool for optimization challenges.

3. The basic abc algorithm

3.1. ABC algorithm

The ABC algorithm is mainly inspired by the foraging behavior of the
honey bee colony. It is divided into four phases: initialization, employed
bees, onlooker bees, and scout bees, with the last three phases corre
sponding to the duties of the bees during foraging.

Initialization: Assuming that the food sources, which are possible
solutions for optimization problem, are distributed in a d-dimensional
space. A food source or a solution can be expressed as Eq. (1). The initial
solution can be achieved by Eq. (2).

xt
i =
(
xt

i1, x
t
i2,⋯, xt

iD

)
∈ RD (1)

xij = xmin
⋅j + rij ×

(
xmax

⋅j − xmin
⋅j

)
(2)

Where iϵ{1, 2, ⋯, N}, N is the number of employed bees and D is the
dimensionality of the optimization problem. xt

ij is the jth dimension
variable of xi at epoch t. xmin

⋅j and xmax
⋅j are the lower and upper bounds of

xij, respectively. rij is a uniform random number in range of [0,1].
Employed bees’ stage: The employed bees are responsible for

exploring higher quality food source locations around current site. Once
the food sources are found, employed bees establish a one-to-one cor
respondence with the food sources and search for a better food source
near the current one. Corresponding to the ABC algorithm, the search
formula for the location of food sources can be described as Eq. (3).

xt+1
ij = xt

ij + φij ×
(

xt
ij − xt

kj

)
(3)

Where k ∕= i ∈ {1,2,⋯,N} is a randomly chosen neighbor index that is
different from i. j ∈ {1,2,⋯,D} is a randomly determined dimension
index and φij is a uniform random number in range of [− 1,1]. xt

i is the
current solution, xt

k is a neighbor one which is the guiding solution, and
xt+1

i is the candidate solution generated by the solution search formula
(3).

Onlooker bees’ stage: In ABC algorithm, onlooker bees search for

more optimal food sources near those identified as superior among all
food sources. Specifically, the ABC algorithm utilizes the roulette wheel
selection method, a fitness-based technique defined by Eq. (4), to choose
superior food sources. This method favors sources with higher nectar
amounts, increasing the probability that onlooker bees will explore
these areas.

pi = 0.9 ×
fi

max{f1, f2,⋯, fN}
+ 0.1 (4)

Where fi is the objective function value of the solution i. For minimi
zation problems, the quality of food would be converted as follows:

fi =

{
1/(1 + f (xi))if(f (xi)> 0)
1 + abs(f (xi)), otherwise (5)

Where f(xi) is the objective function value associated to xi.
Scout bees’ stage: During foraging, when an employed bee exhausts a

source that it was exploiting, it abandons the source and transforms into
a scout bee that ventures out to explore new, potentially rich sources.
Similarly, the ABC algorithm memorizes the number of nearby searches
around each source in the system. If a food source fails to improve after a
predefined number of trials, represented by a constant parameter "Limit"
that source is eliminated via pruning. A new food source is then
generated randomly using Eq. (2).

3.2. The pseudo-code of the basic ABC algorithm

The ABC system will iterate through the employed bees’ phase,
onlooker bees’ phase, and scout bees’ phase until the specified termi
nation criteria are satisfied. The pseudo-code for the ABC algorithm is
outlined in Algorithm 1.

Most ABC algorithms adhere to a similar algorithmic framework, as
depicted in Algorithm 1. However, they differ in terms of the employed
search strategies, which are executed iteratively and contribute signifi
cantly to their effectiveness and computational complexity. Algorithm 2
illustrates the search strategy of the basic ABC algorithm. It involves the
random selection of the updated dimension j and the neighborhood
solution k. Notably, the basic ABC algorithm utilizes a unique one-
dimensional updated search formula, as described in Eq. (3), setting it
apart from other SI algorithms.

4. Criteria & oBABC

4.1. The key criteria

Binary optimization problems are prevalent in various research
fields, where the solution space is restricted to binary values. In other
words, each decision variable in the solution can only take on a value of
either 0 or 1. To extend the binary variant of the SI algorithms, several
key issues must be addressed, as described below.

• How to obtain the initial solutions which belong to binary space.
• How to ensure that the new solution obtained by the solution search

formula also belongs to binary space.

In the initialization phase of binary optimization algorithms, it is a
commonly adopted practice to transform Eq. (2) into Eq. (6) for the
purpose of generating binary values for individual decision variables.

xij =

{
0, ifrand < 0.5
1, otherwise (6)

Where “rand” is a uniform random number in range of [0,1].
Another crucial issue is to develop an effective search strategy that

guarantees that the newly obtained solution derived from the solution
search formula belongs to the binary domain. To address this issue more

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

4

effectively, we establish key criteria for the search strategy stated below.
Criterion I: Minimizing computational complexity.
As known, minimizing the complexity is imperative as it is a

fundamental metric used to evaluate the efficacy of an algorithm. In SI
algorithms, the complexity is determined by the search formula, which
is executed iteratively. Therefore, it is crucial to optimize the search
formula for better algorithmic performance.

Criterion II: Maximizing space efficiency.
It is necessary to promise that each search is valid. If the candidate

solution is the same as the current ones, it will be a waste of

computational resources, and the optimization performance of the al
gorithm will be compromised.

Criterion III: Employing appropriate bionic strategies.
SI algorithms distinguish themselves from stochastic search by

simulating swarm behavior to guide the search process. By incorpo
rating appropriate bionic strategies, these algorithms can expedite
convergence and enhance their capabilities, including the ability to
escape local optima and perform global search.

To satisfy Criterion II, it is necessary to establish relevant metrics for
evaluation purposes. These metrics include but are not limited to under-

Algorithm 1
Pseudo-code of the basic ABC algorithm.

Input: Problem model, N, max-epochs
Output: best solution, best objective value
{Initialization}

Initialize all the parameters
Initialize the food sources’ positions by Eq. (2), then evaluate them.
Record the best solution as x(t) and its fitness as f(t)
set Trail = 0

Repeat: (evaluations ¼ t = 0)
{Employed bees’ phase}

for i = 1: 1: N
Apply the solution search strategy (Algorithm 2).
{Greedy selection}
if fnew better than fi

xt+1
i =xt+1

i
fi=fnew

traili = 0
else

xt+1
i =xt

i
traili = traili + 1

end
end

{Onlooker bees’ phase}
Calculate the probability values pi by Eq. (4).
n = 0, i = 0.
while n < N

if random < pi

Apply the solution search strategy (Algorithm 2).
{Greedy selection}
if fnew better than fi

xt+1
i =xt+1

i
fi=fnew

traili = 0
else

xt+1
i =xt

i
traili = traili + 1

end
n = n + 1

end
i = (i + 1) mod N

end
{Scout bees’ phase}

if max(traili) > Limit
Reset xt+1

i by Eq. (2) and evaluate xt+1
i

traili = 0
t = t + 1

end
Record the best solution as x(t) and it’s fitness as f(t)
t = t + 2*N

Until meet stop conditions
Output the final solution

Algorithm 2
The solution search strategy.

Input: xt
i

Output: xt+1
i

Neighbor selection: Randomly select kϵ[1,N], k ∕= i
Direction selection: Randomly select jϵ[1,D].
Create a new candidate position xt+1

i by Eq. (3).
Calculate the new position’s fitness fnew

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

5

learning rate, over-learning rate, and invalid-learning rate (ILR). These
measures enable us to assess the effectiveness of binary SI algorithms in
meeting the predefined criterion accurately.

The search process of an SI algorithm typically consists of two pri
mary components: input solutions (xt

i , xt
j , xt

k, etc.) and output solutions
(xt+1

i). The input solution covers all the solutions involved in the
computation of the output solution and can be further classified into the
current solution (xt

i) and the guiding solutions (xt
j , xt

k, etc.). Current
solution is typically selected sequentially from the existing population,
while guiding solutions are selected based on various strategies and may
involve multiple solutions. The output solution, also referred to as the
candidate solution, represents the outcome of the entire search process.
Based on these components, the relevant evaluation metrics are defined
as follows.

Under-learning α: It occurs when the Euclidean distance between
the candidate solution xt+1

i and the current solution xt
i is 0, indicating an

invalid search that fails to explore new solution spaces. Mathematically,
this metric can be modeled as follows.

α =

⎧
⎪⎨

⎪⎩

1,
∑D

j=1

(
xt+1

ij − xt
ij

)2
> 0

0, otherwise

(7)

Where, α == 0 indicates that this is an invalid search, otherwise the
update is valid.

Over-learning β: It occurs when the Euclidean distance between the
candidate solution xt+1

i and the guiding solutions (xt
j , xt

k, etc.) is 0,
indicating an invalid search that fails to explore new solution spaces.
This is again an invalid search and can be modeled as follows.

βk =

⎧
⎪⎨

⎪⎩

1,
∑D

j=1

(
xt+1

ij − xt
kj

)2
> 0

0, otherwise

(8)

Where i ∕= k, βk == 0 signifies that the current search is invalid due to
the Euclidean distance being 0 from the guiding solutions xt

k.
In either case, it would be an invalid search. We can define the ILR as

Eq. (9). It is evident that as ILR decreases, the goodness-of-fit to criterion
II improves. The optimal value of ILR is 0 %.

ILR =

(

1 −
1
M
∑M

m=1

(

αm +
∑P

i=1
βmi

))

× 100% (9)

Where m ∈ {1,2,⋯,M}, M is the number of executions of the solution
search formula and M is the total number of executions of the solution
search formula in the ABC algorithm. P represents the number of guiding
solutions, P = 1 in most ABC algorithms.

In Fig. 1, an illustrative example of ILR is presented. Let us consider
xt

i as the current solution, xt
j and xt

k as the guiding solutions, and xt+1
i as

the candidate solution, typical cases would be as follows.
Case 1: When the Euclidean distance between the candidate solution

xt+1
i and the selected current solution xt

i is 0, it indicates that the search
did not deviate from the current solution, signifying an invalid search
due to under-learning.

Case 2: If the Euclidean distance between the candidate solution xt+1
i

and a guiding solution xt
j is 0, it implies that xt+1

i is an exact replica of xt
j ,

indicating an invalid search resulting from over-learning.
Case 3: Similarly, when the Euclidean distance between the candi

date solution xt+1
i and another guiding solution xt

k is 0, it suggests that
xt+1

i is an exact duplicate of xt
k, also indicating an invalid search due to

over-learning.
Case 4: Conversely, if the new solution obtained differs from all other

solutions, with a non-zero Euclidean distance from xt
i , xt

j , and xt
k, it

signifies that xt+1
i explores a new solution space and represents a valid

update.
These scenarios serve to distinguish between valid and invalid search

processes.

4.2. Criteria validated on the BABC algorithms

This section is dedicated to the theoretical analysis of the criteria
values presented in Section 4.1. Various BABC algorithms are employed
as examples to assess the level of alignment between these algorithms
and the proposed criterion. Furthermore, a quantitative analysis is
conducted using the ILR metric.

4.2.1. Analysis of DABC
DABC is an example of mapping-based method. For this method, the

solution search formula is the same as the basic ABC algorithm, a
transfer-function is introduced to map [− ∞, +∞] to (0,1), defined as Eq.
(10). And the real value obtained by Eqs. (3) and (10) represents the
probability that a dimension variable should be 1, which is then used to
obtain the final value as outlined in Eq. (11).

sig
(
xij
)
=

1
(1 + e− xij)

(10)

xt+1
ij =

⎧
⎨

⎩

0, sig
(

vt+1
ij

)
< rand

1, sig
(

vt+1
ij

)
≥ rand

(11)

vt+1
ij = xt

ij + φij ×
(

xt
ij − xt

kj

)
(12)

To facilitate analysis, Eq. (3) is rephrased as Eq. (12) with its original
meaning intact. This enables enumeration of the various input and
output combinations arising from the search strategy employed by
DABC, as summarized in Table 1.

Let P(xt+1
ij /(xt

ij, xt
kj)) denotes the probability that a new candidate

solution xt+1
ij takes when the input is xt

ij and xt
kj. Then P(0/(0,0)) = 0.5,

P(0/(0,1)) = 0.5, P(1/(1,0)) = 0.5, P(1/(1,1)) = 0.73. If xt+1
ij is equal to

xt
ij, it is an invalid search. In this case, the probability of invalid search

can be expressed as P(ILR) = P(0 /(0,0))× P(0,0)+ P(0 /(0,1))× P(0,
1)+ P(1 /(1,0))× P(1,0)+ P(1 /(1,1))× P(1,1) = 0.5× 0.25+ 0.5×

0.25+ 0.5× 0.25+ 0.73× 0.25 = 0.5575.
As per our analysis, it is evident that DABC does not provide a

guarantee for validity in solution update at each search due to its rela

Fig. 1. Examples illustrating under-learning and over-learning scenarios. When
a search agent is deployed, any candidate solution that aligns with previously
generated solutions is considered an invalid search, as depicted in cases 1, 2,
and 3.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

6

tively high probability of invalid searches, which has been calculated as
55.75 %. Moreover, the incorporation of exponential operations within
the algorithm adds to its computational complexity [48], which scales as
O(n × log2

2(n) × log2(log2(n))).

4.2.2. Analysis of ABCbin
ABCbin employs mod-round-mod operations. This approach ach

ieves lower computational complexity compared to DABC. Specifically,
the mod-round-mod operation is defined by Eq. (13), which corresponds
to Eqs. (10) and (11) as utilized in DABC.

xt+1
ij = round

(⃒
⃒
⃒vt

ij mod 2
⃒
⃒
⃒

)
mod 2 (13)

The input and output combinations for ABCbin’s solution search
process are listed in Table 2. An interesting issue has been identified
wherein xt+1

ij would obtain a certain value in case 1 and 4. The proba
bility values for each combination are as follows: P(0 /(0,0)) = 1, P(0
/(0,1)) = 0.5, P(1/(1,0)) = 0.5, P(1/(1,1)) = 1. Then P(ILR) = P(0 /(0,
0))× P(0,0)+ P(0 /(0,1))× P(0,1)+ P(1 /(1,0))× P(1,0)+ P(1 /(1,1))×
P(1,1) = 1× 0.25+ 0.5× 0.25+ 0.5× 0.25+ 1× 0.25 = 0.75.

ABCbin does not guarantee to generate new solution at each search,
as its search process has a 75 % probability of invalidity. However,
compared to DABC, ABCbin utilizes a modulus operation rather than an
exponential operation, which significantly reduces computational re
quirements. Specifically, its complexity is O(n× log2(n)× log2(log2(n)),
which is primarily determined by Eq. (12). Whereas criterion I shows
slight improvement, criterion II does not meet the requirement with P
(ILR) = 62.5 %.

During our investigation, we have identified an issue where variable
vt

ij remains consistently below 2. To address this inefficiency, we propose

the following update formula:

xt+1
ij = round

(⃒
⃒
⃒vt

ij

⃒
⃒
⃒

)
mod 2 (14)

4.2.3. Analysis of binABC
binABC applies binary bitwise operations instead of real arithmetic

operations in the basic ABC algorithm. The search formula for updated
solutions is presented as Eq. (15).

xt+1
ij = xt

ij ⊗
(

φ
(

xt
ij ⊗ xt

kj

))
(15)

Where ‘⊗ ’ stands for a ‘xor’ operator and ‘φ’ is the logic NOT gate with
50 % probability. If φ is less than 0.5, the result obtained by (xt

ij ⊗ xt
kj) is

inverted; otherwise, the result is not inverted. Here, φ is a random
number uniformly selected from the interval [0, 1].

As shown in Table 3, the probabilities of P(0/(0,0)) = 0.5, P(0/(0,1))
= 0.5, P(1/(1,0)) = 0.5, P(1/(1,1)) = 0.5. The value of P(ILR) is sub
sequently determined as follows: P(ILR) = P(0 /(0, 0))× P(0, 0)+
P(0 /(0,1))× P(0, 1)+ P(1 /(1, 0))× P(1, 0)+ P(1 /(1, 1))× P(1, 1) =

0.5× 0.25+ 0.5× 0.25+ 0.5× 0.25+ 0.5× 0.25 = 0.5.
The complexity of Eq. (15) is o(3). Criterion I is effectively met,

however, at P(ILR) = 50 %, criterion II is not satisfied.

4.2.4. Analysis of bitABC
bitABC introduces a solution update formula as Eq. (16), which

differs from Eq. (3) by employing bitwise logical operators instead of
arithmetic ones. Specifically, the ‘xor’ operator replaces ‘addition’, the
‘and’ operator replaces ‘multiplication’, and the ‘or’ operator replaces
‘subtraction’. Moreover, binary values for ϕt

ij are obtained using Eq.
(17).

xt+1
ij = xt

ij ⊗
(

ϕt
ij&
(

xt
ij

⃒
⃒
⃒xt

kj

))
(16)

ϕij =

{
1, rand < r
0, rand ≥ r (17)

Where, ‘&’ stands for a ‘and’ operator, and ‘|’ represents a ‘or’ operator
in a binary bitwise operation. r is a real control parameter within the
range [0,1], the default value is 0.5.

As shown in Table 4, it can be deduced that P(0/(0,0)) = 1, P(0/(0,
1)) = 0.5, P(1/(1, 0)) = 0.5, P(1/(1, 1)) = 0.5. Then P(ILR) = P(0 /(0,
0))× P(0,0)+ P(0 /(0,1))× P(0,1)+ P(1 /(1,0))× P(1,0)+ P(1 /(1,1))×
P(1,1) = 1× 0.25+ 0.5× 0.25+ 0.5× 0.25+ 0.5× 0.25 = 0.625.

The computational complexity of Eq. (16) is o(3). Although criterion
I has been significantly improved, criterion II fails to meet the required
condition, with P(ILR) being 62.5 %.

Table 1
The analysis of the solution update strategy in DABC.

Case 1 Case 2 Case 3 Case 4

Input xt
ij 0 0 1 1

xt
kj 0 1 0 1

Procedure S1: after Eq. (12) 0 − φt
ij φt

ij 1
S2: after Eq. (10) 0.5 [0.27,0.73] [0.27,0.73] 0.73

Output P(xt+1
ij = 0) 50 % 50 % 50 % 27 %

P(xt+1
ij = 1) 50 % 50 % 50 % 73 %

Note: φt
ij is a uniformly distributed random number in the range [− 1,1]. Hence,

after applying Eq. (10) in both case 2 and case 3, the resulting values of sig(± φt
ij)

will belong to the [0.27, 0.73] range, presenting a symmetrical distribution
centered on 0.5. Due to this, it can be theoretically concluded that the proba
bility of xt+1

ij being either 0 or 1 is equal.

Table 2
The anlysis of ABCbin.

Case 1 Case 2 Case 3 Case 4

Input xt
ij 0 0 1 1

xt
kj 0 1 0 1

Procedure S1: after Eq. (12) 0 − φt
ij φt

ij 1
S2-(a): after Eq. (13)
Under φt

ij ∈ (− 0.5,0.5)
0 0 0 1

S2-(b): after Eq. (13)
Under others

0 1 1 1

Output P(xt+1
ij = 0) 100 % 50 % 50 % 0

P(xt+1
ij = 1) 0 50 % 50 % 100 %

Note: φt
ij is a uniformly distributed random number in the range [− 1,1]. Hence,

the occurrence probability of both S2-(a) and S2-(b) is identical. Thus, in case 2
and case 3, there exists an equal theoretical probability for the value of xt+1

ij to be
either 0 or 1.

Table 3
The anlysis of binABC.

Case 1 Case 2 Case 3 Case 4

Input xt
ij 0 0 1 1

xt
kj 0 1 0 1

Procedure S1: after xt
ij ⊗ xt

kj 0 1 1 0
S2-(a): after Eq. (15)
Under φ < 0.5

1 0 1 0

S2-(b): after Eq. (15)
Under φ ≥ 0.5

0 1 0 1

Output P(xt+1
ij = 0) 50 % 50 % 50 % 50 %

P(xt+1
ij = 1) 50 % 50 % 50 % 50 %

Note: φ is a uniformly distributed random number in the range [0,1]. Therefore,
both S2-(a) and S2-(b) occur with identical probability. Consequently, in case 2
and case 3, there is an equal theoretical likelihood for the value of xt+1

ij to be
either 0 or 1.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

7

4.3. Summary and analysis of criteria for binarization

Section 4.2 presents a theoretical evaluation of several BABC algo
rithms, analyzing them against Criteria I and II, with the outcomes
detailed in Table 5. Regarding Criterion I, it is clear that the computa
tional complexity indicator shows the binABC and bitABC algorithms
substantially outperform the DABC and ABCbin algorithms. This
advantage is mainly due to the inherently lower computational
complexity of binary logic operations compared to operations with real
numbers. Thus, the binary-operator method, by virtue of its reduced
computational complexity relative to the mapping-based method, is
recommended for binary algorithm design.

With respect to Criterion II, the ILR is identified as a crucial metric
for evaluation. The ILR values for the algorithms DABC, ABCbin,
binABC, and bitABC all exceed 50 %, indicating, based on mathematical
expectation, their failure to meet Criterion II and to assure the validity of
each search. The task of theoretically deriving ILR for multi-dimensional
update BABC algorithms, such as ibinABC, NBABC, GBABC, iBABC, and
PBABC, is notably challenging. Their ILR values will be determined
empirically in subsequent experiments.

Regarding Criterion III, despite the absence of quantitative metrics, it
is clear that the current BABC algorithms lack the integration of a bio-
inspired model in their update dimension selection strategies. To
address this, the oBABC algorithm is proposed based on the established
criteria. The theoretical insights derived will be subjected to further
scrutiny and empirical validation in subsequent experiments to under
score the theoretical arguments and demonstrate the advantages of the
oBABC algorithm.

4.4. oBABC algorithm

4.4.1. Search formula based on criteria I & II
One of the distinguishing features of the basic ABC algorithm is that

it updates only one-dimensional variable at each search. Motivated by
Criterion I, we opt for a search formula design that utilizes binary op
erations. Following this, in alignment with Criterion II, we undertook a
theoretical analysis of the search formula for the one-dimensional BABC.

Table 6 presents a summary regarding the validity of solution updates. If
xt+1

ij is equal to xt
ij, then xt+1

i will be equal to xt
i , resulting in under-

learning. An example is depicted in Fig. 2. The search path (a) is
deemed invalid due to under-learning, while path (b) explores an
alternative solution and be valid. Specifically, xt+1

i6 = xt
i6 = 1 would

yield f(xt+1
i) = f(xt

i), including but not limited to the computation of
f(xt+1

i). Then the entire computational process outlined in Algorithm 2
would become futile. These spurious calculations merely increase the
computation time, but offer no benefits to the optimization process.
Instead, one can refer to path (b) in Fig. 2, where setting xt+1

i6 =0 would
lead to xt+1

i ∕= xt
i , potentially yielding a different value of f(xt+1

i) from
f(xt

i). Clearly, considering solutions that differ from the current one can
significantly aid in searching for unvisited space.

Hence, the one-dimensional updated BABC algorithm possesses a
theoretically optimal search equation, as exemplified by Eq. (18). This
equation incorporates reverse operators to guarantee a valid search
process during each search. Specifically, Eq. (18) explicitly indicates
that xt+1

i will adopt a unique value distinct from its previous state, xt
i .

Importantly, the output obtained from this equation is directly binar
ized, eliminating the need for additional binarization procedures.

xt+1
ij =∼ xt

ij (18)

4.4.2. Dimension selection strategy based on criterion III
SI algorithms provide a significant advantage over stochastic algo

rithms as they facilitate guided search through interactions, thereby
enhancing the chances of attaining optimal solutions within desired
evaluations. Considering Criterion III, we introduce a module that em
ploys a biomimetic strategy for selecting the update dimension, instead
of the random selection method utilized in the traditional ABC algo
rithm. Inspired by the natural waggle dance, which communicates the
direction of fruitful hives to attract observers, we introduce two key
modules: the difference degree and the difference vector.

Difference vector Δ: Δ is vector of D, where Δj=1 indicates that xt
ij

and xt
kj have identical value, while Δj=0 indicates that xt

ij and xt
kj have

distinct values. The calculation of Δ can be performed using Eq. (19).

Δ = xt
i ⊗ xt

k (19)

Difference degree l: The Euclidean distance between two solutions,
which can be calculated by Eq. (20).

l =
∑D

j=1
Δj (20)

Subsequently, the update dimension j is identified such that Δj==1
denotes movement towards neighboring solutions, whereas selecting
Δj==0 as the update dimension j implies moving away from them. The
directionality, whether towards or away from the neighboring solution,
is determined by the difference degree l in Eq. (20), and the corre
sponding mathematical formulation is presented as Eq. (21).

d =

{
rswhere(Δ, 0), ifl < γ
rswhere(Δ, 1), else (21)

Where rswhere(Δ, v) is direction selection engine, it means that
randomly selects an output d from where Δd = v. γ is the control
parameter for direction selection, named direction selection agent.

Table 4
The anlysis of bitABC.

Case 1 Case 2 Case 3 Case 4

Input xt
ij 0 0 1 1

xt
kj 0 1 0 1

Procedure S1: after xt
ij|xt

kj 0 1 1 1
S2-(a): after Eq. (16)
Under ϕt

ij=1
0 1 0 0

S2-(b): after Eq. (16)
Under ϕt

ij=0
0 0 1 1

Output P(xt+1
ij = 0) 100 % 50 % 50 % 50 %

P(xt+1
ij = 1) 0 50 % 50 % 50 %

Note: According to the definition of Eq. (17), the probability of ϕt
ij being 0 or 1 is

equal. Thus, in case 2, case 3 and case 4, there exists an equal theoretical
probability for the value of xt+1

ij to be either 0 or 1.

Table 5
Summary of theoretical performance of one-dimensional updated BABC
algorithms.

Algorithm Complexity ILR Criterion I Criterion II

DABC O(n × log2
2(n) ×

log2(log2(n)))
55.75 % High Not

ABCbin O(n× log2(n)× log2(log2(n)) 75 % Median Not
binABC O(3) 50 % Low Not
bitABC O(3) 62.50 % Low Not

Table 6
The analysis of validity of solution update.

Case 1 Case 2 Case 3 Case 4

xt
ij 0 0 1 1

xt+1
ij 0 1 0 1

Reward invalid valid valid invalid

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

8

In contrast to the other ABC algorithms, oBABC integrates a direction
selection agent γ as a novel control parameter. This agent facilitates
determining whether the algorithm directs the search towards or away
from neighboring solutions. As the value of γ increases, the search is
directed towards neighboring solutions, promoting colony aggregation,
and thereby enhancing exploitation performance, consequently accel
erating convergence. Conversely, smaller values of γ direct the search
away from neighbors, stimulating the colony to explore diverse loca
tions, thus improving exploration performance.

Fig. 3 illustrates typical examples of direction selection engines,
which show that γ should fall within the acceptable range of [2, D],
rather than [0, D]. As indicated in Fig. 3(a) and (b), the value of γ must
not be less than 2. Specifically, when l is 0, the operation rswhere(Δ, 1)
becomes illegal, whereas when l is 1, rswhere(Δ,1) results in an invalid
search of over-learning. Thus, when l equals 0 or 1, rswhere(Δ,0) should
be promised. In other words, γ must be no less than 2. Furthermore,
Fig. 3(c) indicates that when l is D, updating xt

i to move away from xt
k

would be optimal choice, consistent with Eq. (21). Lastly, Fig. 3(d)
provides an example where v is determined by γ which belonging to [2,
D].

Furthermore, Eq. (22) provides a model for determining the value of

γ that is dependent on D.

γ = round[τ × (D − 2)] + 2 (22)

Where τ ∈ [0,1] determines the value of γ.

4.4.3. Elaboration of oBABC
oBABC is an extension of the basic ABC algorithm in binary space,

with the same framework as described in Algorithm 1, but incorporating
an enhanced binary search strategy, which can be found in Algorithm 3.
To enhance the clarity of oBABC, we provide a flowchart in Fig. 4.
Similar to the ABC algorithm, oBABC comprises three modules:
employee bees, onlooker bees, and scout bees. The employee bees and
onlooker bees employ distinct strategies for food source selection,
determining the index of the current solution to be updated. Fig. 4(a)
illustrates the main loop of the algorithm, while Fig. 4(b), Fig. 4(c), and
Fig. 4(d) represent specific stages within the algorithm: the employee
bees’ module, the onlooker bees’ module, and the scout bees’ module,
respectively. In the employee bees’ module, the selection of xi follows a
sequential distribution without repetition. Conversely, the onlooker
bees’ module utilizes the roulette method to select xm, allowing for

Fig. 2. Search efficiency analysis of a 10-Dimensional problem with dimension 6 as the update dimension. Row ‘d’ represents the dimension index. Two possible
paths are shown: an invalid path (a) where no search gain is achieved as xt+1

i remains unchanged from xt
i , and a valid path (b) where xt+1

i takes a different value from
xt

i , enabling exploration of an unvisited f(xt+1
i) in this search.

Fig. 3. Analysis of the direction selection engine rswhere(Δ, v) described in Eq. (21) at different l. The top row shows the initial information of xt
i and xt

k. The middle
row displays the possibility of selecting a dimension under values of v. The bottom row illustrates the validity of rswhere(Δ, v). d represents the dimension index. ‘✓’
indicates feasibility or legality while ‘⨯’ indicates the opposite. (a) l = 0, v must be 0. (b) l = 1, v should be 0 to ensure that xt+1

i differs from both xt
i and xt

k. (c) l = D,
v must be 1. (d) l = 3, v is determined by γ.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

9

probability-based selection that may involve repetitions. For example, in
a colony with 5 solutions, the sequences of current solution indices can
be observed as i= [1,2,3,4,5] for the sequential distribution without
repetition, and m= [1,1,3,3,5] for the probability-based selection that
permits potential repetition.

An example of oBABC is shown in Fig. 5. In this case, the difference
vector Δ is [1,1,1,1,0,1,0,1,0,0]. Applying the search methodology of
oBABC with τ=0.1, an update dimension 4 is generated by Eq. (21) and a
new solution is outputted by Eq. (18) as [0,1,1,0,0,1,1,1,0,1].

5. Experiment

This section provides a detailed explanation of the experimental
materials, performance metrics, and results. The experiments have been
conducted using MATLAB R2021b on an Intel CPU Core i5–12400F @
2.50 GHz (16 GB RAM) system running on Windows 11. To assess the
performance of oBABC, we employed the UFLP and Max-Cut problems.

We compare the results obtained from oBABC with state-of-the-art
variants of the BABC algorithms, including one-dimensional updated
BABC algorithms such as DABC [37], ABCbin [38], binABC [35], bitABC
[36], as well as multi-dimensional updated BABC algorithms like NBABC
[40], ibinABC [41] iBABC [42], GBABC [43], PBABC [27]. Additionally,
we include DPSO [29] for comparison purposes. The same control pa
rameters are used for all algorithms to ensure fair comparison, with a
colony size of 40 (The ABC-based algorithms comprise a population of
20 employee bees and 20 onlooker bees, whereas DPSO algorithm
population consists of 40 particles.). For UFLP, the maximum number of
function evaluations is set as 80,000. While for Max-Cut, it is limited to
20,000.

5.1. Experimental material

Binary optimization problems form a crucial subset of numerical
optimization problems. UFLP [49] and Max-Cut are widely recognized

Algorithm 3
The solution search method in oBABC.

Input: xt
i

Output: xt+1
i

Neighbor selection: Randomly select kϵ[1,N], k ∕= i
Direction selection: select j by Eq. (21), Eq. (19) and Eq. (20)
Create a new candidate position xt+1

i by Eq. (18).
Calculate the new position’s fitness fnew

Fig. 4. Flowchart of oBABC. (a) Main loop. (b) Employee bees’ module. (c) Onlooker bees’ module. (d) Scout bees’ module. While xi in employee bees’ module is
selected in order, xm in onlooker bees’ module is selected by roulette method.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

10

as representative benchmark problems for assessing the performance of
binary optimization algorithms.

UFLP is a constrained optimization problem, and the binary variables
are used to represent the assignment of facilities and the satisfaction of
capacity constraints. The problem can be mathematically expressed
using Eq. (23). Further, Table 7 provides a summary of optimal costs
along with details regarding test problem sizes and names for UFLP.

minf =
∑m

i=1

∑n

j=1
cij × xij +

∑n

i=1
fixi × yi (23)

Where fixi refers to the fixed cost associated with the opening of facility
i, while cij denotes the cost incurred when facility i caters to the needs of
customer j. Here, xij=1 indicates that facility i serves customer j, and
yi=1 implies that facility i is open.

The Max-Cut problem serves as another binary problem that can be
utilized to assess the effectiveness of optimization algorithms. The
objective is to find the maximum cut in an undirected graph G = (V, E),
where V represents the set of vertices and E represents the set of edges.
The maximum cut aims to locate a cut between two distinct sets of
vertices, S and its complement, S‾ = V\S, such that the size of the cut is
larger than any other possible cut in the graph. Specifically, a cut in a

graph represents the number of edges separating two sets of vertices
viewed as separate and complementary partitions. A maximum cut re
fers to the cut with the most considerable weight, and can be defined
mathematically via Eq. (24). Reference characteristics related to the
Max-Cut problem are presented in Table 8.

maxW(S, S) =
∑

i∈S,j∈S

wij (24)

Where wij = wi × wj is the weight of the edge between node i and node j,
wi is the weight of vertex i and wiϵ{1, − 1}, which depending on the
partition that wi belongs to.

5.2. Performance evaluation metrics

In this subsection, a specific set of performance metrics has been
presented to achieve a more precise quantification of the validity of the
theoretical analysis discussed in Section 4.3 and to conduct a compre
hensive comparative analysis with several state-of-the-art BABC algo
rithms. The performance metrics are as follows.

Invalid-learning Rate (ILR): Refers to the rate at which the newly
generated solution is deemed invalid, either due to it being identical to
the current solution or its neighbor, as defined as Eq. (9) in Section 4.1.

Best: Represents the best value of the output objective function over

Fig. 5. An example illustrates search strategy in oBABC. (a) Direction selection agent γ is 3, calculated by using Eq. (22) with τ=0.1. (b) xt
k is randomly selected as the

learning neighbor for the current solution xt
i . (c) Update dimension 4 is generated by Eq. (21). (d) A new solution xt+1

i is outputted by the search strategy of oBABC.

Table 7
Test problem sets for the UFLP, used in the experiments.

Level Problem Name Problem Size Cost of Optimal Solution

Small-size Cap71 16×50 932,615.75
Cap72 16×50 977,799.4
Cap73 16×50 1,010,641.45
Cap74 16×50 1,034,976.98

Medium-size Cap101 25×50 796,648.44
Cap102 25×50 854,704.20
Cap103 25×50 893,782.11
Cap104 25×50 928,941.75

Large-size Cap131 50×50 793,439.56
Cap132 50×50 851,495.33
Cap133 50×50 893,076.71
Cap134 50×50 928,941.75

Extra-large-size CapA 100×1000 17,156,454.48
CapB 100×1000 12,979,071.58
CapC 100×1000 11,505,594.33

Table 8
Test problem sets for the Max-Cut problem, used in the experiments. n and d are
respectively the problem size and the density.

Problem
Name

Solution Problem
Name

Solution Problem
Name

Solution

n = 100, d = 0.1 n = 100, d = 0.5 n = 100, d = 0.9

pw01–100.0 2019 pw05–100.0 8190 pw09–100.0 13,585
pw01–100.1 2060 pw05–100.1 8045 pw09–100.1 13,417
pw01–100.2 2032 pw05–100.2 8039 pw09–100.2 13,461
pw01–100.3 2067 pw05–100.3 8139 pw09–100.3 13,656
pw01–100.4 2039 pw05–100.4 8125 pw09–100.4 13,514
pw01–100.5 2108 pw05–100.5 8169 pw09–100.5 13,574
pw01–100.6 2032 pw05–100.6 8217 pw09–100.6 13,640
pw01–100.7 2074 pw05–100.7 8249 pw09–100.7 13,501
pw01–100.8 2022 pw05–100.8 8199 pw09–100.8 13,593
pw01–100.9 2005 pw05–100.9 8099 pw09–100.9 13,658

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

11

multiple runs.
Worst: Represents the worst value of the output objective function

over multiple runs.
Mean: Represents the mean value of the output objective function

over multiple runs.
Std.Dev.: Represents the standard deviation of the output objective

function over multiple runs.
Matching Rate (MR): Represents the degree of similarity between

the objective function value of the current solution and that of the
optimal solution, defined by Eq. (25). Specifically, MR is defined as the
best value achieved by an algorithm in a single run. MR(fit) denotes the
value of MR under the agreed rules. For instance, MR(Mean), MR(Best),
and MR(Worst) represent the average, best, and worst MR values ob
tained by the algorithm across multiple runs, respectively. MR(f(t))
represents the best MR value attained by an algorithm up to evaluation t.

MR(fit) = 1 −

⃒
⃒
⃒
⃒
(fit − Optimum)

Optimum

⃒
⃒
⃒
⃒× 100% (25)

HitTimes(x): Quantifies the number with which the MR of an algo
rithm reaches a specified value, denoted by x. For illustration, HitTimes
(99 %) indicates the number of runs in which the MR achieves 99 % of
the optimal solution. This metric is invaluable for assessing the search
capabilities of algorithms, as it measures the frequency with which they
attain the desired optimal solution.

HitFirst(x): Defined as the minimum number of evaluations required
for an optimized algorithm to reach a certain MR, represented by x. For
instance, HitFirst(99 %) would correspond to the earliest evaluation t
when MR(f(t)) = 99 %. HitFirst(x) provides crucial information about the
search efficiency of algorithms in reaching the desired MR. By
measuring the minimum number of evaluations needed for an algorithm
to achieve a certain level of optimization, we can get insight into the
search efficiency of the algorithm.

5.3. Results

5.3.1. Validation of ILR for various algorithms
According to the analysis in Section 4.3, and based on criterion II, it

has been revealed that non-ideal search methods primarily lead to
invalid searches. The theoretical estimates of ILR values for different
algorithms are shown in Table 5. To validate this finding, a series of tests
are carried out on UFLP and Max-Cut problems with varying sizes, and
the outcomes are depicted in Fig. 6. oBABC has been designed to miti
gate the occurrence of invalid searches, and the experimental results
confirm its effectiveness in this regard. oBABC exhibits high search

efficiency with an ILR of 0 %, while the other algorithms remain stuck in
invalid searches with higher ILR values. Specifically, in the context of
the Max-Cut problem, the ILR values of the one-dimensional updated
ABC algorithm are closely aligned with the corresponding theoretical
values. However, when considering the UFLP problem, the experimental
ILR values significantly exceeds the theoretical values. This discrepancy
can be attributed to the tendency of many algorithms to quickly
converge to local optima or rapidly identify the optimal solution in the
UFLP problem, resulting in a reduction in population diversity. In
contrast, the Max-Cut problem poses a challenge in finding the optimal
solution and provides a richer solution space for the algorithm to
explore.

Considering multi-dimensional updated BABC algorithm, deriving
their ILR values theoretically poses a challenge. Nonetheless, experi
mental results presented in this section show that ILR values surpass 50
% for the UFLP and generally exceed 20 % for the Max-cut problem.
Such findings highlight the issue of invalid updates in BABC algorithms
that feature multi-dimensional updates, thus failing to meet Criterion II.
Although ILR is not the sole indicator of an algorithm’s optimization
efficacy, it points to potential computational resource wastage. In
summary, these critical insights emphasize the superior search effi
ciency of the oBABC algorithm regarding ILR, relative to other BABC
algorithms, marking a notable advancement in algorithmic design.

5.3.2. On the choice of the direction agent γ
This subsection examines the effect of γ on solution quality obtained

by oBABC. As its value determined by τ, we vary τ from 0 to 1 in in
crements of 0.1 to evaluate algorithm performance. The convergence
plot in Fig. 7(a) illustrates that smaller τ leads to faster convergence. In
terms of solution quality and robustness under different τ, we analyze
mean and standard deviation in Fig. 7(b)~(c). A lower objective func
tion value indicates better solution quality for the UFLP problems. Based
on Fig. 7(b) and Fig. 7(c), when τ=0.1, the search capability and
robustness are best balanced, indicating that setting τ can balance the
exploitation and exploration, and enhance search efficiency and capa
bility of oBABC.

5.3.3. Analysis of computation time
The computation time of an algorithm is a crucial metric for

assessing its performance, and it is a key aspect of criterion I. In Fig. 8(a),
the time taken by various algorithms to complete a function evaluation
on UFLP and Max-Cut problems is presented. The results show that most
algorithms have similar runtimes, which can be attributed to advance
ments in computer processing power. Fig. 8(b) displays the time needed

Fig. 6. Comparison of invalid-learning rate (ILR) for different algorithms. Theoretical values are quoted from Table 5, while experimental values are obtained from
statistical analysis of the UFLP and Max-Cut problems using Eq. (9).

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

12

for different algorithms to finish a population iteration. GBABC stands
out with a significantly longer runtime, about 20 times greater than the
other algorithms. This difference arises because each solution update in
GBABC involves evaluating 10 children and 10 grandchildren candidate
solutions, leading to an epoch time twenty times longer than that of
other algorithms. While this strategy improves population diversity, it
also introduces additional computational overhead. To ensure fairness,
we employ the maximum number of function evaluations as a stopping
criterion for the comparative analysis of algorithm performance in
subsequent experiments.

5.3.4. Performance on UFLP problems
Numerical experimental results obtained from UFLP datasets are

summarized in Table S1 (Supplementary Materials Table S1). As
observed in Table S1, oBABC, like other algorithms, successfully finds
the optimal solution in at least one out of 30 independent runs. The
distinction among these algorithms primarily lies in their search effi
ciency. To provide a more intuitive comparison of their performance, we
utilize the convergence curve, a commonly employed tool for evaluating
algorithm efficiency and performance. Fig. 9 depicts the convergence
curves for different problem scales. It is evident from Fig. 9(a)-(b) that
oBABC exhibits comparable convergence for small and medium-sized
problems, while DPSO and multi-dimensional updated BABC

converges faster in the initial stage but requires more search epochs to
escape local optima and find the global optimum. For large-scale prob
lems, both oBABC and NBABC demonstrate competitive performance, as
illustrated in Fig. 9(c). However, as shown in Fig. 9(d), for extra-scale
problems, oBABC converges at a slower rate compared to the partially
multi-dimensional updated BABC algorithms (GBABC, NBABC, iBABC).
The convergence curves for all 15 problems can be found in Fig. S1. They
indicate that oBABC performs comparably to other BABC algorithms in
terms of search performance and successful identification of the optimal
solution. In comparison to the one-dimensional updated BABC algo
rithms, it exhibits clear advantages in terms of convergence speed and
optimization outcomes. While the multi-dimensional updated BABC
algorithms demonstrate slightly faster convergence, suggesting that the
multi-dimensional update and multiple candidate solutions in each
search epoch contribute to improved population diversity. In summary,
most BABC algorithms demonstrate superior optimization performance
compared to DPSO. Regarding search efficiency, oBABC shows a sig
nificant enhancement over the one-dimensional updated BABC algo
rithm and performs comparably to the multi-dimensional updated BABC
algorithm. These results indicate that the oBABC algorithm offers a
competitive solution for UFLP problems.

To quantitatively analyze the search efficiency of different algo
rithms, we conduct a statistical analysis of the minimum number of

Fig. 7. Impact of varying τ on Cap131 dataset. (a) Convergence curves for different values of τ, showcasing differences in convergence speed as highlighted in the
zoomed-in plot. (b) Mean cost across 30 runs for each value of τ. (c) Standard deviation across 30 runs for each value of τ.

Fig. 8. The runtime of different algorithms for solving UFLP and Max-Cut problems. (a) The time taken by various algorithms to complete a function evaluation on
these problems. (b) The time taken by various algorithms per epoch for solving these problems.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

13

evaluations required to reach the target solution for problems of varying
sizes. For small and medium-sized problems, as shown in Fig. 10(a),
oBABC achieves the optimal solution within 2500 evaluations, which get
a competitive result. In the case of large-scale problems, as depicted in
Fig. 10(b), oBABC converges to the target solution with a 99 % matching
degree only in approximately 1000 evaluations, while most one-
dimensional updated BABC algorithms require more than 4000 evalu
ations. However, for extra-large-scale problems, achieving the optimal
solution in every run is not guaranteed by any algorithm. We conduct a
statistical analysis on the output matching degree value, MR (Fig. 10(c)),
which clearly demonstrates that oBABC holds a distinct advantage over
the one-dimensional updated BABC algorithms. Compared to the multi-
dimensional updated BABC algorithms (iBABC, ibinABC), oBABC ex
hibits comparable performance.

5.3.5. Performance on max-cut problems
Max-cut is another highly challenging binary optimization problem

for which most SI algorithms do not guarantee the discovery of an
optimal solution. Fig. 11(a) presents an analysis of the algorithms’
ability to find optimal or near-optimal solutions. Among the algorithms,
oBABC demonstrates the highest success rate, achieving optimal solu
tions in at least one run ("MR(Best)=100 % in 30 runs") for 13 out of 30
problems. In contrast, the other algorithms fail to reach the optimal
solution. Furthermore, oBABC outperforms the rest in terms of "MR
(Best)>99 % in 30 runs," solving all 30 problems with nearly-optimal
solutions and securing the top position. Evaluating "MR(Mean)>99 %
in 30 runs," oBABC provides solutions for 20 problems, nearly double the
number achieved by the second-ranked binABC algorithm. These find
ings highlight the better capability and robustness of oBABC in finding

optimal or near-optimal solutions. Considering search efficiency, as
illustrated in Fig. 11(b), oBABC consistently requires fewer evaluations
to achieve a 98 % convergence to the optimal solution compared to
other algorithms. The performance of oBABC is more robustness, and its
box width is reduced by about 28 % compared to other algorithms.
Examining the search capability, the analysis of MR values depicted in
Fig. 11(c) reveals that oBABC consistently achieves MR values primarily
above 99 %, while the other BABC algorithms mostly fall below 99 % in
most runs. This observation highlights the superiority of oBABC in terms
of search performance and efficiency in the Max-cut problem.

Turning to the convergence curves, depicted in Fig. 12, it is evident
that oBABC outperforms the others in terms of both convergence rate
and results. Due to space limitations, only a subset of these comparisons
is presented in Fig. 12, while additional figures can be found in Fig. S2
and Fig. S3. Furthermore, most of the multi-dimensional updated BABC
algorithms demonstrate better performance compared to their one-
dimensional counterparts. Notably, oBABC consistently exhibits supe
rior performance in terms of both convergence rate and results, followed
by NBABC. These findings highlight the exceptional ability of oBABC to
achieve superior results compared to other algorithms, characterized by
faster convergence rates and higher solution quality.

The detailed results obtained from the Max-Cut problem are sum
marized in Table S2. To conduct a comprehensive statistical analysis, we
employ the Wilcoxon signed-rank test to analyze the output of the al
gorithm. As shown in Table 9, oBABC consistently outperforms the other
algorithms across almost all problems, with only binABC, ibinABC, and
NBABC demonstrating comparable performance on 4, 6, and 5 of the 30
problems, respectively. However, the remaining problems exhibit
notably inferior performance compared to oBABC. DABC, ABCbin, and

Fig. 9. Convergence curves of different algorithms for typical UFLP problems with varied sizes. The problems used include (a) Cap 71 as a representative of small-
size problems, (b) Cap 101 as a representative of medium-size problems, (c) Cap 131 as a representative of large-size problems. (d) Cap A as a representative of extra-
large-size UFLP problems.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

14

DPSO consistently demonstrate inferior rankings compared to all other
algorithms, and their results are not included in Table 9 due to space
constraints, but can be found in Table S3. Moreover, a t-test is employed
to provide a quantitative assessment by establishing a confidence in
terval for the difference between the means. The results of t-test, pre
sented in Table S4, further validate the superior performance of oBABC
in comparison to the others. Specifically, the confidence intervals of t-
test reveal a clear advantage for oBABC, despite the Wilcoxon signed-
rank test indicating their equivalence. Due to the extensive size of t-
test tables, they are provided in the Supplementary Materials.

Furthermore, Table S2 provides detailed evidence supporting the
superior performance of oBABC across various metrics, including the
Mean, Best, Worst, and Std.Dev of the objective function, as well as the
HitFirst(98 %), HitTimes(99 %), and HitTimes(100 %) metrics. We rank
these algorithms based on the presented metrics, which are illustrated in
the form of a radar chart in Fig. 13. The chart clearly demonstrates
oBABC’s superiority in terms of search efficiency (HitFirst(98 %)), search
capability (HitTimes(99 %), HitTimes(100 %)), and robustness (Best,
Worst, Mean, Std.Dev) compared to the other algorithms.

5.4. Discussion

In this work, we have formulated criteria for designing binary vari
ants of SI algorithms and introduced oBABC algorithm. Criterion I
highlights the necessity of minimizing the complexity of the search
formula. Despite technological advancements in computing power,
memory, and parallel computing, which could mitigate the impact of
computational efficiency, it is crucial to ensure low computational
complexity in the design phase. Our analysis indicates that binary-
operator approaches are more computationally efficient than
mapping-based methods in developing binary variants of SI algorithms.
As a result, oBABC algorithm adopts a binary operation methodology.

Criterion II necessitates the design of a search formula that ensures

exploration of new solution spaces. Experimental results reveal a sig
nificant presence of invalid searches in BABC algorithms. For one-
dimensional updated BABC algorithms, the ILR values align closely
with theoretical expectations, consistently exceeding 50 %. For multi-
dimensional updated BABC algorithms, despite the theoretical chal
lenges in estimating ILR values, experimental evidence suggests that ILR
exceeds 50 % for the UFLP and 20 % for the Max-Cut problem. Although
ILR alone does not determine an algorithm’s optimization effectiveness,
it points to potential computational resource wastage. The oBABC al
gorithm demonstrates superior search efficiency with an ambition of
achieving a zero ILR, marking a notable advancement in algorithmic
design.

Criterion III promotes the integration of biomimetic strategies to
increase the likelihood of quickly identifying optimal solutions. The
biomimetic model is what distinguishes SI algorithms from stochastic
algorithms. oBABC algorithm employs a biomimetic strategy in its up
date dimension selection process, representing a considerable
improvement over the conventional ABC algorithm. Further experi
ments in UFLP and Max-Cut problems have verified oBABC’s enhanced
convergence rate compared to one-dimensional update BABC algo
rithms, requiring significantly fewer function evaluations to achieve the
HitFirst(100 %) and HitFirst(99 %) benchmarks—less than 25 % of that
needed by one-dimensional updating BABC algorithms. In challenging
Max-Cut problems, oBABC has demonstrated a higher probability of
finding optimal solutions, outperforming other algorithms in terms of
reaching 99 % of solutions and the function evaluations required to
achieve 99 % sub-optimal solutions, thereby highlighting its perfor
mance advantage. These initial findings indicate oBABC’s potential as an
efficient and effective solution for binary problems.

Fig. 10. Statistical analysis of performance of various algorithms across
different UFLP problems. (a) Distribution of HitFirst(100) values for small-size
and medium-size problems. (b) Comparison of search efficiency using HitFirst
(99) on large-size problems. (c) The distribution of MR achieved by each al
gorithm on extra-large-size problems in 30 runs. Fig. 11. Statistical analysis of algorithm performance across different Max-Cut

problems. (a) The number of problems in which the algorithms can identify
specific near-optimal solutions, with thresholds MR(Best) ≥ 99 %, MR(Mean) ≥
99 %, and MR(Best) = 100 %. (b) Distribution of HitFirst(98 %) values for all
Max-Cut problems. (c) Distribution of MR values for each algorithm on a Max-
Cut problems.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

15

6. Conclusion and future works

Our work introduces oBABC, a novel one-dimensional BABC algo
rithm designed to solve binary problems. And our work makes three core
contributions. First, we recommend binarization criteria that have not
been previously identified in the literature to our knowledge. To vali
date these criteria, several typical BABC algorithms are analyzed ac
cording to the criteria, and some experiments are designed to verify the
results of theoretical analysis. Second, we find a theoretically optimal
one-dimensional update search formula, which enables exploration of
the solution space surrounding current solutions while avoiding map
ping problem spaces to other domains. This formula results in significant
improvements in search efficiency. Third, we propose an innovative
update dimension selection strategy that emulates multiple interactions
among bees. This approach directs the direction of updates and leads to

significant improvements in convergence rates. oBABC represents a new
milestone of one-dimensional update BABC algorithm. Specifically,
when tested on UFLP and Max-cut problems, oBABC outperforms cur
rent state-of-the-art binary variants of ABC algorithm by achieving the
optimum or near-optimum solution. Furthermore, oBABC displays
stronger search capability in terms of solution quality and robustness, as
evidenced by the best, mean, worst, and standard deviation metrics, thus
surpassing other algorithms. Therefore, it suggests that oBABC has po
tential for the application of solving complex binary problems.

On the other hand, we have observed that the multi-dimensional
update strategy offers certain advantages in terms of optimization per
formance. In our future research, we aim to investigate effective ways to
synergistically combine the concepts of one-dimensional update and
multi-dimensional update. The goal is to preserve the fine search
capability inherent in the one-dimensional update while integrating the

Fig. 12. Convergence curves of various algorithms for Max-Cut datasets with varying densities. The figure displays convergence performance plots for different
algorithms running on typical Max-Cut datasets with(a)~(b) density d = 0.1, (c)~(d) density d = 0.5, (e)~(f) density d = 0.9.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

16

rapid convergence and global exploration abilities of the multi-
dimensional update. Additionally, we plan to extend the application
scope of oBABC to address a broader range of engineering problems,
including feature/attribute space reduction and classification/clustering
problems.

Data availability

The codes and datasets are available online at https://github.com/
PHD-Fang/oBABC.

CRediT authorship contribution statement

Fangfang Zhu: Conceptualization, Methodology, Data curation,
Writing – original draft. Zhenhao Shuai: Data curation, Validation,
Visualization, Investigation. Yuer Lu: Data curation, Validation. Hon
ghong Su: Investigation, Resources. Rongwen Yu: Project administra
tion, Resources. Xiang Li: Visualization, Investigation. Qi Zhao:
Conceptualization, Methodology, Writing – review & editing, Funding
acquisition. Jianwei Shuai: Conceptualization, Supervision, Funding
acquisition, Project administration, Writing – review & editing.

Declaration of competing interest

The authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Data availability

Data will be made available on request.

Funding

This work is supported by the Ministry of Science and Technology of
the People’s Republic of China (STI2030-Major Proj
ects2021ZD0201900), National Natural Science Foundation of China
(Grant No. 12090052), Natural Science Foundation of Liaoning Province
(Grant No. 2023-MS-288), Fundamental Research Funds for the Central
Universities (Grant No. 20720230017), and Basic Public Welfare
Research Program of Zhejiang Province (Grant No. LGF20F030005).

Table 9
Detailed statistical results obtained by the Wilcoxon signed-rank test on Max-cut problems (α = 0.05). A p-value of ’1′ indicates that oBABC outperforms the other
algorithms, ’0′ indicates comparable performance between the algorithms, and ’− 1′ signifies that oBABC performs worse. The results of the DABC and ABCbin al
gorithms show significantly worse performance. Due to space limitations, these results are not presented here and presented in Table S3.

Problem binABC bitABC ibinABC NBABC GBABC iBABC PBABC
p-value(h) p-value(h) p-value(h) p-value(h) p-value(h) p-value(h) p-value(h)

pw01–100–0 4.88e-03(1) 9.77e-04(1) 8.40e-02(0) 1.03e-01(0) 1.95e-03(1) 1.95e-03(1) 9.77e-04(1)
pw01–100–1 4.88e-03(1) 1.95e-03(1) 2.73e-02(1) 2.64e-02(1) 4.39e-02(1) 9.77e-04(1) 9.77e-04(1)
pw01–100–2 5.12e-01(0) 9.77e-04(1) 2.78e-01(0) 1.86e-02(1) 9.77e-03(1) 2.93e-03(1) 4.88e-03(1)
pw01–100–3 1.86e-02(1) 9.77e-04(1) 3.91e-03(1) 1.95e-03(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1)
pw01–100–4 1.95e-02(1) 9.77e-04(1) 7.81e-03(1) 3.22e-02(1) 4.88e-03(1) 9.77e-04(1) 1.37e-02(1)
pw01–100–5 3.26e-01(0) 9.77e-04(1) 2.08e-01(0) 3.03e-02(1) 1.95e-03(1) 9.77e-04(1) 2.44e-02(1)
pw01–100–6 1.21e-01(0) 1.95e-03(1) 8.01e-02(0) 9.28e-02(0) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw01–100–7 1.95e-03(1) 9.77e-04(1) 7.62e-02(0) 4.49e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw01–100–8 3.22e-02(1) 9.77e-04(1) 9.77e-04(1) 5.27e-02(0) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1)
pw01–100–9 2.54e-02(1) 9.77e-04(1) 6.54e-02(0) 3.85e-01(0) 1.95e-03(1) 1.95e-03(1) 9.77e-04(1)
pw05–100–0 1.95e-03(1) 9.77e-04(1) 1.95e-03(1) 6.84e-03(1) 2.93e-03(1) 9.77e-04(1) 9.77e-04(1)
pw05–100–1 6.84e-03(1) 9.77e-04(1) 1.95e-03(1) 9.77e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw05–100–2 2.93e-03(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw05–100–3 9.77e-04(1) 9.77e-04(1) 4.88e-03(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 2.93e-03(1)
pw05–100–4 9.77e-04(1) 9.77e-04(1) 2.93e-03(1) 9.77e-03(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1)
pw05–100–5 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw05–100–6 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 4.88e-03(1) 9.77e-04(1) 9.77e-04(1)
pw05–100–7 2.34e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw05–100–8 4.49e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw05–100–9 9.77e-04(1) 9.77e-04(1) 2.93e-03(1) 1.86e-02(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1)
pw09–100–0 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw09–100–1 5.86e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-03(1) 1.95e-03(1) 9.77e-04(1) 2.93e-03(1)
pw09–100–2 5.27e-02(0) 9.77e-04(1) 3.91e-03(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1)
pw09–100–3 6.84e-03(1) 9.77e-04(1) 9.77e-04(1) 5.27e-02(0) 1.95e-03(1) 9.77e-04(1) 1.95e-03(1)
pw09–100–4 1.86e-02(1) 9.77e-04(1) 4.88e-03(1) 1.95e-02(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1)
pw09–100–5 6.84e-03(1) 9.77e-04(1) 9.77e-04(1) 1.86e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
pw09–100–6 1.37e-02(1) 9.77e-04(1) 1.07e-02(1) 1.37e-02(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1)
pw09–100–7 3.22e-02(1) 9.77e-04(1) 9.77e-04(1) 4.88e-03(1) 3.91e-03(1) 9.77e-04(1) 9.77e-04(1)
pw09–100–8 9.77e-04(1) 1.95e-03(1) 4.88e-03(1) 1.95e-03(1) 2.93e-03(1) 9.77e-04(1) 9.77e-04(1)
pw09–100–9 6.84e-03(1) 9.77e-04(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1)
All 1.53e-36(1) 4.79e-51(1) 1.64e-42(1) 2.42e-36(1) 1.11e-48(1) 4.80e-51(1) 5.40e-50(1)

Fig. 13. Overall performance ranking of the algorithms operating on Max-
Cut datasets.

F. Zhu et al.

Swarm and Evolutionary Computation 87 (2024) 101567

17

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.swevo.2024.101567.

References

[1] U. Erkan, A. Toktas, D. Ustun, Hyperparameter optimization of deep CNN classifier
for plant species identification using artificial bee colony algorithm, J. Ambient.
Intell. Humaniz. Comput. (2022) 1–12.

[2] Q. He, C.Q. Zhong, X. Li, H. Guo, Y. Li, M. Gao, R. Yu, X. Liu, F. Zhang, D. Guo,
F. Ye, T. Guo, J. Shuai, J. Han, Dear-DIA(XMBD): deep Autoencoder enables
Deconvolution of data-independent acquisition proteomics, Research (Wash D C) 6
(2023) 0179.

[3] F. Latifoğlu, A novel singular spectrum analysis-based multi-objective approach for
optimal FIR filter design using artificial bee colony algorithm, Neural Comput.
Appl. 32 (2020) 13323–13341.

[4] S. Somesula, N. Sharma, A. Anpalagan, Artificial Bee optimization aided joint user
association and resource allocation in HCRAN, Appl. Soft Comput. 125 (2022)
109152.

[5] B. Zhou, Z. Zhao, An adaptive artificial bee colony algorithm enhanced by Deep Q-
Learning for milk-run vehicle scheduling problem based on supply hub, Knowl.
Based Syst. 264 (2023) 110367.

[6] E. Zorarpacı, S.A. Özel, Privacy preserving rule-based classifier using modified
artificial bee colony algorithm, Expert Syst. Appl. 183 (2021) 115437.

[7] Q. Pu, C. Xu, H. Wang, L. Zhao, A novel artificial bee colony clustering algorithm
with comprehensive improvement, Vis. Comput. 38 (2022) 1395–1410.

[8] H. Hu, Z. Feng, H. Lin, J. Zhao, Y. Zhang, F. Xu, L. Chen, F. Chen, Y. Ma, J. Su,
Q. Zhao, J. Shuai, Modeling and analyzing single-cell multimodal data with deep
parametric inference, Brief Bioinform. 24 (2023) bbad005.

[9] J. Zhao, J. Sun, S.C. Shuai, Q. Zhao, J. Shuai, Predicting potential interactions
between lncRNAs and proteins via combined graph auto-encoder methods, Brief
Bioinform. 24 (2023) bbac527.

[10] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A.J. Nebro, D. Molina, A. LaTorre, P.
N. Suganthan, C.A. Coello Coello, F. Herrera, A tutorial on the design,
experimentation and application of metaheuristic algorithms to real-World
optimization problems, Swarm Evol. Comput. 64 (2021) 100888.

[11] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:
Proceedings of the sixth international symposium on micro machine and human
science, Ieee, Nagoya, Japan, 1995, pp. 39–43.

[12] Y.-J. Gong, J. Zhang, O. Liu, R.-Z. Huang, H.S.-H. Chung, Y.-H. Shi, Optimizing the
vehicle routing problem with time windows: a discrete particle swarm
optimization approach, IEEE Trans. Syst. Man Cybernet Part C (Appl. Rev.) 42
(2011) 254–267.

[13] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell.
Mag. 1 (2006) 28–39.

[14] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC)
algorithm, Appl. Soft Comput. 8 (2008) 687–697.

[15] F. Zhao, Z. Wang, L. Wang, T. Xu, N. Zhu, Jonrinaldi, A multi-agent reinforcement
learning driven artificial bee colony algorithm with the central controller, Expert
Syst. Appl. 219 (2023) 119672.

[16] J. Wu, Y.-G. Wang, K. Burrage, Y.-C. Tian, B. Lawson, Z. Ding, An improved firefly
algorithm for global continuous optimization problems, Expert Syst. Appl. 149
(2020) 113340.

[17] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw. 69
(2014) 46–61.

[18] X.-S. Yang, A New Metaheuristic bat-Inspired Algorithm, in: Nature inspired
Cooperative Strategies for Optimization (NICSO 2010), Springer, 2010, pp. 65–74.

[19] S. Agahian, T. Akan, Battle royale optimizer for training multi-layer perceptron,
Evolv. Syst. 13 (2022) 563–575.

[20] B. Akay, D. Karaboga, B. Gorkemli, E. Kaya, A survey on the artificial bee colony
algorithm variants for binary, integer and mixed integer programming problems,
Appl. Soft Comput. 106 (2021) 107351.

[21] T. Ye, W. Wang, H. Wang, Z. Cui, Y. Wang, J. Zhao, M. Hu, Artificial bee colony
algorithm with efficient search strategy based on random neighborhood structure,
Knowl. Based Syst. 241 (2022) 108306.

[22] H. Zhao, C. Zhang, X. Zheng, C. Zhang, B. Zhang, A decomposition-based many-
objective ant colony optimization algorithm with adaptive solution construction
and selection approaches, Swarm Evol. Comput. 68 (2022) 100977.

[23] Z. Yong, H. Chun-lin, S. Xian-fang, S. Xiao-yan, A multi-strategy integrated multi-
objective artificial bee colony for unsupervised band selection of hyperspectral
images, Swarm Evol. Comput. 60 (2021) 100806.

[24] Y. Yu, F.-Q. Zhang, G.-D. Yang, Y. Wang, J.-P. Huang, Y.-Y. Han, A discrete
artificial bee colony method based on variable neighborhood structures for the
distributed permutation flowshop problem with sequence-dependent setup times,
Swarm Evol. Comput. 75 (2022) 101179.

[25] H. Wang, Z. Wu, S. Rahnamayan, H. Sun, Y. Liu, J.-s. Pan, Multi-strategy ensemble
artificial bee colony algorithm, Inf. Sci. (Ny) 279 (2014) 587–603.

[26] X. Zhou, J. Lu, J. Huang, M. Zhong, M. Wang, Enhancing artificial bee colony
algorithm with multi-elite guidance, Inf. Sci. (Ny) 543 (2021) 242–258.

[27] M.S. Kiran, A binary artificial bee colony algorithm and its performance
assessment, Expert Syst. Appl. 175 (2021) 114817.

[28] S.S. Jadon, R. Tiwari, H. Sharma, J.C. Bansal, Hybrid artificial bee colony
algorithm with differential evolution, Appl. Soft Comput. 58 (2017) 11–24.

[29] J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm
algorithm, in: 1997 IEEE International conference on systems, man, and
cybernetics. Computational cybernetics and simulation, IEEE, 1997,
pp. 4104–4108.

[30] S. Mirjalili, A. Lewis, S-shaped versus V-shaped transfer functions for binary
particle swarm optimization, Swarm Evol. Comput. 9 (2013) 1–14.

[31] A.P. Engelbrecht, G. Pampara, Binary differential evolution strategies, in: 2007
IEEE congress on evolutionary computation, IEEE, 2007, pp. 1942–1947.

[32] X. Wang, H. Ren, X. Guo, A novel discrete firefly algorithm for Bayesian network
structure learning, Knowl. Based Syst. 242 (2022) 108426.

[33] T. Akan, S. Agahian, R. Dehkharghani, Binbro: binary battle royale optimizer
algorithm, Expert Syst. Appl. 195 (2022) 116599.

[34] G. Pampará, A.P. Engelbrecht, Binary artificial bee colony optimization, in: 2011
IEEE Symposium on Swarm Intelligence, IEEE, 2011, pp. 1–8.

[35] M.S. Kiran, M. GÜNdÜZ, XOR-based artificial bee colony algorithm for binary
optimization, Turkish J. Electric. Eng. Comput. Sci. 21 (2013) 2307–2328.

[36] D. Jia, X. Duan, M.K. Khan, Binary Artificial Bee Colony optimization using bitwise
operation, Comput. Ind. Eng. 76 (2014) 360–365.

[37] Y. Marinakis, M. Marinaki, N. Matsatsinis, A hybrid discrete artificial bee colony-
GRASP algorithm for clustering, in: 2009 International Conference on Computers &
Industrial Engineering, IEEE, 2009, pp. 548–553.

[38] M.S. Kiran, The continuous artificial bee colony algorithm for binary optimization,
Appl. Soft Comput. 33 (2015) 15–23.

[39] M.H. Kashan, N. Nahavandi, A.H. Kashan, DisABC: a new artificial bee colony
algorithm for binary optimization, Appl. Soft Comput. 12 (2012) 342–352.

[40] C.J. Santana Jr, M. Macedo, H. Siqueira, A. Gokhale, C.J. Bastos-Filho, A novel
binary artificial bee colony algorithm, Future Generat.Comput. Syst. 98 (2019)
180–196.

[41] R. Durgut, Improved binary artificial bee colony algorithm, Front. Inf. Technol.
Electron. Eng. 22 (2021) 1080–1091.

[42] A. Telikani, A.H. Gandomi, A. Shahbahrami, M.Naderi Dehkordi, Privacy-
preserving in association rule mining using an improved discrete binary artificial
bee colony, Expert Syst. Appl. 144 (2020) 113097.

[43] C. Ozturk, E. Hancer, D. Karaboga, A novel binary artificial bee colony algorithm
based on genetic operators, Inf. Sci. (Ny) 297 (2015) 154–170.

[44] E. Kaya, M.S. Kiran, An improved binary artificial bee colony algorithm, in: 2017
15th International Conference on ICT and Knowledge Engineering (ICT&KE), IEEE,
2017, pp. 1–6.

[45] H. Hu, Z. Feng, H. Lin, J. Cheng, J. Lyu, Y. Zhang, J. Zhao, F. Xu, T. Lin, Q. Zhao,
J. Shuai, Gene function and cell surface protein association analysis based on
single-cell multiomics data, Comput. Biol. Med. 157 (2023) 106733.

[46] W. Wang, L. Zhang, J. Sun, Q. Zhao, J. Shuai, Predicting the potential human
lncRNA-miRNA interactions based on graph convolution network with conditional
random field, Brief Bioinform. 23 (2022) bbac463.

[47] H. Gao, J. Sun, Y. Wang, Y. Lu, L. Liu, Q. Zhao, J. Shuai, Predicting
metabolite–disease associations based on auto-encoder and non-negative matrix
factorization, Brief. Bioinform. 24 (2023) bbad259.

[48] R.P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM
(JACM) 23 (1976) 242–251.

[49] J.E. Beasley, Lagrangean heuristics for location problems, Eur. J. Oper. Res. 65
(1993) 383–399.

F. Zhu et al.

https://doi.org/10.1016/j.swevo.2024.101567
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0001
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0001
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0001
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0002
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0002
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0002
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0002
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0003
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0003
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0003
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0004
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0004
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0004
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0005
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0005
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0005
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0006
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0006
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0007
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0007
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0008
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0008
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0008
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0009
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0009
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0009
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0010
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0010
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0010
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0010
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0011
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0011
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0011
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0012
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0012
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0012
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0012
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0013
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0013
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0014
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0014
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0015
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0015
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0015
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0016
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0016
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0016
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0017
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0017
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0018
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0018
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0019
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0019
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0020
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0020
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0020
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0021
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0021
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0021
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0022
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0022
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0022
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0023
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0023
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0023
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0024
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0024
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0024
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0024
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0025
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0025
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0026
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0026
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0027
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0027
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0028
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0028
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0029
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0029
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0029
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0029
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0030
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0030
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0031
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0031
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0032
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0032
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0033
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0033
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0034
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0034
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0035
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0035
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0036
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0036
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0037
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0037
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0037
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0038
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0038
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0039
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0039
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0040
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0040
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0040
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0041
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0041
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0042
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0042
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0042
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0043
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0043
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0044
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0044
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0044
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0045
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0045
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0045
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0046
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0046
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0046
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0047
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0047
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0047
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0048
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0048
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0049
http://refhub.elsevier.com/S2210-6502(24)00105-6/sbref0049

	oBABC: A one-dimensional binary artificial bee colony algorithm for binary optimization
	1 Introduction
	1.1 Motivations
	1.2 Contribution
	1.3 Organization

	2 Literature review
	2.1 Mapping-Driven binary variants
	2.2 Binary-operator-driven binary variants
	2.3 Binary variants of ABC

	3 The basic abc algorithm
	3.1 ABC algorithm
	3.2 The pseudo-code of the basic ABC algorithm

	4 Criteria & oBABC
	4.1 The key criteria
	4.2 Criteria validated on the BABC algorithms
	4.2.1 Analysis of DABC
	4.2.2 Analysis of ABCbin
	4.2.3 Analysis of binABC
	4.2.4 Analysis of bitABC

	4.3 Summary and analysis of criteria for binarization
	4.4 oBABC algorithm
	4.4.1 Search formula based on criteria Ⅰ & Ⅱ
	4.4.2 Dimension selection strategy based on criterion Ⅲ
	4.4.3 Elaboration of oBABC

	5 Experiment
	5.1 Experimental material
	5.2 Performance evaluation metrics
	5.3 Results
	5.3.1 Validation of ILR for various algorithms
	5.3.2 On the choice of the direction agent γ
	5.3.3 Analysis of computation time
	5.3.4 Performance on UFLP problems
	5.3.5 Performance on max-cut problems

	5.4 Discussion

	6 Conclusion and future works
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Funding
	Supplementary materials
	References

