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A B S T R A C T   

Artificial bee colony (ABC) algorithm is a widely utilized swarm intelligence (SI) algorithm for addressing 
continuous optimization problems. However, most binary variants of ABC (BABC) algorithms may suffer from 
issues such as invalid searches and high complexity when applied to binary problems. To address these chal
lenges, we first establish a set of criteria for developing a BABC algorithm. Following these criteria, we propose a 
novel BABC algorithm, denoted as oBABC, which not only adheres to the defined criteria but also successfully 
inherits the advantages of original ABC algorithm. To evaluate the performance of oBABC and verify its effec
tiveness, experiments are conducted on two typical binary problems: uncapacitated facility location problem 
(UFLP) and maximum cut problem (Max-Cut). The experimental results reveal the following findings: 1) The 
validity of the criteria and the accuracy of the theoretical analysis are confirmed. oBABC exhibits high search 
efficiency with an invalid learning rate (ILR) of 0 %, while the ILRs of other BABC algorithms almost exceeds 20 
%. 2) In terms of search efficiency and capability, oBABC exhibits a significant improvement in search efficiency 
and consistently ranks at the top in terms of optimization capability. These results suggest that oBABC may be a 
highly efficient and effective tool for solving binary problems.   

1. Introduction 

Optimization problems are ubiquitous in engineering fields and arise 
in a multitude of tasks such as hyperparametric search [1,2], filter 
design [3], resource allocation [4,5], classification problem [6], clus
tering problem [7], and biological signal processing [8,9], among 
others. Due to their vast state space, many of these problems are 
considered NP-hard (Non-deterministic Polynomial-time hard), indi
cating no existing algorithms can efficiently solve them within poly
nomial time. SI algorithms emerge as a promising alternative for 
addressing such challenges [10], which including particle swarm opti
mization (PSO) [11,12], ant colony optimization (ACO) [13], artificial 
bee colony (ABC) [14,15], firefly algorithm (FA) [16], gray wolf opti
mization (GWO) [17], bat algorithm (Bat) [18], battle royale 

optimization (BRO) [19], and many others. Among them, ABC stands 
out as a prominent member of SI algorithms, successfully addressing 
optimization problems with various characteristics [20]. It models the 
collective intelligence of a honey bee colony during a foraging task, with 
the objective of maximizing nectar collection from food sources. Not 
only does it possess a simple structure and easy adaptability to different 
problems, but it also exhibits several outstanding features. First, the 
solution search formula updates only one dimension value at a time, 
enabling a finer-grained search around the current solution and 
enhancing the algorithm’s exploitation performance. Second, employee 
bees recruit onlooker bees to profitable sources through positive feed
back, which facilitates the exploitation of better suboptimal solutions 
and accelerates convergence speed. Finally, over-exploited solutions are 
reset by scouting bees through negative feedback, allowing the ABC 
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algorithm to escape local optimal solutions and introduce fluctuation. In 
summary, the ABC algorithm is an excellent optimization algorithm that 
balances exploitation and exploration capabilities through positive 
feedback, negative feedback, and fluctuation properties. 

These advantages have positioned the ABC algorithm as a new 
research hotspot [21–24]. All of them focus on improving the search 
efficiency and convergence characteristics of ABC algorithms. Some 
variants introduce multi-strategies to guide search by using multi-elite 
guidance without losing population diversity [25,26]. Some introduce 
the strategy of multi-dimensional updates at different stages of ABC 
algorithm to accelerate the convergence of the algorithm and enhance 
the exploration ability of the algorithm [26,27]. Some hybridize the 
search engine of ABC algorithm with that of other SI algorithms, 
combining the advantages of each algorithm to achieve better perfor
mance [28]. However, most of the research is devoted to improving the 
performance of ABC algorithm in continuous optimization problems, 
and only a few are devoted to exploring the application of ABC algo
rithm in binary problems. 

1.1. Motivations 

Binary optimization problems differ from continuous optimization 
problems as the solutions are belong to a binary space where variables 
take values of either 0 or 1. Most SI algorithms are originally proposed 
for continuous domain problems, where the solution search formula 
yields real-valued solutions. Therefore, when applying SI algorithms to 
solve binary problems, it is necessary to address the mapping issue be
tween the real domain and the binary domain. Most SI algorithms have 
corresponding binary versions, such as binary versions of PSO [29,30], 
binary DE [31], discrete FA [32], binary BRO [33], BABC [27,34-36], 
and others. To the best of our knowledge, there is a lack of well-defined 
design criteria for the development of binary versions of SI algorithms, 
particularly for algorithms like ABC that rely on one-dimensional up
dates. This characteristic brings new challenges to the development of 
binary versions. Therefore, the main aim of this work is to present 
comprehensive criteria for the development of binary versions of SI al
gorithms. Moreover, based on these criteria, we try to propose a novel 
binary version of the ABC algorithm. 

1.2. Contribution 

In this work, we define the key criteria for developing binary ver
sions of SI algorithms and propose oBABC algorithm. The main contri
butions of this work are as follows:  

i) We initially offer criteria for developing binary versions of SI 
algorithms, which encompass three aspects: (I) minimizing 
computational complexity, (II) maximizing space efficiency, and 
(III) employing appropriate bionic strategies. Criterion I empha
sizes the importance of reducing the complexity of the search 
formula. Criterion II necessitates the design of a search formula 
that ensures exploration of new solution spaces. Criterion III calls 
for the incorporation of more intelligent strategies to enhance the 
likelihood of discovering optimal solutions within a limited 
number of epochs.  

ii) The optimal solution search formula is derived for one- 
dimensional updated BABC algorithm, enabling exploration of 
previously unvisited rich sources. Any binary SI algorithm with 
one-dimensional update characteristic should adopt this formula, 
otherwise it will result in invalid search. 

iii) Multiple interaction models for selecting the direction of move
ment have been developed in oBABC. A decision model is 
developed to decide whether to move towards or away from the 
neighborhood solution, which enhances the exploitation perfor
mance of oBABC. 

1.3. Organization 

The rest of this paper is structured as follows: Section 2 provides a 
comprehensive review of the relevant literature. Section 3 offers a 
detailed introduction to the basic ABC algorithm. Section 4 outlines the 
essential criteria for binarization and introduces oBABC algorithm. 
Experimental results and their discussion are presented in Section 5. The 
paper concludes with Section 6, summarizing the study’s findings and 
suggesting potential avenues for future research for both scholars and 
practitioners. 

2. Literature review 

There are two ways to develop binary versions of SI algorithms: 
mapping-based method and binary-operator method. Recently, several 
BABC algorithms have been introduced, which are discussed below. 

2.1. Mapping-Driven binary variants 

In the mapping-based approach, search agents navigate a continuous 
solution space, with candidate solutions being converted into binary 
form prior to objective function evaluation. This approach serves as a 
straightforward post-processing technique to binarize SI algorithms, 
exemplified by the discrete PSO (DPSO) [29] and binary differential 
evolution (BDE) [31]. The first binary version of the basic ABC algo
rithm, known as DABC, is based on mapping-based method, which has 
been successful in feature selection [37]. Additionally, various binary 
ABC algorithms utilizing transfer functions have been introduced, 
including the angle-modulated ABC (AMABC) [34] and ABCbin [38]. 
AMABC utilizes angle modulation to create a homomorphic mapping 
between continuous and binary spaces, enhancing optimization for nu
merical functions. Nonetheless, the adoption of transfer functions es
calates computational complexity due to the extensive use of 
floating-point and even exponential operations. While ABCbin at
tempts to mitigate this complexity by implementing a mod-round-mod 
operation for mapping, it still incurs a higher computational load 
compared to methods based on binary operations. 

2.2. Binary-operator-driven binary variants 

In the binary-operator method, search agents navigate a binary- 
structured space directly, eliminating the need for mapping between 
disparate spaces. This method functions as a preprocessing strategy, 
characterized by its low computational complexity. Notable examples of 
the binary-operator method are binABC [35], bitABC [36] and PBABC 
[27], which incorporate logical operations such as ’and’, ’or’, and ’not’, 
along with their combinations. This approach replaces the arithmetic 
operations—’add’, ’subtract’, ’multiply’, and ’divide’—typical of the 
ABC algorithm’s continuous variants. By foregoing the mapping process, 
this method significantly reduces computational complexity, allowing 
computations to be executed directly within the binary space and 
maintaining the inherent binary characteristics of the solution. This 
ensures efficient processing without necessitating further trans
formations or conversions. Additional algorithms based on the 
binary-operator method, including DisABC [39], NBABC [40], ibinABC 
[41] iBABC [42] and GBABC [43], apply statistical theory to mutate 
multiple bits of the solution. This maintains the search updates strictly 
within the binary space and obviates the need for conversions between 
different numerical spaces. However, a significant challenge of this 
approach is the redesign of the search operator for binary contexts. 
Although insights can be drawn from the continuous versions, the 
distinct characteristics of binary spaces necessitate a cautious and 
deliberate approach in the design of binary-specific search operators. 

F. Zhu et al.                                                                                                                                                                                                                                      



Swarm and Evolutionary Computation 87 (2024) 101567

3

2.3. Binary variants of ABC 

While numerous BABC algorithm have been developed, they still face 
challenges that compromise their effectiveness on binary problems. A 
notable feature of the ABC algorithm is its one-dimensional update 
mechanism [14,20,44], wherein search agents adjust only one variable 
dimension at a time. This approach enhances the algorithm’s granu
larity, enabling closer proximity searches without missing adjacent su
perior solutions. However, this feature significantly increases the 
likelihood of invalid searches across all BABC variants, such as DABC 
[37], binABC [35], bitABC [36], ABCbin [38], etc., that adopt this 
one-dimensional update strategy. We will delve into this issue in depth 
and propose relevant design criteria in the following sections. Moreover, 
the one-dimensional update characteristic of the ABC algorithm slows 
down convergence due to the minimal Euclidean distance covered per 
search step. This challenge can be mitigated by adopting 
multi-dimensional updates, as seen in algorithms like DisABC [39], 
NBABC [40], ibinABC [41] iBABC [42] and GBABC [43]. These ap
proaches improve convergence speed but may compromise the algo
rithm’s precision, leading to premature optimization. An alternative 
strategy involves simulating intelligent population behavior to more 
accurately direct search efforts. In response to these challenges, oBABC 
algorithm employs the binary-operator method alongside multiple 
interaction models for directional selection. This innovation holds 
promise for enhancing optimization across a variety of problems, 
including data analysis [45] and prediction [46,47], positioning oBABC 
as a pivotal tool for optimization challenges. 

3. The basic abc algorithm 

3.1. ABC algorithm 

The ABC algorithm is mainly inspired by the foraging behavior of the 
honey bee colony. It is divided into four phases: initialization, employed 
bees, onlooker bees, and scout bees, with the last three phases corre
sponding to the duties of the bees during foraging. 

Initialization: Assuming that the food sources, which are possible 
solutions for optimization problem, are distributed in a d-dimensional 
space. A food source or a solution can be expressed as Eq. (1). The initial 
solution can be achieved by Eq. (2). 

xt
i =
(
xt

i1, x
t
i2,⋯, xt

iD

)
∈ RD (1)  

xij = xmin
⋅j + rij ×

(
xmax

⋅j − xmin
⋅j

)
(2)  

Where iϵ{1, 2, ⋯, N}, N is the number of employed bees and D is the 
dimensionality of the optimization problem. xt

ij is the jth dimension 
variable of xi at epoch t. xmin

⋅j and xmax
⋅j are the lower and upper bounds of 

xij, respectively. rij is a uniform random number in range of [0,1]. 
Employed bees’ stage: The employed bees are responsible for 

exploring higher quality food source locations around current site. Once 
the food sources are found, employed bees establish a one-to-one cor
respondence with the food sources and search for a better food source 
near the current one. Corresponding to the ABC algorithm, the search 
formula for the location of food sources can be described as Eq. (3). 

xt+1
ij = xt

ij + φij ×
(

xt
ij − xt

kj

)
(3)  

Where k ∕= i ∈ {1,2,⋯,N} is a randomly chosen neighbor index that is 
different from i. j ∈ {1,2,⋯,D} is a randomly determined dimension 
index and φij is a uniform random number in range of [− 1,1]. xt

i is the 
current solution, xt

k is a neighbor one which is the guiding solution, and 
xt+1

i is the candidate solution generated by the solution search formula 
(3). 

Onlooker bees’ stage: In ABC algorithm, onlooker bees search for 

more optimal food sources near those identified as superior among all 
food sources. Specifically, the ABC algorithm utilizes the roulette wheel 
selection method, a fitness-based technique defined by Eq. (4), to choose 
superior food sources. This method favors sources with higher nectar 
amounts, increasing the probability that onlooker bees will explore 
these areas. 

pi = 0.9 ×
fi

max{f1, f2,⋯, fN}
+ 0.1 (4)  

Where fi is the objective function value of the solution i. For minimi
zation problems, the quality of food would be converted as follows: 

fi =

{
1/(1 + f (xi))if(f (xi)> 0)
1 + abs(f (xi)), otherwise (5)  

Where f(xi) is the objective function value associated to xi. 
Scout bees’ stage: During foraging, when an employed bee exhausts a 

source that it was exploiting, it abandons the source and transforms into 
a scout bee that ventures out to explore new, potentially rich sources. 
Similarly, the ABC algorithm memorizes the number of nearby searches 
around each source in the system. If a food source fails to improve after a 
predefined number of trials, represented by a constant parameter "Limit" 
that source is eliminated via pruning. A new food source is then 
generated randomly using Eq. (2). 

3.2. The pseudo-code of the basic ABC algorithm 

The ABC system will iterate through the employed bees’ phase, 
onlooker bees’ phase, and scout bees’ phase until the specified termi
nation criteria are satisfied. The pseudo-code for the ABC algorithm is 
outlined in Algorithm 1. 

Most ABC algorithms adhere to a similar algorithmic framework, as 
depicted in Algorithm 1. However, they differ in terms of the employed 
search strategies, which are executed iteratively and contribute signifi
cantly to their effectiveness and computational complexity. Algorithm 2 
illustrates the search strategy of the basic ABC algorithm. It involves the 
random selection of the updated dimension j and the neighborhood 
solution k. Notably, the basic ABC algorithm utilizes a unique one- 
dimensional updated search formula, as described in Eq. (3), setting it 
apart from other SI algorithms. 

4. Criteria & oBABC 

4.1. The key criteria 

Binary optimization problems are prevalent in various research 
fields, where the solution space is restricted to binary values. In other 
words, each decision variable in the solution can only take on a value of 
either 0 or 1. To extend the binary variant of the SI algorithms, several 
key issues must be addressed, as described below.  

• How to obtain the initial solutions which belong to binary space.  
• How to ensure that the new solution obtained by the solution search 

formula also belongs to binary space. 

In the initialization phase of binary optimization algorithms, it is a 
commonly adopted practice to transform Eq. (2) into Eq. (6) for the 
purpose of generating binary values for individual decision variables. 

xij =

{
0, ifrand < 0.5
1, otherwise (6)  

Where “rand” is a uniform random number in range of [0,1]. 
Another crucial issue is to develop an effective search strategy that 

guarantees that the newly obtained solution derived from the solution 
search formula belongs to the binary domain. To address this issue more 
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effectively, we establish key criteria for the search strategy stated below. 
Criterion I: Minimizing computational complexity. 
As known, minimizing the complexity is imperative as it is a 

fundamental metric used to evaluate the efficacy of an algorithm. In SI 
algorithms, the complexity is determined by the search formula, which 
is executed iteratively. Therefore, it is crucial to optimize the search 
formula for better algorithmic performance. 

Criterion II: Maximizing space efficiency. 
It is necessary to promise that each search is valid. If the candidate 

solution is the same as the current ones, it will be a waste of 

computational resources, and the optimization performance of the al
gorithm will be compromised. 

Criterion III: Employing appropriate bionic strategies. 
SI algorithms distinguish themselves from stochastic search by 

simulating swarm behavior to guide the search process. By incorpo
rating appropriate bionic strategies, these algorithms can expedite 
convergence and enhance their capabilities, including the ability to 
escape local optima and perform global search. 

To satisfy Criterion II, it is necessary to establish relevant metrics for 
evaluation purposes. These metrics include but are not limited to under- 

Algorithm 1 
Pseudo-code of the basic ABC algorithm.  

Input: Problem model, N, max-epochs 
Output: best solution, best objective value 
{Initialization} 

Initialize all the parameters 
Initialize the food sources’ positions by Eq. (2), then evaluate them. 
Record the best solution as x(t) and its fitness as f(t) 
set Trail = 0 

Repeat: (evaluations ¼ t = 0) 
{Employed bees’ phase} 

for i = 1: 1: N 
Apply the solution search strategy (Algorithm 2). 
{Greedy selection} 
if fnew better than fi 

xt+1
i =xt+1

i 
fi=fnew 

traili = 0 
else 

xt+1
i =xt

i 
traili = traili + 1 

end 
end 

{Onlooker bees’ phase} 
Calculate the probability values pi by Eq. (4). 
n = 0, i = 0. 
while n < N 

if random < pi 

Apply the solution search strategy (Algorithm 2). 
{Greedy selection} 
if fnew better than fi 

xt+1
i =xt+1

i 
fi=fnew 

traili = 0 
else 

xt+1
i =xt

i 
traili = traili + 1 

end 
n = n + 1 

end 
i = (i + 1) mod N 

end 
{Scout bees’ phase} 

if max(traili) > Limit 
Reset xt+1

i by Eq. (2) and evaluate xt+1
i 

traili = 0 
t = t + 1 

end 
Record the best solution as x(t) and it’s fitness as f(t) 
t = t + 2*N 

Until meet stop conditions 
Output the final solution  

Algorithm 2 
The solution search strategy.  

Input: xt
i 

Output: xt+1
i 

Neighbor selection: Randomly select kϵ[1,N], k ∕= i 
Direction selection: Randomly select jϵ[1,D].
Create a new candidate position xt+1

i by Eq. (3). 
Calculate the new position’s fitness fnew  
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learning rate, over-learning rate, and invalid-learning rate (ILR). These 
measures enable us to assess the effectiveness of binary SI algorithms in 
meeting the predefined criterion accurately. 

The search process of an SI algorithm typically consists of two pri
mary components: input solutions (xt

i , xt
j , xt

k, etc.) and output solutions 
(xt+1

i ). The input solution covers all the solutions involved in the 
computation of the output solution and can be further classified into the 
current solution (xt

i) and the guiding solutions (xt
j , xt

k, etc.). Current 
solution is typically selected sequentially from the existing population, 
while guiding solutions are selected based on various strategies and may 
involve multiple solutions. The output solution, also referred to as the 
candidate solution, represents the outcome of the entire search process. 
Based on these components, the relevant evaluation metrics are defined 
as follows. 

Under-learning α: It occurs when the Euclidean distance between 
the candidate solution xt+1

i and the current solution xt
i is 0, indicating an 

invalid search that fails to explore new solution spaces. Mathematically, 
this metric can be modeled as follows. 

α =

⎧
⎪⎨

⎪⎩

1,
∑D

j=1

(
xt+1

ij − xt
ij

)2
> 0

0, otherwise

(7)  

Where, α == 0 indicates that this is an invalid search, otherwise the 
update is valid. 

Over-learning β: It occurs when the Euclidean distance between the 
candidate solution xt+1

i and the guiding solutions (xt
j , xt

k, etc.) is 0, 
indicating an invalid search that fails to explore new solution spaces. 
This is again an invalid search and can be modeled as follows. 

βk =

⎧
⎪⎨

⎪⎩

1,
∑D

j=1

(
xt+1

ij − xt
kj

)2
> 0

0, otherwise

(8)  

Where i ∕= k, βk == 0 signifies that the current search is invalid due to 
the Euclidean distance being 0 from the guiding solutions xt

k. 
In either case, it would be an invalid search. We can define the ILR as 

Eq. (9). It is evident that as ILR decreases, the goodness-of-fit to criterion 
II improves. The optimal value of ILR is 0 %. 

ILR =

(

1 −
1
M
∑M

m=1

(

αm +
∑P

i=1
βmi

))

× 100% (9)  

Where m ∈ {1,2,⋯,M}, M is the number of executions of the solution 
search formula and M is the total number of executions of the solution 
search formula in the ABC algorithm. P represents the number of guiding 
solutions, P = 1 in most ABC algorithms. 

In Fig. 1, an illustrative example of ILR is presented. Let us consider 
xt

i as the current solution, xt
j and xt

k as the guiding solutions, and xt+1
i as 

the candidate solution, typical cases would be as follows. 
Case 1: When the Euclidean distance between the candidate solution 

xt+1
i and the selected current solution xt

i is 0, it indicates that the search 
did not deviate from the current solution, signifying an invalid search 
due to under-learning. 

Case 2: If the Euclidean distance between the candidate solution xt+1
i 

and a guiding solution xt
j is 0, it implies that xt+1

i is an exact replica of xt
j , 

indicating an invalid search resulting from over-learning. 
Case 3: Similarly, when the Euclidean distance between the candi

date solution xt+1
i and another guiding solution xt

k is 0, it suggests that 
xt+1

i is an exact duplicate of xt
k, also indicating an invalid search due to 

over-learning. 
Case 4: Conversely, if the new solution obtained differs from all other 

solutions, with a non-zero Euclidean distance from xt
i , xt

j , and xt
k, it 

signifies that xt+1
i explores a new solution space and represents a valid 

update. 
These scenarios serve to distinguish between valid and invalid search 

processes. 

4.2. Criteria validated on the BABC algorithms 

This section is dedicated to the theoretical analysis of the criteria 
values presented in Section 4.1. Various BABC algorithms are employed 
as examples to assess the level of alignment between these algorithms 
and the proposed criterion. Furthermore, a quantitative analysis is 
conducted using the ILR metric. 

4.2.1. Analysis of DABC 
DABC is an example of mapping-based method. For this method, the 

solution search formula is the same as the basic ABC algorithm, a 
transfer-function is introduced to map [− ∞, +∞] to (0,1), defined as Eq. 
(10). And the real value obtained by Eqs. (3) and (10) represents the 
probability that a dimension variable should be 1, which is then used to 
obtain the final value as outlined in Eq. (11). 

sig
(
xij
)
=

1
(1 + e− xij )

(10)  

xt+1
ij =

⎧
⎨

⎩

0, sig
(

vt+1
ij

)
< rand

1, sig
(

vt+1
ij

)
≥ rand

(11)  

vt+1
ij = xt

ij + φij ×
(

xt
ij − xt

kj

)
(12) 

To facilitate analysis, Eq. (3) is rephrased as Eq. (12) with its original 
meaning intact. This enables enumeration of the various input and 
output combinations arising from the search strategy employed by 
DABC, as summarized in Table 1. 

Let P(xt+1
ij /(xt

ij, xt
kj)) denotes the probability that a new candidate 

solution xt+1
ij takes when the input is xt

ij and xt
kj. Then P(0/(0,0)) = 0.5, 

P(0/(0,1)) = 0.5, P(1/(1,0)) = 0.5, P(1/(1,1)) = 0.73. If xt+1
ij is equal to 

xt
ij, it is an invalid search. In this case, the probability of invalid search 

can be expressed as P(ILR) = P(0 /(0,0))× P(0,0)+ P(0 /(0,1))× P(0,
1)+ P(1 /(1,0))× P(1,0)+ P(1 /(1,1))× P(1,1) = 0.5× 0.25+ 0.5×

0.25+ 0.5× 0.25+ 0.73× 0.25 = 0.5575. 
As per our analysis, it is evident that DABC does not provide a 

guarantee for validity in solution update at each search due to its rela

Fig. 1. Examples illustrating under-learning and over-learning scenarios. When 
a search agent is deployed, any candidate solution that aligns with previously 
generated solutions is considered an invalid search, as depicted in cases 1, 2, 
and 3. 
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tively high probability of invalid searches, which has been calculated as 
55.75 %. Moreover, the incorporation of exponential operations within 
the algorithm adds to its computational complexity [48], which scales as 
O(n × log2

2(n) × log2(log2(n))). 

4.2.2. Analysis of ABCbin 
ABCbin employs mod-round-mod operations. This approach ach

ieves lower computational complexity compared to DABC. Specifically, 
the mod-round-mod operation is defined by Eq. (13), which corresponds 
to Eqs. (10) and (11) as utilized in DABC. 

xt+1
ij = round

(⃒
⃒
⃒vt

ij mod 2
⃒
⃒
⃒

)
mod 2 (13) 

The input and output combinations for ABCbin’s solution search 
process are listed in Table 2. An interesting issue has been identified 
wherein xt+1

ij would obtain a certain value in case 1 and 4. The proba
bility values for each combination are as follows: P(0 /(0,0)) = 1, P(0 
/(0,1)) = 0.5, P(1/(1,0)) = 0.5, P(1/(1,1)) = 1. Then P(ILR) = P(0 /(0,
0))× P(0,0)+ P(0 /(0,1))× P(0,1)+ P(1 /(1,0))× P(1,0)+ P(1 /(1,1))×
P(1,1) = 1× 0.25+ 0.5× 0.25+ 0.5× 0.25+ 1× 0.25 = 0.75. 

ABCbin does not guarantee to generate new solution at each search, 
as its search process has a 75 % probability of invalidity. However, 
compared to DABC, ABCbin utilizes a modulus operation rather than an 
exponential operation, which significantly reduces computational re
quirements. Specifically, its complexity is O(n× log2(n)× log2(log2(n)), 
which is primarily determined by Eq. (12). Whereas criterion I shows 
slight improvement, criterion II does not meet the requirement with P 
(ILR) = 62.5 %. 

During our investigation, we have identified an issue where variable 
vt

ij remains consistently below 2. To address this inefficiency, we propose 

the following update formula: 

xt+1
ij = round

(⃒
⃒
⃒vt

ij

⃒
⃒
⃒

)
mod 2 (14)  

4.2.3. Analysis of binABC 
binABC applies binary bitwise operations instead of real arithmetic 

operations in the basic ABC algorithm. The search formula for updated 
solutions is presented as Eq. (15). 

xt+1
ij = xt

ij ⊗
(

φ
(

xt
ij ⊗ xt

kj

))
(15)  

Where ‘⊗ ’ stands for a ‘xor’ operator and ‘φ’ is the logic NOT gate with 
50 % probability. If φ is less than 0.5, the result obtained by (xt

ij ⊗ xt
kj) is 

inverted; otherwise, the result is not inverted. Here, φ is a random 
number uniformly selected from the interval [0, 1]. 

As shown in Table 3, the probabilities of P(0/(0,0)) = 0.5, P(0/(0,1)) 
= 0.5, P(1/(1,0)) = 0.5, P(1/(1,1)) = 0.5. The value of P(ILR) is sub
sequently determined as follows: P(ILR) = P(0 /(0, 0))× P(0, 0)+
P(0 /(0,1))× P(0, 1)+ P(1 /(1, 0))× P(1, 0)+ P(1 /(1, 1))× P(1, 1) =

0.5× 0.25+ 0.5× 0.25+ 0.5× 0.25+ 0.5× 0.25 = 0.5. 
The complexity of Eq. (15) is o(3). Criterion I is effectively met, 

however, at P(ILR) = 50 %, criterion II is not satisfied. 

4.2.4. Analysis of bitABC 
bitABC introduces a solution update formula as Eq. (16), which 

differs from Eq. (3) by employing bitwise logical operators instead of 
arithmetic ones. Specifically, the ‘xor’ operator replaces ‘addition’, the 
‘and’ operator replaces ‘multiplication’, and the ‘or’ operator replaces 
‘subtraction’. Moreover, binary values for ϕt

ij are obtained using Eq. 
(17). 

xt+1
ij = xt

ij ⊗
(

ϕt
ij&
(

xt
ij

⃒
⃒
⃒xt

kj

))
(16)  

ϕij =

{
1, rand < r
0, rand ≥ r (17)  

Where, ‘&’ stands for a ‘and’ operator, and ‘|’ represents a ‘or’ operator 
in a binary bitwise operation. r is a real control parameter within the 
range [0,1], the default value is 0.5. 

As shown in Table 4, it can be deduced that P(0/(0,0)) = 1, P(0/(0,
1)) = 0.5, P(1/(1, 0)) = 0.5, P(1/(1, 1)) = 0.5. Then P(ILR) = P(0 /(0,
0))× P(0,0)+ P(0 /(0,1))× P(0,1)+ P(1 /(1,0))× P(1,0)+ P(1 /(1,1))×
P(1,1) = 1× 0.25+ 0.5× 0.25+ 0.5× 0.25+ 0.5× 0.25 = 0.625. 

The computational complexity of Eq. (16) is o(3). Although criterion 
I has been significantly improved, criterion II fails to meet the required 
condition, with P(ILR) being 62.5 %. 

Table 1 
The analysis of the solution update strategy in DABC.   

Case 1 Case 2 Case 3 Case 4 

Input xt
ij 0 0 1 1 

xt
kj 0 1 0 1 

Procedure S1: after Eq. (12) 0 − φt
ij φt

ij 1 
S2: after Eq. (10) 0.5 [0.27,0.73] [0.27,0.73] 0.73 

Output P(xt+1
ij = 0) 50 % 50 % 50 % 27 % 

P(xt+1
ij = 1) 50 % 50 % 50 % 73 % 

Note: φt
ij is a uniformly distributed random number in the range [− 1,1]. Hence, 

after applying Eq. (10) in both case 2 and case 3, the resulting values of sig( ± φt
ij)

will belong to the [0.27, 0.73] range, presenting a symmetrical distribution 
centered on 0.5. Due to this, it can be theoretically concluded that the proba
bility of xt+1

ij being either 0 or 1 is equal.  

Table 2 
The anlysis of ABCbin.   

Case 1 Case 2 Case 3 Case 4 

Input xt
ij 0 0 1 1 

xt
kj 0 1 0 1 

Procedure S1: after Eq. (12) 0 − φt
ij φt

ij 1 
S2-(a): after Eq. (13) 
Under φt

ij ∈ ( − 0.5,0.5)
0 0 0 1 

S2-(b): after Eq. (13) 
Under others 

0 1 1 1 

Output P(xt+1
ij = 0) 100 % 50 % 50 % 0 

P(xt+1
ij = 1) 0 50 % 50 % 100 % 

Note: φt
ij is a uniformly distributed random number in the range [− 1,1]. Hence, 

the occurrence probability of both S2-(a) and S2-(b) is identical. Thus, in case 2 
and case 3, there exists an equal theoretical probability for the value of xt+1

ij to be 
either 0 or 1.  

Table 3 
The anlysis of binABC.   

Case 1 Case 2 Case 3 Case 4 

Input xt
ij 0 0 1 1 

xt
kj 0 1 0 1 

Procedure S1: after xt
ij ⊗ xt

kj 0 1 1 0 
S2-(a): after Eq. (15) 
Under φ < 0.5 

1 0 1 0 

S2-(b): after Eq. (15) 
Under φ ≥ 0.5 

0 1 0 1 

Output P(xt+1
ij = 0) 50 % 50 % 50 % 50 % 

P(xt+1
ij = 1) 50 % 50 % 50 % 50 % 

Note: φ is a uniformly distributed random number in the range [0,1]. Therefore, 
both S2-(a) and S2-(b) occur with identical probability. Consequently, in case 2 
and case 3, there is an equal theoretical likelihood for the value of xt+1

ij to be 
either 0 or 1.  
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4.3. Summary and analysis of criteria for binarization 

Section 4.2 presents a theoretical evaluation of several BABC algo
rithms, analyzing them against Criteria I and II, with the outcomes 
detailed in Table 5. Regarding Criterion I, it is clear that the computa
tional complexity indicator shows the binABC and bitABC algorithms 
substantially outperform the DABC and ABCbin algorithms. This 
advantage is mainly due to the inherently lower computational 
complexity of binary logic operations compared to operations with real 
numbers. Thus, the binary-operator method, by virtue of its reduced 
computational complexity relative to the mapping-based method, is 
recommended for binary algorithm design. 

With respect to Criterion II, the ILR is identified as a crucial metric 
for evaluation. The ILR values for the algorithms DABC, ABCbin, 
binABC, and bitABC all exceed 50 %, indicating, based on mathematical 
expectation, their failure to meet Criterion II and to assure the validity of 
each search. The task of theoretically deriving ILR for multi-dimensional 
update BABC algorithms, such as ibinABC, NBABC, GBABC, iBABC, and 
PBABC, is notably challenging. Their ILR values will be determined 
empirically in subsequent experiments. 

Regarding Criterion III, despite the absence of quantitative metrics, it 
is clear that the current BABC algorithms lack the integration of a bio- 
inspired model in their update dimension selection strategies. To 
address this, the oBABC algorithm is proposed based on the established 
criteria. The theoretical insights derived will be subjected to further 
scrutiny and empirical validation in subsequent experiments to under
score the theoretical arguments and demonstrate the advantages of the 
oBABC algorithm. 

4.4. oBABC algorithm 

4.4.1. Search formula based on criteria I & II 
One of the distinguishing features of the basic ABC algorithm is that 

it updates only one-dimensional variable at each search. Motivated by 
Criterion I, we opt for a search formula design that utilizes binary op
erations. Following this, in alignment with Criterion II, we undertook a 
theoretical analysis of the search formula for the one-dimensional BABC. 

Table 6 presents a summary regarding the validity of solution updates. If 
xt+1

ij is equal to xt
ij, then xt+1

i will be equal to xt
i , resulting in under- 

learning. An example is depicted in Fig. 2. The search path (a) is 
deemed invalid due to under-learning, while path (b) explores an 
alternative solution and be valid. Specifically, xt+1

i6 = xt
i6 = 1 would 

yield f(xt+1
i ) = f(xt

i), including but not limited to the computation of 
f(xt+1

i ). Then the entire computational process outlined in Algorithm 2 
would become futile. These spurious calculations merely increase the 
computation time, but offer no benefits to the optimization process. 
Instead, one can refer to path (b) in Fig. 2, where setting xt+1

i6 =0 would 
lead to xt+1

i ∕= xt
i , potentially yielding a different value of f(xt+1

i ) from 
f(xt

i). Clearly, considering solutions that differ from the current one can 
significantly aid in searching for unvisited space. 

Hence, the one-dimensional updated BABC algorithm possesses a 
theoretically optimal search equation, as exemplified by Eq. (18). This 
equation incorporates reverse operators to guarantee a valid search 
process during each search. Specifically, Eq. (18) explicitly indicates 
that xt+1

i will adopt a unique value distinct from its previous state, xt
i . 

Importantly, the output obtained from this equation is directly binar
ized, eliminating the need for additional binarization procedures. 

xt+1
ij =∼ xt

ij (18)  

4.4.2. Dimension selection strategy based on criterion III 
SI algorithms provide a significant advantage over stochastic algo

rithms as they facilitate guided search through interactions, thereby 
enhancing the chances of attaining optimal solutions within desired 
evaluations. Considering Criterion III, we introduce a module that em
ploys a biomimetic strategy for selecting the update dimension, instead 
of the random selection method utilized in the traditional ABC algo
rithm. Inspired by the natural waggle dance, which communicates the 
direction of fruitful hives to attract observers, we introduce two key 
modules: the difference degree and the difference vector. 

Difference vector Δ: Δ is vector of D, where Δj=1 indicates that xt
ij 

and xt
kj have identical value, while Δj=0 indicates that xt

ij and xt
kj have 

distinct values. The calculation of Δ can be performed using Eq. (19). 

Δ = xt
i ⊗ xt

k (19) 

Difference degree l: The Euclidean distance between two solutions, 
which can be calculated by Eq. (20). 

l =
∑D

j=1
Δj (20) 

Subsequently, the update dimension j is identified such that Δj==1 
denotes movement towards neighboring solutions, whereas selecting 
Δj==0 as the update dimension j implies moving away from them. The 
directionality, whether towards or away from the neighboring solution, 
is determined by the difference degree l in Eq. (20), and the corre
sponding mathematical formulation is presented as Eq. (21). 

d =

{
rswhere(Δ, 0), ifl < γ
rswhere(Δ, 1), else (21)  

Where rswhere(Δ, v) is direction selection engine, it means that 
randomly selects an output d from where Δd = v. γ is the control 
parameter for direction selection, named direction selection agent. 

Table 4 
The anlysis of bitABC.   

Case 1 Case 2 Case 3 Case 4 

Input xt
ij 0 0 1 1 

xt
kj 0 1 0 1 

Procedure S1: after xt
ij|xt

kj 0 1 1 1 
S2-(a): after Eq. (16) 
Under ϕt

ij=1 
0 1 0 0 

S2-(b): after Eq. (16) 
Under ϕt

ij=0 
0 0 1 1 

Output P(xt+1
ij = 0) 100 % 50 % 50 % 50 % 

P(xt+1
ij = 1) 0 50 % 50 % 50 % 

Note: According to the definition of Eq. (17), the probability of ϕt
ij being 0 or 1 is 

equal. Thus, in case 2, case 3 and case 4, there exists an equal theoretical 
probability for the value of xt+1

ij to be either 0 or 1.  

Table 5 
Summary of theoretical performance of one-dimensional updated BABC 
algorithms.  

Algorithm Complexity ILR Criterion I Criterion II 

DABC O(n × log2
2(n) ×

log2(log2(n)))
55.75 % High Not 

ABCbin O(n× log2(n)× log2(log2(n)) 75 % Median Not 
binABC O(3) 50 % Low Not 
bitABC O(3) 62.50 % Low Not  

Table 6 
The analysis of validity of solution update.   

Case 1 Case 2 Case 3 Case 4 

xt
ij 0 0 1 1 

xt+1
ij 0 1 0 1 

Reward invalid valid valid invalid  
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In contrast to the other ABC algorithms, oBABC integrates a direction 
selection agent γ as a novel control parameter. This agent facilitates 
determining whether the algorithm directs the search towards or away 
from neighboring solutions. As the value of γ increases, the search is 
directed towards neighboring solutions, promoting colony aggregation, 
and thereby enhancing exploitation performance, consequently accel
erating convergence. Conversely, smaller values of γ direct the search 
away from neighbors, stimulating the colony to explore diverse loca
tions, thus improving exploration performance. 

Fig. 3 illustrates typical examples of direction selection engines, 
which show that γ should fall within the acceptable range of [2, D], 
rather than [0, D]. As indicated in Fig. 3(a) and (b), the value of γ must 
not be less than 2. Specifically, when l is 0, the operation rswhere(Δ, 1)
becomes illegal, whereas when l is 1, rswhere(Δ,1) results in an invalid 
search of over-learning. Thus, when l equals 0 or 1, rswhere(Δ,0) should 
be promised. In other words, γ must be no less than 2. Furthermore, 
Fig. 3(c) indicates that when l is D, updating xt

i to move away from xt
k 

would be optimal choice, consistent with Eq. (21). Lastly, Fig. 3(d) 
provides an example where v is determined by γ which belonging to [2, 
D]. 

Furthermore, Eq. (22) provides a model for determining the value of 

γ that is dependent on D. 

γ = round[τ × (D − 2)] + 2 (22)  

Where τ ∈ [0,1] determines the value of γ. 

4.4.3. Elaboration of oBABC 
oBABC is an extension of the basic ABC algorithm in binary space, 

with the same framework as described in Algorithm 1, but incorporating 
an enhanced binary search strategy, which can be found in Algorithm 3. 
To enhance the clarity of oBABC, we provide a flowchart in Fig. 4. 
Similar to the ABC algorithm, oBABC comprises three modules: 
employee bees, onlooker bees, and scout bees. The employee bees and 
onlooker bees employ distinct strategies for food source selection, 
determining the index of the current solution to be updated. Fig. 4(a) 
illustrates the main loop of the algorithm, while Fig. 4(b), Fig. 4(c), and 
Fig. 4(d) represent specific stages within the algorithm: the employee 
bees’ module, the onlooker bees’ module, and the scout bees’ module, 
respectively. In the employee bees’ module, the selection of xi follows a 
sequential distribution without repetition. Conversely, the onlooker 
bees’ module utilizes the roulette method to select xm, allowing for 

Fig. 2. Search efficiency analysis of a 10-Dimensional problem with dimension 6 as the update dimension. Row ‘d’ represents the dimension index. Two possible 
paths are shown: an invalid path (a) where no search gain is achieved as xt+1

i remains unchanged from xt
i , and a valid path (b) where xt+1

i takes a different value from 
xt

i , enabling exploration of an unvisited f(xt+1
i ) in this search. 

Fig. 3. Analysis of the direction selection engine rswhere(Δ, v) described in Eq. (21) at different l. The top row shows the initial information of xt
i and xt

k. The middle 
row displays the possibility of selecting a dimension under values of v. The bottom row illustrates the validity of rswhere(Δ, v). d represents the dimension index. ‘✓’ 
indicates feasibility or legality while ‘⨯’ indicates the opposite. (a) l = 0, v must be 0. (b) l = 1, v should be 0 to ensure that xt+1

i differs from both xt
i and xt

k. (c) l = D, 
v must be 1. (d) l = 3, v is determined by γ. 
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probability-based selection that may involve repetitions. For example, in 
a colony with 5 solutions, the sequences of current solution indices can 
be observed as i= [1,2,3,4,5] for the sequential distribution without 
repetition, and m= [1,1,3,3,5] for the probability-based selection that 
permits potential repetition. 

An example of oBABC is shown in Fig. 5. In this case, the difference 
vector Δ is [1,1,1,1,0,1,0,1,0,0]. Applying the search methodology of 
oBABC with τ=0.1, an update dimension 4 is generated by Eq. (21) and a 
new solution is outputted by Eq. (18) as [0,1,1,0,0,1,1,1,0,1]. 

5. Experiment 

This section provides a detailed explanation of the experimental 
materials, performance metrics, and results. The experiments have been 
conducted using MATLAB R2021b on an Intel CPU Core i5–12400F @ 
2.50 GHz (16 GB RAM) system running on Windows 11. To assess the 
performance of oBABC, we employed the UFLP and Max-Cut problems. 

We compare the results obtained from oBABC with state-of-the-art 
variants of the BABC algorithms, including one-dimensional updated 
BABC algorithms such as DABC [37], ABCbin [38], binABC [35], bitABC 
[36], as well as multi-dimensional updated BABC algorithms like NBABC 
[40], ibinABC [41] iBABC [42], GBABC [43], PBABC [27]. Additionally, 
we include DPSO [29] for comparison purposes. The same control pa
rameters are used for all algorithms to ensure fair comparison, with a 
colony size of 40 (The ABC-based algorithms comprise a population of 
20 employee bees and 20 onlooker bees, whereas DPSO algorithm 
population consists of 40 particles.). For UFLP, the maximum number of 
function evaluations is set as 80,000. While for Max-Cut, it is limited to 
20,000. 

5.1. Experimental material 

Binary optimization problems form a crucial subset of numerical 
optimization problems. UFLP [49] and Max-Cut are widely recognized 

Algorithm 3 
The solution search method in oBABC.  

Input: xt
i 

Output: xt+1
i 

Neighbor selection: Randomly select kϵ[1,N], k ∕= i 
Direction selection: select j by Eq. (21), Eq. (19) and Eq. (20) 
Create a new candidate position xt+1

i by Eq. (18). 
Calculate the new position’s fitness fnew  

Fig. 4. Flowchart of oBABC. (a) Main loop. (b) Employee bees’ module. (c) Onlooker bees’ module. (d) Scout bees’ module. While xi in employee bees’ module is 
selected in order, xm in onlooker bees’ module is selected by roulette method. 
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as representative benchmark problems for assessing the performance of 
binary optimization algorithms. 

UFLP is a constrained optimization problem, and the binary variables 
are used to represent the assignment of facilities and the satisfaction of 
capacity constraints. The problem can be mathematically expressed 
using Eq. (23). Further, Table 7 provides a summary of optimal costs 
along with details regarding test problem sizes and names for UFLP. 

minf =
∑m

i=1

∑n

j=1
cij × xij +

∑n

i=1
fixi × yi (23)  

Where fixi refers to the fixed cost associated with the opening of facility 
i, while cij denotes the cost incurred when facility i caters to the needs of 
customer j. Here, xij=1 indicates that facility i serves customer j, and 
yi=1 implies that facility i is open. 

The Max-Cut problem serves as another binary problem that can be 
utilized to assess the effectiveness of optimization algorithms. The 
objective is to find the maximum cut in an undirected graph G = (V, E), 
where V represents the set of vertices and E represents the set of edges. 
The maximum cut aims to locate a cut between two distinct sets of 
vertices, S and its complement, S‾ = V\S, such that the size of the cut is 
larger than any other possible cut in the graph. Specifically, a cut in a 

graph represents the number of edges separating two sets of vertices 
viewed as separate and complementary partitions. A maximum cut re
fers to the cut with the most considerable weight, and can be defined 
mathematically via Eq. (24). Reference characteristics related to the 
Max-Cut problem are presented in Table 8. 

maxW(S, S) =
∑

i∈S,j∈S

wij (24)  

Where wij = wi × wj is the weight of the edge between node i and node j, 
wi is the weight of vertex i and wiϵ{1, − 1}, which depending on the 
partition that wi belongs to. 

5.2. Performance evaluation metrics 

In this subsection, a specific set of performance metrics has been 
presented to achieve a more precise quantification of the validity of the 
theoretical analysis discussed in Section 4.3 and to conduct a compre
hensive comparative analysis with several state-of-the-art BABC algo
rithms. The performance metrics are as follows. 

Invalid-learning Rate (ILR): Refers to the rate at which the newly 
generated solution is deemed invalid, either due to it being identical to 
the current solution or its neighbor, as defined as Eq. (9) in Section 4.1. 

Best: Represents the best value of the output objective function over 

Fig. 5. An example illustrates search strategy in oBABC. (a) Direction selection agent γ is 3, calculated by using Eq. (22) with τ=0.1. (b) xt
k is randomly selected as the 

learning neighbor for the current solution xt
i . (c) Update dimension 4 is generated by Eq. (21). (d) A new solution xt+1

i is outputted by the search strategy of oBABC. 

Table 7 
Test problem sets for the UFLP, used in the experiments.  

Level Problem Name Problem Size Cost of Optimal Solution 

Small-size Cap71 16×50 932,615.75 
Cap72 16×50 977,799.4 
Cap73 16×50 1,010,641.45 
Cap74 16×50 1,034,976.98 

Medium-size Cap101 25×50 796,648.44 
Cap102 25×50 854,704.20 
Cap103 25×50 893,782.11 
Cap104 25×50 928,941.75 

Large-size Cap131 50×50 793,439.56 
Cap132 50×50 851,495.33 
Cap133 50×50 893,076.71 
Cap134 50×50 928,941.75 

Extra-large-size CapA 100×1000 17,156,454.48 
CapB 100×1000 12,979,071.58 
CapC 100×1000 11,505,594.33  

Table 8 
Test problem sets for the Max-Cut problem, used in the experiments. n and d are 
respectively the problem size and the density.  

Problem 
Name 

Solution Problem 
Name 

Solution Problem 
Name 

Solution 

n = 100, d = 0.1 n = 100, d = 0.5 n = 100, d = 0.9 

pw01–100.0 2019 pw05–100.0 8190 pw09–100.0 13,585 
pw01–100.1 2060 pw05–100.1 8045 pw09–100.1 13,417 
pw01–100.2 2032 pw05–100.2 8039 pw09–100.2 13,461 
pw01–100.3 2067 pw05–100.3 8139 pw09–100.3 13,656 
pw01–100.4 2039 pw05–100.4 8125 pw09–100.4 13,514 
pw01–100.5 2108 pw05–100.5 8169 pw09–100.5 13,574 
pw01–100.6 2032 pw05–100.6 8217 pw09–100.6 13,640 
pw01–100.7 2074 pw05–100.7 8249 pw09–100.7 13,501 
pw01–100.8 2022 pw05–100.8 8199 pw09–100.8 13,593 
pw01–100.9 2005 pw05–100.9 8099 pw09–100.9 13,658  
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multiple runs. 
Worst: Represents the worst value of the output objective function 

over multiple runs. 
Mean: Represents the mean value of the output objective function 

over multiple runs. 
Std.Dev.: Represents the standard deviation of the output objective 

function over multiple runs. 
Matching Rate (MR): Represents the degree of similarity between 

the objective function value of the current solution and that of the 
optimal solution, defined by Eq. (25). Specifically, MR is defined as the 
best value achieved by an algorithm in a single run. MR(fit) denotes the 
value of MR under the agreed rules. For instance, MR(Mean), MR(Best), 
and MR(Worst) represent the average, best, and worst MR values ob
tained by the algorithm across multiple runs, respectively. MR(f(t)) 
represents the best MR value attained by an algorithm up to evaluation t. 

MR(fit) = 1 −

⃒
⃒
⃒
⃒
(fit − Optimum)

Optimum

⃒
⃒
⃒
⃒× 100% (25) 

HitTimes(x): Quantifies the number with which the MR of an algo
rithm reaches a specified value, denoted by x. For illustration, HitTimes 
(99 %) indicates the number of runs in which the MR achieves 99 % of 
the optimal solution. This metric is invaluable for assessing the search 
capabilities of algorithms, as it measures the frequency with which they 
attain the desired optimal solution. 

HitFirst(x): Defined as the minimum number of evaluations required 
for an optimized algorithm to reach a certain MR, represented by x. For 
instance, HitFirst(99 %) would correspond to the earliest evaluation t 
when MR(f(t)) = 99 %. HitFirst(x) provides crucial information about the 
search efficiency of algorithms in reaching the desired MR. By 
measuring the minimum number of evaluations needed for an algorithm 
to achieve a certain level of optimization, we can get insight into the 
search efficiency of the algorithm. 

5.3. Results 

5.3.1. Validation of ILR for various algorithms 
According to the analysis in Section 4.3, and based on criterion II, it 

has been revealed that non-ideal search methods primarily lead to 
invalid searches. The theoretical estimates of ILR values for different 
algorithms are shown in Table 5. To validate this finding, a series of tests 
are carried out on UFLP and Max-Cut problems with varying sizes, and 
the outcomes are depicted in Fig. 6. oBABC has been designed to miti
gate the occurrence of invalid searches, and the experimental results 
confirm its effectiveness in this regard. oBABC exhibits high search 

efficiency with an ILR of 0 %, while the other algorithms remain stuck in 
invalid searches with higher ILR values. Specifically, in the context of 
the Max-Cut problem, the ILR values of the one-dimensional updated 
ABC algorithm are closely aligned with the corresponding theoretical 
values. However, when considering the UFLP problem, the experimental 
ILR values significantly exceeds the theoretical values. This discrepancy 
can be attributed to the tendency of many algorithms to quickly 
converge to local optima or rapidly identify the optimal solution in the 
UFLP problem, resulting in a reduction in population diversity. In 
contrast, the Max-Cut problem poses a challenge in finding the optimal 
solution and provides a richer solution space for the algorithm to 
explore. 

Considering multi-dimensional updated BABC algorithm, deriving 
their ILR values theoretically poses a challenge. Nonetheless, experi
mental results presented in this section show that ILR values surpass 50 
% for the UFLP and generally exceed 20 % for the Max-cut problem. 
Such findings highlight the issue of invalid updates in BABC algorithms 
that feature multi-dimensional updates, thus failing to meet Criterion II. 
Although ILR is not the sole indicator of an algorithm’s optimization 
efficacy, it points to potential computational resource wastage. In 
summary, these critical insights emphasize the superior search effi
ciency of the oBABC algorithm regarding ILR, relative to other BABC 
algorithms, marking a notable advancement in algorithmic design. 

5.3.2. On the choice of the direction agent γ 
This subsection examines the effect of γ on solution quality obtained 

by oBABC. As its value determined by τ, we vary τ from 0 to 1 in in
crements of 0.1 to evaluate algorithm performance. The convergence 
plot in Fig. 7(a) illustrates that smaller τ leads to faster convergence. In 
terms of solution quality and robustness under different τ, we analyze 
mean and standard deviation in Fig. 7(b)~(c). A lower objective func
tion value indicates better solution quality for the UFLP problems. Based 
on Fig. 7(b) and Fig. 7(c), when τ=0.1, the search capability and 
robustness are best balanced, indicating that setting τ can balance the 
exploitation and exploration, and enhance search efficiency and capa
bility of oBABC. 

5.3.3. Analysis of computation time 
The computation time of an algorithm is a crucial metric for 

assessing its performance, and it is a key aspect of criterion I. In Fig. 8(a), 
the time taken by various algorithms to complete a function evaluation 
on UFLP and Max-Cut problems is presented. The results show that most 
algorithms have similar runtimes, which can be attributed to advance
ments in computer processing power. Fig. 8(b) displays the time needed 

Fig. 6. Comparison of invalid-learning rate (ILR) for different algorithms. Theoretical values are quoted from Table 5, while experimental values are obtained from 
statistical analysis of the UFLP and Max-Cut problems using Eq. (9). 
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for different algorithms to finish a population iteration. GBABC stands 
out with a significantly longer runtime, about 20 times greater than the 
other algorithms. This difference arises because each solution update in 
GBABC involves evaluating 10 children and 10 grandchildren candidate 
solutions, leading to an epoch time twenty times longer than that of 
other algorithms. While this strategy improves population diversity, it 
also introduces additional computational overhead. To ensure fairness, 
we employ the maximum number of function evaluations as a stopping 
criterion for the comparative analysis of algorithm performance in 
subsequent experiments. 

5.3.4. Performance on UFLP problems 
Numerical experimental results obtained from UFLP datasets are 

summarized in Table S1 (Supplementary Materials Table S1). As 
observed in Table S1, oBABC, like other algorithms, successfully finds 
the optimal solution in at least one out of 30 independent runs. The 
distinction among these algorithms primarily lies in their search effi
ciency. To provide a more intuitive comparison of their performance, we 
utilize the convergence curve, a commonly employed tool for evaluating 
algorithm efficiency and performance. Fig. 9 depicts the convergence 
curves for different problem scales. It is evident from Fig. 9(a)-(b) that 
oBABC exhibits comparable convergence for small and medium-sized 
problems, while DPSO and multi-dimensional updated BABC 

converges faster in the initial stage but requires more search epochs to 
escape local optima and find the global optimum. For large-scale prob
lems, both oBABC and NBABC demonstrate competitive performance, as 
illustrated in Fig. 9(c). However, as shown in Fig. 9(d), for extra-scale 
problems, oBABC converges at a slower rate compared to the partially 
multi-dimensional updated BABC algorithms (GBABC, NBABC, iBABC). 
The convergence curves for all 15 problems can be found in Fig. S1. They 
indicate that oBABC performs comparably to other BABC algorithms in 
terms of search performance and successful identification of the optimal 
solution. In comparison to the one-dimensional updated BABC algo
rithms, it exhibits clear advantages in terms of convergence speed and 
optimization outcomes. While the multi-dimensional updated BABC 
algorithms demonstrate slightly faster convergence, suggesting that the 
multi-dimensional update and multiple candidate solutions in each 
search epoch contribute to improved population diversity. In summary, 
most BABC algorithms demonstrate superior optimization performance 
compared to DPSO. Regarding search efficiency, oBABC shows a sig
nificant enhancement over the one-dimensional updated BABC algo
rithm and performs comparably to the multi-dimensional updated BABC 
algorithm. These results indicate that the oBABC algorithm offers a 
competitive solution for UFLP problems. 

To quantitatively analyze the search efficiency of different algo
rithms, we conduct a statistical analysis of the minimum number of 

Fig. 7. Impact of varying τ on Cap131 dataset. (a) Convergence curves for different values of τ, showcasing differences in convergence speed as highlighted in the 
zoomed-in plot. (b) Mean cost across 30 runs for each value of τ. (c) Standard deviation across 30 runs for each value of τ. 

Fig. 8. The runtime of different algorithms for solving UFLP and Max-Cut problems. (a) The time taken by various algorithms to complete a function evaluation on 
these problems. (b) The time taken by various algorithms per epoch for solving these problems. 
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evaluations required to reach the target solution for problems of varying 
sizes. For small and medium-sized problems, as shown in Fig. 10(a), 
oBABC achieves the optimal solution within 2500 evaluations, which get 
a competitive result. In the case of large-scale problems, as depicted in 
Fig. 10(b), oBABC converges to the target solution with a 99 % matching 
degree only in approximately 1000 evaluations, while most one- 
dimensional updated BABC algorithms require more than 4000 evalu
ations. However, for extra-large-scale problems, achieving the optimal 
solution in every run is not guaranteed by any algorithm. We conduct a 
statistical analysis on the output matching degree value, MR (Fig. 10(c)), 
which clearly demonstrates that oBABC holds a distinct advantage over 
the one-dimensional updated BABC algorithms. Compared to the multi- 
dimensional updated BABC algorithms (iBABC, ibinABC), oBABC ex
hibits comparable performance. 

5.3.5. Performance on max-cut problems 
Max-cut is another highly challenging binary optimization problem 

for which most SI algorithms do not guarantee the discovery of an 
optimal solution. Fig. 11(a) presents an analysis of the algorithms’ 
ability to find optimal or near-optimal solutions. Among the algorithms, 
oBABC demonstrates the highest success rate, achieving optimal solu
tions in at least one run ("MR(Best)=100 % in 30 runs") for 13 out of 30 
problems. In contrast, the other algorithms fail to reach the optimal 
solution. Furthermore, oBABC outperforms the rest in terms of "MR 
(Best)>99 % in 30 runs," solving all 30 problems with nearly-optimal 
solutions and securing the top position. Evaluating "MR(Mean)>99 % 
in 30 runs," oBABC provides solutions for 20 problems, nearly double the 
number achieved by the second-ranked binABC algorithm. These find
ings highlight the better capability and robustness of oBABC in finding 

optimal or near-optimal solutions. Considering search efficiency, as 
illustrated in Fig. 11(b), oBABC consistently requires fewer evaluations 
to achieve a 98 % convergence to the optimal solution compared to 
other algorithms. The performance of oBABC is more robustness, and its 
box width is reduced by about 28 % compared to other algorithms. 
Examining the search capability, the analysis of MR values depicted in 
Fig. 11(c) reveals that oBABC consistently achieves MR values primarily 
above 99 %, while the other BABC algorithms mostly fall below 99 % in 
most runs. This observation highlights the superiority of oBABC in terms 
of search performance and efficiency in the Max-cut problem. 

Turning to the convergence curves, depicted in Fig. 12, it is evident 
that oBABC outperforms the others in terms of both convergence rate 
and results. Due to space limitations, only a subset of these comparisons 
is presented in Fig. 12, while additional figures can be found in Fig. S2 
and Fig. S3. Furthermore, most of the multi-dimensional updated BABC 
algorithms demonstrate better performance compared to their one- 
dimensional counterparts. Notably, oBABC consistently exhibits supe
rior performance in terms of both convergence rate and results, followed 
by NBABC. These findings highlight the exceptional ability of oBABC to 
achieve superior results compared to other algorithms, characterized by 
faster convergence rates and higher solution quality. 

The detailed results obtained from the Max-Cut problem are sum
marized in Table S2. To conduct a comprehensive statistical analysis, we 
employ the Wilcoxon signed-rank test to analyze the output of the al
gorithm. As shown in Table 9, oBABC consistently outperforms the other 
algorithms across almost all problems, with only binABC, ibinABC, and 
NBABC demonstrating comparable performance on 4, 6, and 5 of the 30 
problems, respectively. However, the remaining problems exhibit 
notably inferior performance compared to oBABC. DABC, ABCbin, and 

Fig. 9. Convergence curves of different algorithms for typical UFLP problems with varied sizes. The problems used include (a) Cap 71 as a representative of small- 
size problems, (b) Cap 101 as a representative of medium-size problems, (c) Cap 131 as a representative of large-size problems. (d) Cap A as a representative of extra- 
large-size UFLP problems. 
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DPSO consistently demonstrate inferior rankings compared to all other 
algorithms, and their results are not included in Table 9 due to space 
constraints, but can be found in Table S3. Moreover, a t-test is employed 
to provide a quantitative assessment by establishing a confidence in
terval for the difference between the means. The results of t-test, pre
sented in Table S4, further validate the superior performance of oBABC 
in comparison to the others. Specifically, the confidence intervals of t- 
test reveal a clear advantage for oBABC, despite the Wilcoxon signed- 
rank test indicating their equivalence. Due to the extensive size of t- 
test tables, they are provided in the Supplementary Materials. 

Furthermore, Table S2 provides detailed evidence supporting the 
superior performance of oBABC across various metrics, including the 
Mean, Best, Worst, and Std.Dev of the objective function, as well as the 
HitFirst(98 %), HitTimes(99 %), and HitTimes(100 %) metrics. We rank 
these algorithms based on the presented metrics, which are illustrated in 
the form of a radar chart in Fig. 13. The chart clearly demonstrates 
oBABC’s superiority in terms of search efficiency (HitFirst(98 %)), search 
capability (HitTimes(99 %), HitTimes(100 %)), and robustness (Best, 
Worst, Mean, Std.Dev) compared to the other algorithms. 

5.4. Discussion 

In this work, we have formulated criteria for designing binary vari
ants of SI algorithms and introduced oBABC algorithm. Criterion I 
highlights the necessity of minimizing the complexity of the search 
formula. Despite technological advancements in computing power, 
memory, and parallel computing, which could mitigate the impact of 
computational efficiency, it is crucial to ensure low computational 
complexity in the design phase. Our analysis indicates that binary- 
operator approaches are more computationally efficient than 
mapping-based methods in developing binary variants of SI algorithms. 
As a result, oBABC algorithm adopts a binary operation methodology. 

Criterion II necessitates the design of a search formula that ensures 

exploration of new solution spaces. Experimental results reveal a sig
nificant presence of invalid searches in BABC algorithms. For one- 
dimensional updated BABC algorithms, the ILR values align closely 
with theoretical expectations, consistently exceeding 50 %. For multi- 
dimensional updated BABC algorithms, despite the theoretical chal
lenges in estimating ILR values, experimental evidence suggests that ILR 
exceeds 50 % for the UFLP and 20 % for the Max-Cut problem. Although 
ILR alone does not determine an algorithm’s optimization effectiveness, 
it points to potential computational resource wastage. The oBABC al
gorithm demonstrates superior search efficiency with an ambition of 
achieving a zero ILR, marking a notable advancement in algorithmic 
design. 

Criterion III promotes the integration of biomimetic strategies to 
increase the likelihood of quickly identifying optimal solutions. The 
biomimetic model is what distinguishes SI algorithms from stochastic 
algorithms. oBABC algorithm employs a biomimetic strategy in its up
date dimension selection process, representing a considerable 
improvement over the conventional ABC algorithm. Further experi
ments in UFLP and Max-Cut problems have verified oBABC’s enhanced 
convergence rate compared to one-dimensional update BABC algo
rithms, requiring significantly fewer function evaluations to achieve the 
HitFirst(100 %) and HitFirst(99 %) benchmarks—less than 25 % of that 
needed by one-dimensional updating BABC algorithms. In challenging 
Max-Cut problems, oBABC has demonstrated a higher probability of 
finding optimal solutions, outperforming other algorithms in terms of 
reaching 99 % of solutions and the function evaluations required to 
achieve 99 % sub-optimal solutions, thereby highlighting its perfor
mance advantage. These initial findings indicate oBABC’s potential as an 
efficient and effective solution for binary problems. 

Fig. 10. Statistical analysis of performance of various algorithms across 
different UFLP problems. (a) Distribution of HitFirst(100) values for small-size 
and medium-size problems. (b) Comparison of search efficiency using HitFirst 
(99) on large-size problems. (c) The distribution of MR achieved by each al
gorithm on extra-large-size problems in 30 runs. Fig. 11. Statistical analysis of algorithm performance across different Max-Cut 

problems. (a) The number of problems in which the algorithms can identify 
specific near-optimal solutions, with thresholds MR(Best) ≥ 99 %, MR(Mean) ≥
99 %, and MR(Best) = 100 %. (b) Distribution of HitFirst(98 %) values for all 
Max-Cut problems. (c) Distribution of MR values for each algorithm on a Max- 
Cut problems. 
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6. Conclusion and future works 

Our work introduces oBABC, a novel one-dimensional BABC algo
rithm designed to solve binary problems. And our work makes three core 
contributions. First, we recommend binarization criteria that have not 
been previously identified in the literature to our knowledge. To vali
date these criteria, several typical BABC algorithms are analyzed ac
cording to the criteria, and some experiments are designed to verify the 
results of theoretical analysis. Second, we find a theoretically optimal 
one-dimensional update search formula, which enables exploration of 
the solution space surrounding current solutions while avoiding map
ping problem spaces to other domains. This formula results in significant 
improvements in search efficiency. Third, we propose an innovative 
update dimension selection strategy that emulates multiple interactions 
among bees. This approach directs the direction of updates and leads to 

significant improvements in convergence rates. oBABC represents a new 
milestone of one-dimensional update BABC algorithm. Specifically, 
when tested on UFLP and Max-cut problems, oBABC outperforms cur
rent state-of-the-art binary variants of ABC algorithm by achieving the 
optimum or near-optimum solution. Furthermore, oBABC displays 
stronger search capability in terms of solution quality and robustness, as 
evidenced by the best, mean, worst, and standard deviation metrics, thus 
surpassing other algorithms. Therefore, it suggests that oBABC has po
tential for the application of solving complex binary problems. 

On the other hand, we have observed that the multi-dimensional 
update strategy offers certain advantages in terms of optimization per
formance. In our future research, we aim to investigate effective ways to 
synergistically combine the concepts of one-dimensional update and 
multi-dimensional update. The goal is to preserve the fine search 
capability inherent in the one-dimensional update while integrating the 

Fig. 12. Convergence curves of various algorithms for Max-Cut datasets with varying densities. The figure displays convergence performance plots for different 
algorithms running on typical Max-Cut datasets with(a)~(b) density d = 0.1, (c)~(d) density d = 0.5, (e)~(f) density d = 0.9. 
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rapid convergence and global exploration abilities of the multi- 
dimensional update. Additionally, we plan to extend the application 
scope of oBABC to address a broader range of engineering problems, 
including feature/attribute space reduction and classification/clustering 
problems. 
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Table 9 
Detailed statistical results obtained by the Wilcoxon signed-rank test on Max-cut problems (α = 0.05). A p-value of ’1′ indicates that oBABC outperforms the other 
algorithms, ’0′ indicates comparable performance between the algorithms, and ’− 1′ signifies that oBABC performs worse. The results of the DABC and ABCbin al
gorithms show significantly worse performance. Due to space limitations, these results are not presented here and presented in Table S3.  

Problem binABC bitABC ibinABC NBABC GBABC iBABC PBABC 
p-value(h) p-value(h) p-value(h) p-value(h) p-value(h) p-value(h) p-value(h) 

pw01–100–0 4.88e-03(1) 9.77e-04(1) 8.40e-02(0) 1.03e-01(0) 1.95e-03(1) 1.95e-03(1) 9.77e-04(1) 
pw01–100–1 4.88e-03(1) 1.95e-03(1) 2.73e-02(1) 2.64e-02(1) 4.39e-02(1) 9.77e-04(1) 9.77e-04(1) 
pw01–100–2 5.12e-01(0) 9.77e-04(1) 2.78e-01(0) 1.86e-02(1) 9.77e-03(1) 2.93e-03(1) 4.88e-03(1) 
pw01–100–3 1.86e-02(1) 9.77e-04(1) 3.91e-03(1) 1.95e-03(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 
pw01–100–4 1.95e-02(1) 9.77e-04(1) 7.81e-03(1) 3.22e-02(1) 4.88e-03(1) 9.77e-04(1) 1.37e-02(1) 
pw01–100–5 3.26e-01(0) 9.77e-04(1) 2.08e-01(0) 3.03e-02(1) 1.95e-03(1) 9.77e-04(1) 2.44e-02(1) 
pw01–100–6 1.21e-01(0) 1.95e-03(1) 8.01e-02(0) 9.28e-02(0) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw01–100–7 1.95e-03(1) 9.77e-04(1) 7.62e-02(0) 4.49e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw01–100–8 3.22e-02(1) 9.77e-04(1) 9.77e-04(1) 5.27e-02(0) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 
pw01–100–9 2.54e-02(1) 9.77e-04(1) 6.54e-02(0) 3.85e-01(0) 1.95e-03(1) 1.95e-03(1) 9.77e-04(1) 
pw05–100–0 1.95e-03(1) 9.77e-04(1) 1.95e-03(1) 6.84e-03(1) 2.93e-03(1) 9.77e-04(1) 9.77e-04(1) 
pw05–100–1 6.84e-03(1) 9.77e-04(1) 1.95e-03(1) 9.77e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw05–100–2 2.93e-03(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw05–100–3 9.77e-04(1) 9.77e-04(1) 4.88e-03(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 2.93e-03(1) 
pw05–100–4 9.77e-04(1) 9.77e-04(1) 2.93e-03(1) 9.77e-03(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 
pw05–100–5 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw05–100–6 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 4.88e-03(1) 9.77e-04(1) 9.77e-04(1) 
pw05–100–7 2.34e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw05–100–8 4.49e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw05–100–9 9.77e-04(1) 9.77e-04(1) 2.93e-03(1) 1.86e-02(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 
pw09–100–0 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw09–100–1 5.86e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-03(1) 1.95e-03(1) 9.77e-04(1) 2.93e-03(1) 
pw09–100–2 5.27e-02(0) 9.77e-04(1) 3.91e-03(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 
pw09–100–3 6.84e-03(1) 9.77e-04(1) 9.77e-04(1) 5.27e-02(0) 1.95e-03(1) 9.77e-04(1) 1.95e-03(1) 
pw09–100–4 1.86e-02(1) 9.77e-04(1) 4.88e-03(1) 1.95e-02(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 
pw09–100–5 6.84e-03(1) 9.77e-04(1) 9.77e-04(1) 1.86e-02(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
pw09–100–6 1.37e-02(1) 9.77e-04(1) 1.07e-02(1) 1.37e-02(1) 9.77e-04(1) 9.77e-04(1) 1.95e-03(1) 
pw09–100–7 3.22e-02(1) 9.77e-04(1) 9.77e-04(1) 4.88e-03(1) 3.91e-03(1) 9.77e-04(1) 9.77e-04(1) 
pw09–100–8 9.77e-04(1) 1.95e-03(1) 4.88e-03(1) 1.95e-03(1) 2.93e-03(1) 9.77e-04(1) 9.77e-04(1) 
pw09–100–9 6.84e-03(1) 9.77e-04(1) 1.95e-03(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 9.77e-04(1) 
All 1.53e-36(1) 4.79e-51(1) 1.64e-42(1) 2.42e-36(1) 1.11e-48(1) 4.80e-51(1) 5.40e-50(1)  

Fig. 13. Overall performance ranking of the algorithms operating on Max- 
Cut datasets. 
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