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Neural networks excel at capturing local spatial patterns through convolutional modules, but they may 
struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological 
signals. In this work, we propose a novel network named filtering module fully convolutional network 
(FM-FCN), which fuses traditional filtering techniques with neural networks to amplify physiological 
signals and suppress noise. First, instead of using a fully connected layer, we use an FCN to preserve the 
time-dimensional correlation information of physiological signals, enabling multiple cycles of signals 
in the network and providing a basis for signal processing. Second, we introduce the FM as a network 
module that adapts to eliminate unwanted interference, leveraging the structure of the filter. This approach 
builds a bridge between deep learning and signal processing methodologies. Finally, we evaluate the 
performance of FM-FCN using remote photoplethysmography. Experimental results demonstrate that 
FM-FCN outperforms the second-ranked method in terms of both blood volume pulse (BVP) signal and 
heart rate (HR) accuracy. It substantially improves the quality of BVP waveform reconstruction, with a 
decrease of 20.23% in mean absolute error (MAE) and an increase of 79.95% in signal-to-noise ratio 
(SNR). Regarding HR estimation accuracy, FM-FCN achieves a decrease of 35.85% in MAE, 29.65% in error 
standard deviation, and 32.88% decrease in 95% limits of agreement width, meeting clinical standards for 
HR accuracy requirements. The results highlight its potential in improving the accuracy and reliability of 
vital sign measurement through high-quality BVP signal extraction. The codes and datasets are available 
online at https://github.com/zhaoqi106/FM-FCN.

Introduction

Noncontact techniques for monitoring and diagnosing vital 
signs have gained significant attention in the field of medical 
diagnostics field. These techniques, including microwave dop-
pler [1], ballistocardiogram [2], and remote photoplethysmog-
raphy (rPPG) [3,4], allow for the measurement and monitoring 
of vital signs such as heart rate (HR), respiratory rate, and blood 
oxygen saturation without direct contact with the patient’s skin. 
The use of these techniques offers several advantages, such as 
convenience and comfort for patients, as well as a reduced risk 
of infection transmission. Among these techniques, rPPG is 
particularly noteworthy because of its ability to utilize ubiqui-
tous devices like smartphones or computer cameras without the 
need for specialized sensors. By analyzing changes in skin color, 

rPPG can accurately capture HR [3], blood flow [5], and other 
vital sign information [6], while also being capable of recogniz-
ing an individual’s emotional state [7]. The development of 
rPPG technology brings forth exciting possibilities in health-
care, mental health, and various innovative applications [8,9].

Accurate vital sign extraction and analysis rely on high-
quality blood volume pulse (BVP) waveforms. For example, 
HR variability is determined by the variations in HR cycles, 
while features extracted from the BVP waveform are used to 
assess blood pressure. However, existing methods encounter 
challenges when working with face videos that exhibit facial 
deformations, illumination variations, and camera sensor noise 
[10]. These factors can result in inaccurate estimation of the 
BVP signal. Therefore, there is an urgent need to develop inno-
vative rPPG techniques capable of accurately extracting BVP 
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waveforms even in the presence of noise. The development of 
such techniques will enable the computation of a wider range 
of physiological features.

There are 2 main approaches to implementing rPPG: 
classical-theory-based techniques and deep-learning-based 
techniques. Classical-theory-based techniques utilize signal 
processing methods such as blind source separation (BSS) [11], 
plane-orthogonal-to-skin (POS) algorithm [12], independent 
component analysis (ICA) [13], constrained ICA [14], and local 
group invariance (LGI) [15] to extract the BVP signal from the 
captured video frames. These techniques often make assump-
tions about noise characteristics and simplifications to effec-
tively reduce noise and achieve accurate vital sign measurements 
under ideal conditions. Commonly used classical techniques 
include filters, differentials, and statistical methods, which aim 
to remove irrelevant signal and noise artifacts while preserving 
relevant physiological information. In some cases, machine 
learning techniques are incorporated to improve the accuracy 
of extracted vital signs [11]. However, classical techniques may 
not yield satisfactory results when dealing with complex noise 
sources or nonlinear variations in real-world scenarios. Factors 
such as environmental illumination variations, facial expres-
sions, and motion can introduce significant noise contamina-
tion into the rPPG signal, making it challenging to achieve 
accurate and reliable vital sign monitoring. To overcome these 
limitations, deep-learning-based rPPG techniques have emerged 
as a promising alternative. These techniques leverage deep neu-
ral networks such as convolutional neural networks (CNNs) 
[16,17], generative adversarial network [18,19], and long short-
term memory (LSTM) [7] to learn complex features directly 
from raw video frames and accurately capture the signal area to 
enhance weak feature signals. Deep-learning-based approaches 
have demonstrated improved performance in handling motion 
environments and nonlinear variations, making them more 
robust for BVP extraction in certain real-world scenarios.

Although deep learning networks have exhibited impres-
sive performance in spatial signal decomposition and reconstruc-
tion, they often face challenges in effectively utilizing information 
in the time domain, particularly in the context of physiological 
signal processing. In this work, we introduce a new network, filter-
ing module fully convolutional network (FM-FCN), designed to 
augment the model’s ability to diminish unwanted signals. This 
enhancement not only optimizes performance in rPPG tasks but 
also shows promising potential in spatiotemporal data analysis 
[20,21] and prediction [22]. The primary contributions of this 
work can be summarized as follows.

1. � Introducing FM tailored specifically for processing 
physiological signals. FM serves as an innovative bridge 
between deep learning and signal processing tech-
niques, effectively eliminating unwanted interference 
and thereby enhancing the signal-to-noise ratio (SNR) 
of the signals.

2. � Incorporating FCN that is particularly suited for peri-
odic physiological signals. FCN directly outputs mul-
tiperiodic of BVP waveforms, thereby enhancing the 
efficiency of FM-FCN and enabling the exploitation 
of temporal correlation. By using FCN instead of fully 
connected layers, we considerably reduce the number of 
parameters and facilitate weight sharing in the temporal 
dimension, leading to enhanced signal reconstruction 
accuracy.

3. � Comprehensive establishment of evaluation metrics 
for rPPG technology, encompassing indicators for both 
BVP waveform quality and HR accuracy. The assessment 
of BVP waveform quality is conducted on the basis of 
the time-domain SNR, which mitigates the risk of erro-
neously attributing noise energy as a signal capability in 
frequency-domain methods. HR accuracy is evaluated 
according to the ANSI/AAMI EC13:2002 standard [4], 
which holds more relevance in medical applications.

The subsequent sections of this paper are organized as 
follows. The review of the related work is presented in 
Related Work with details. Methodology outlines the pro-
posed method. Experiment Results presents the experimen-
tal results. A detailed discussion is in Discussion. Finally, 
Conclusion and Future Works concludes the study and offers 
future directions for researchers and practitioners.

Comprehensive framework for rPPG
The absorption of light by blood vessels exhibits periodic 
changes due to the rhythmic contractions of the heart. As illus-
trated in Fig. 1, this subtle fluctuation is captured by a camera, 
resulting in BVP signal. However, this BVP signal is inherently 
weak and susceptible to various interferences, including fluc-
tuations in ambient light, flashing lights, and changes in facial 
orientation. Therefore, it is essential to denoise and enhance 
the SNR of the BVP signal to accurately extract vital signs from 
videos. Typically, the processing of rPPG technology involves 
4 main steps: face detection, ROI segmentation, BVP signal 
reconstruction, and vital sign calculation. The signal acquired 
by the camera sensors can be mathematically represented as 
follows.

where C(t) denotes a matrix of the intensity value on a color 
channel of M × N image during time t. Ii,j(t) refers to the inten-
sity value of a specific pixel located at row i and column j during 
time t. To account for the presence of noise or irrelevant signals, 
we decompose each pixel using Eq. 2.

where si,j(t) and ni,j(t) represents the intensity values of signal 
and noise at row i and column j during time t, respectively.

Filtering module
Filters play a crucial role in signal processing, as they selectively 
extract specific frequency components or features from raw 
signals while eliminating unwanted portions. Two commonly 
used types of filters are frequency domain filters and adaptive 
filters. Frequency domain filters are designed to suppress unde-
sired frequency signals, while adaptive filters excel at filtering 
out random interference or noise with specific statistical prop-
erties. However, both types of filters rely on convolution cal-
culations, where the input signal is convolved with the filter 
coefficient. A general formula for a filter can be expressed as 
follows.

(1)C(t) =

⎡⎢⎢⎢⎢⎣

I1,1(t) I1,2(t) ⋯ I1,N (t)

I2,1(t) I2,2(t) ⋯ I2,N (t)

⋮ ⋮ ⋱ ⋮

IM,1(t) IM,2(t) ⋯ IM,N (t)

⎤⎥⎥⎥⎥⎦

(2)Ii,j(t) = si,j(t) + ni,j(t)
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where f(x; h) represents the filtered output signal using filter 
coefficient h, and x(t) denotes the input signal, while h(k) rep-
resents the impulse response of the filter. The summation is 
performed over a range of k values. The impulse response pro-
vides information about the behavior of the filter and deter-
mines how the filter responds to different signals, particularly 
those with varying frequencies.

Physiological signals often exhibit inherent periodicity and 
statistical regularity, making filtering techniques a widely uti-
lized tool in signal processing. However, deep-learning-based 
approaches often overlook these valuable characteristics. Here, 
we propose an FM specifically designed for integration into 
convolutional networks, as depicted in Fig. 2A. This module 
represents a generalized structure of FM, where the value of 
each pixel is influenced by its historical counterparts. By incor-
porating FM as a filtering mechanism, unwanted noise and 
signals can be effectively removed, thereby facilitating the 
extraction of the desired physiological signals from the original 
input, as visually demonstrated in Fig. 2C derived from Fig. 
2B. The filtering process is mathematically expressed in Eq. 4, 
and Eq. 5 provides a detailed explanation of the pixel-wise fil-
tering operation.

where hi,j(k) represents the impulse response of the filter applied 
to the pixel located at position (i, j) during time t.

FM can be implemented with various filter structures, such 
as finite impulse response, infinite impulse response, median 
filter, or other adaptive filters. The flexibility of these modules 

allows them to be embedded in any node of a deep learning 
network, enabling each node to select a specific filter structure 
based on its specific requirements. In this work, we demonstrate 
the use of finite impulse response structures to design FMs.

FM-FCN
The overall architecture of FM-FCN is depicted in Fig. 3. It 
consists of 2 primary branches: the motion branch and the 
appearance branch. The motion branch is responsible for 
extracting the physiological signal, while the appearance branch 
is utilized to estimate spatial weight information.

The appearance branch of FM-FCN is composed of 3 blocks: 
the principal component clustering (PCC) block, the signal 
extraction (SE) block, and the superresolution (SR) block. PCC 
block utilizes 2 2D CNN layers to cluster the principal compo-
nents of large-scale images. This helps in capturing significant 
patterns and generating a mask. Similarly, SE block extracts 
signals from small-scale images using an average pooling layer, 
a dropout layer, and 2 2D CNN layers. It also generates a mask. 
SR module further processes the generated 1D SR signal. It uses 
various layers such as average pooling, adaptive pooling, drop-
out, and 3-order FMs. The aim of SR block is to generate a mask 
that facilitates the extraction of relevant weights for enhancing 
the objective signal. The primary aim of the appearance branch 
is to encapsulate spatial attributes associated with BVP varia-
tions. Considering that motion between adjacent frames is gen-
erally minimal, this branch enhances the delineation of edges 
between the face and the background through the application 
of averaging techniques. This method facilitates the accurate 
extraction of facial contours while concurrently diminishing 
the impact of random noise. The refined input for the appear-
ance branch is mathematically depicted in Eq. 6.

where A(t) represents the input appearance, Ave(t) is a frame 
generated by averaging 2 adjacent frames C(t) and C(t − 1), 
μ(Ave(t)) denotes the average value of a frame, and σ(Ave(t)) 
is the standard deviation (SD) of a frame.

(3)f (x; h) =

K∑
k=0

h(k) × x(t − k)

(4)

f (C; H) =

⎡⎢⎢⎢⎢⎣

f
�
I1,1; h1,1

�
f
�
I1,2; h1,2

�
⋯ f

�
I1,N ; h1,N

�
f
�
I2,1; h2,1

�
f
�
I2,2; h2,2

�
⋯ f

�
I2,N ; h2,N

�
⋮ ⋮ ⋱ ⋮

f
�
IM,1; hM,1

�
f
�
IM,2; hM,2

�
⋯ f

�
IM,N ; hM,N

�

⎤⎥⎥⎥⎥⎦

(5)f
(
Ii,j; hi,j

)
=

K∑
k=0

hi,j(k) × Ii,j(t − k)

(6)A(t) =
(
Ave(t) − �t(Ave(t))

)
∕�t(Ave(t))

(7)Ave(t) = (C(t) + C(t − 1))∕2

Fig.  1.  A comprehensive framework for rPPG techniques. (A) Illustration of the photoelectric signal acquisition related to BVP. (B) Overview of the general process involved 
in rPPG signal processing. (C) Vital signs information available based on rPPG.
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The motion branch in our system exhibits a structure resem-
bling that of the appearance branch, with the addition of a filter 
block and a 3-order FM at the end of PCC and SR block. The 
primary objective of the motion branch revolves around extract-
ing BVP waveform. To accomplish this, it is imperative to inte-
grate an FM module or block within each block, prior to attaining 
the final BVP waveform output. This particular FM plays a critical 
role in mitigating noise and ensuring accurate extraction of BVP 
waveform. Multiple FM modules have been observed to simulate 
the characteristics of band-pass or band-stop filters. Furthermore, 
drawing on insights from [35], differential operations are applied 
to the input of the motion branch to effectively eliminate com-
mon-mode interference and irrelevant dc signals. This process is 
streamlined into Eqs. 8 and 9, which calculate the difference 
between adjacent frames along the temporal axis of the raw video 
frames, thereby eliminating low-frequency interference.

where M(t) represents the input motion, D(t) denotes the frame 
difference obtained by subtracting the previous frame C(t − 1) 
from the current frame C(t).

Finally, we replace the fully connected layers with FCN to 
obtain 2 notable advantages. First, physiological signals com-
monly exhibit periodic patterns, and by utilizing filters with 
longer periods during signal processing, we can effectively 
leverage the temporal correlation of the signal for a more pre-
cise feature reconstruction. Second, the inclusion of FCN 
enables parameter reduction and weight sharing along the tem-
poral dimension. In summary, FM-FCN is specifically designed 
for the extraction of physiological signals, achieving an optimal 
fusion of temporal and spatial information.

Spatiotemporal feature fusion
Deep learning networks have shown remarkable effectiveness 
in accurately delineating facial contours, as illustrated in Fig. 
4. This capability is crucial for the precise identification of the 
ROI, predominantly areas of the facial skin, which are vital for 
subsequent analyses. By leveraging these identified ROIs, it is 

(8)M(t) = (D(t) − �(D(t)))∕�t(D(t))

(9)D(t) = C(t) − C(t − 1)

Fig. 2. Introduction to FM. (A) General structure of FM. (B) Signals before undergoing the FM processing. (C) Signals after undergoing the FM processing.

Fig. 3. Architecture of FM-FCN. PCC block clusters principal component through extraction from large-scale images. SE block extracts signals from small-scale images. SR 
block flattens and extracts signals at an SR level. Filter block denoises the signal.
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possible to analyze periodic variations in the intensity of 
reflected light at specific wavelengths from video footage, facili-
tating the extraction of the BVP signal. Therefore, deep learning 
techniques are the ideal choice for precisely identifying relevant 
ROIs and serve as a robust foundation for extracting BVP 
signals.

However, the amplitude of the intensity change correspond-
ing to the BVP signal is very weak compared to the intensity 
change caused by other factors in the videos. In other words, 
the weak BVP signal would be overwhelmed and interfered 
with by various noises. To address these challenges, we propose 
an FM to eliminate noise and enhance BVP signal. Considering 
that physiological signals often exhibit certain characteristics 
such as periodicity and slow variability, FM is used to fuse 
classical filtering techniques with deep learning networks, as 
illustrated in Fig. 5. It applies temporal filtering to the current 
frame image and multiple previous frames, effectively incor-
porating temporal information. In addition, FM can be envis-
aged as a 1D convolution kernel operating along the temporal 
axis, with its parameters initiated and defined following a simi-
lar approach as with other kernels. Consequently, through the 
training process, a set of filtering parameters is derived, leading 
to an enhanced SNR of the output BVP waveform. This fusion 
of classical filtering techniques with deep learning networks via 
FM provides a promising approach for enhancing the extraction 
of BVP signals, mitigating the effects of noise, and improving 
the overall quality of signal reconstruction.

Results

Datasets and training settings
We incorporate 4 distinct datasets for the experiment, namely, 
pulse rate estimation database (PURE) [23], University of 
Bourgogne Franche-Comté rPPG (UBFC-rPPG) [24], remote 
learning affect and physiologic dataset (RLAP) [25], COHFACE 
[26]. Each of these datasets provides unique information and 
features that are critical for the overall experiment. For a com-
prehensive overview of these databases, including their respec-
tive characteristics and properties, please refer to Table 1.

The extraction of BVP waveform is conducted using a unit 
of 256 frames, equivalent to approximately 8 s of videos. The 
primary experiments can be divided into 3 parts: qualitative 
comparison of BVP waveform restoration quality, comparison 
of generalization ability based on small-scale datasets, and com-
parison of robustness based on large-scale datasets. In the first 
2 experiments, training is performed on UBFC-rPPG dataset, 
while testing is carried out on PURE dataset. The third experi-
ment entails training on a subset of RLAP dataset and testing 

on the remaining RLAP dataset, as well as all other datasets, to 
evaluate the robustness of various methods.

In addition, in the subsequent experiments, unless specifi-
cally stated otherwise, “referenced BVP” (rBVP) refers to the 
BVP waveforms recorded by medical devices present in the 
dataset, typically derived from finger clip pulse oximeters, rep-
resenting the gold standard and data labels. “Referenced HR 
(rHR)” denotes the HR values calculated on the basis of the 
rBVP. Similarly, “estimated BVP” (eBVP) refers to the BVP 
waveforms extracted from video data using rPPG methods, 
and “estimated HR (eHR)” represents the HR values calculated 
on the basis of the eBVP.

Evaluation metrics
To evaluate the effectiveness of FM-FCN in extracting BVP 
waveform, 3 essential metrics are utilized in this work. The first 
metric, mean absolute error (MAE) as shown in Eq. 10, pro-
vides a direct assessment of waveform quality by measuring 
the average magnitude of differences between the eBVP wave-
forms and the rBVP waveforms. The second metric, Pearson 
correlation coefficient (R) represented by Eq. 11, evaluates the 
linear relationship between the eBVP waveforms and the rBVP 
waveforms. It offers insights into the similarity in shape and 
trend, providing an indication of enhancement fidelity. To 
quantify SNR, we use a time-domain approach described by 
Eq. 12 instead of the commonly used approach mentioned in 
[27]. This alternative approach is more appropriate as it takes 

Fig. 4. Example of spatial ROI extraction using deep learning networks.
Fig.  5.  Denoising of multiframe images through the utilization of spatiotemporal 
features. The filtering method FM is applied to the input images, resulting in output 
images with diminished noise in the pixel values.

Table 1. A detailed overview of the datasets

Dataset 
size

Dataset 
name

Individual 
number

Frame 
rate Duration

Resolu-
tion

Small 
scale

PURE 
[23]

59 30 fps ≈1 min 640 × 
480

UBFC- 
rPPG [24]

42 30 fps ≈2 min 640 × 
480

Large 
scale

RLAP [25] 728 30 fps 1–7 min 1,920 × 
1,080

COHFACE 
[26]

160 20 fps ≈1 min 640 × 
480
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into consideration that the first harmonic of the calculated 
signal’s spectra may represent noise energy rather than the 
actual BVP signal energy. This metric enables an accurate 
evaluation of the clarity of BVP signal despite potential noise 
interference. The definitions of these 3 metrics are provided 
below.

where N represents the total number of samples, ŷ  represents 
the calculated value, and y represents the reference value.

In addition to MAE and R, several other metrics are utilized 
to evaluate the accuracy of the eHR compared to the rHR. These 
metrics include the mean relative error (MRE), the accuracy 
rate (ACC), and the error SD. MRE calculates the average per-
centage difference between the estimated and reference HRs, 
providing a measure of the relative error in HR estimation. SD 
quantifies the standard deviation of errors between the esti-
mated and reference HRs, giving an indication of the robust-
ness in the HR estimations. ACC measures the percentage of 
eHRs that meet the ANSI/AAMI EC13-2002 standard [28]. 
This standard defines a tolerance of ±10% or ±5 beats/min 
(bpm) (whichever is greater) for the HR error. ACC provides 
an evaluation of the algorithm’s ability to accurately estimate 
HR values within the specified limits. The definitions of these 
3 metrics are presented as follows.

where the variable err corresponds to the absolute error between 
the HR values (|eHR − rHR|) and μ(err) signifies the mean 
of the err. ATE indicates the count of HR errors within the 
allowable total error range, which adheres to the standard 
defined in [28]. Conversely, UTE represents the count of HR 
errors exceeding the allowable total error limit, failing to meet 
the standard defined in [28].

Qualitative analysis of BVP waveform restoration
BVP waveform is essential for obtaining various vital signs 
information, including HR, blood pressure, blood oxygen lev-
els, and HR variability. Therefore, it is important for an algo-
rithm to effectively reconstruct the BVP waveform to extract 
other vital signs data reliably. Figure 6 clearly demonstrates 
that BVP waveform extracted by FM-FCN has the highest 
correlation coefficient of 0.98, indicating a strong relationship 
between the reconstructed waveform and the reference BVP 
waveform. Moreover, BVP waveform reconstructed by FM-FCN 
successfully captures the second characteristic wave, which is 
critical for blood pressure calculation. In contrast, DeepPhys 
and TS-CAN fail to extract this characteristic wave, while 
EfficientPhys only partially captures it. This emphasizes the 
superior performance of FM-FCN in preserving the temporal 
and spatial characteristics of the secondary peak within BVP 
waveform.

Evaluation on small datasets
In this experiment, we aim to evaluate the generalization capa-
bility of different methods in the field of rPPG technology. The 
evaluation is conducted by training the algorithms on UBFC-
rPPG dataset and assessing their performance on PURE data-
set. Figure 7 shows the Bland–Altman plot analysis to quantify 
the agreement between the estimated and the reference HR 
values. Here, the difference between the HR values (y axis) is 
plotted against the mean of the HR values (x axis) with 95% 
limits of agreement (LoA = mean ± 1.96 × SD) that are pre-
sented with dashed lines. FM-FCN achieves HR difference 
within the range of [−4.92, 5.51] bpm. In contrast, DeepPhys, 
TS-CAN, and EfficientPhys exhibit lower accuracy, with HR 
errors falling within the ranges of [−13.87, 12.83], [−12.41, 
12.11], and [−15.94, 15.12] bpm, respectively. The width of the 
LoA interval of FM-FCN is reduced by 57.56% to 66.52% com-
pared with alternative methods. These findings indicate that 
FM-FCN outperform DeepPhys, TS-CAN, and EfficientPhys 
in terms of HR accuracy.

Furthermore, Fig. 8 clearly illustrates the disparities in BVP 
extraction quality and HR accuracy among various methods. 
The diagram highlights that the optimal position in the upper 
left quadrant correlates with the lowest HR error and the high-
est agreement between rPPG-derived eBVP waveforms and the 
rBVP waveforms, where the circle’s size reflects the HR error’s 
SD. This quadrant is indicative of the algorithms with the most 
comprehensive performance, underscoring the superiority of 
deep learning techniques over traditional methods in both BVP 
quality and HR accuracy. Among these deep learning algo-
rithms, FM-FCN stands out for its exceptional performance, 
securing the top left position in the bubble chart. Detailed find-
ings are presented in Table 2. Specifically, FM-FCN achieves 
the highest correlation with the reference signal in BVP wave-
form extraction accuracy and shows exceptional superiority in 
SNR, marking over a 50% improvement relative to other tech-
niques. Regarding HR accuracy metrics, nearly 98.64% of HR 
estimates from FM-FCN align with the clinical accuracy cri-
teria as stipulated in [28]. In addition, the mean errors (MAE 
and MRE) for HR calculated by FM-FCN are substantially 
lower—less than half—than those recorded by competing meth-
ods, signifying markedly superior accuracy. FM-FCN also exhib-
its remarkable robustness, as evidenced by its substantially 
reduced SD in comparison to other algorithms, ranging between 
33.56% and 42.44% of the values noted for other methods.
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Evaluation on large datasets
In this subsection, RLAP dataset is divided into a training set, 
which accounted for 75% of the data, and a test set for intra-
dataset testing, consisting of the remaining 25%. The trained 
models are also cross-validated on PURE, UBFC-rPPG, and 
COHFACE datasets.

Table 3 provides a comprehensive overview of the findings 
from the intradataset testing. The results highlight the superiority 
of deep-learning-based approaches over classical-theory-based 
methods in terms of both BVP waveform quality and HR accu-
racy metrics. Notably, among the deep-learning-based approaches, 
FM-FCN stands out as the top performer. In relation to the quality 
of the BVP waveform, FM-FCN achieves the top rank in MAE, 
SNR, and R. It notably exhibits a significant 21.5% reduction in 
MAE compared to the second-ranked 3D-CAN model. Regarding 
HR estimation, FM-FCN also secures the top rank in MAE, MRE, 
SD, R, ACC, and LoA. In comparison to the second-ranked 
EfficientPhys model, FM-FCN showcases a remarkable 32.6% 
reduction in MAE for HR and a 25% reduction in the width of 
the LoA interval. Overall, FM-FCN performs exceptionally well, 
delivering outstanding outcomes in terms of accuracy and robust-
ness across the evaluated metrics.

To assess the robustness of various techniques, we conduct 
tests on models trained with RLAP dataset across 3 distinct 
datasets: UBFC-rPPG, COHFACE, and PURE.

Table 4 presents the experimental results obtained using 
UBFC-rPPG. Most of the approaches exhibit satisfactory per-
formance in terms of both BVP waveform reconstruction capa-
bility and HR accuracy. This notable achievement can be 
attributed to the favorable conditions facilitated by UBFC-
rPPG, where individuals are instructed to maintain a fixed 
distance from the camera with minimal movement, resulting 
in high-quality raw videos. Nevertheless, FM-FCN outper-
forms all other approaches and achieves the highest perfor-
mance ranking.

The results of the experiments conducted using the COHFACE 
dataset are presented in Table 5. It is worth noting that the 
COHFACE dataset has a high compression rate [29], leading 
to a lower SNR. FM-FCN achieves the highest accuracy in 
HR estimation with an ACC value of 73.19% and an MAE of 
5.91, as well as ranking first in terms of the quality of recon-
structed BVP waveforms. These findings indicate that FM-FCN 
demonstrates better robustness even when dealing with low-
quality video data.

Table 6 showcases the experimental results on the PURE 
dataset, using deep learning models trained on the RLAP data-
set, contrasting with the UBFC-rPPG dataset used in Table 2. 
The table clearly demonstrates that FM-FCN retains superior 
performance across all evaluated metrics, highlighting its sta-
bility and robustness regardless of the training dataset used. To 

Fig. 6. Qualitative analysis of BVP waveforms on PURE datasets. BVP waveforms obtained through various methods: (A) FM-FCN (R = 0.9801), (B) DeepPhys (R = 0.8657), 
(C) TS-CAN (R = 0.9052), and (D) EfficientPhys (R = 0.9532). The oval dashed line box emphasizes the well-preserved detailed features, where red indicates optimal restoration 
and black indicates rudimentary restoration.
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further investigate the performance differences between the 2 
datasets, we calculate the relative improvement, with findings 
illustrated in Fig. 9. This analysis shows enhanced BVP wave-
form quality and HR accuracy in models trained on RLAP 
compared to those trained on UBFC-rPPG. Using t tests, we 
quantitatively assess the variance in model performance between 
the datasets, as detailed in Table 7. Except for the DeepPhys 
model, all models show significant improvements in BVP wave-
form extraction quality. However, improvements in HR accuracy 
are not statistically significant, likely because of the simplicity 

of the HR calculation model. The RLAP-trained models’ supe-
riority over the UBFC-rPPG-trained models is attributed to a 
richer collection of motion scene data, which bolsters model 
robustness. This emphasizes the critical role of dataset compre-
hensiveness in improving model performance. In summary, 
FM-FCN exhibits notable accuracy and robustness when trained 
on datasets of varying scales (RLAP and UBFC-rPPG), showcas-
ing its strong generalization capabilities and exceptional perfor-
mance across diverse datasets.

To quantitatively assess the performance enhancements of 
FM-FCN in rPPG tasks relative to other models, we utilize 
t tests to analyze significant differences in key performance 
metrics. Table 8 demonstrates that FM-FCN achieves substan-
tial improvements in the MAE of BVP waveforms and HR 
accuracy, indicating marked reductions in both MAE and HR 
errors when compared with competing models. Furthermore, 
FM-FCN significantly surpasses other models in the correlation 
(R) of BVP waveforms and in SNR, with confidence intervals 
revealing significant enhancements in both SNR and R. The 
outcomes of this significance analysis for the PURE, COHFACE 
and RLAP datasets are detailed in Tables S1 to S3, respectively. 
These t test findings further validate the superiority of FM-FCN 
in overcoming rPPG detection challenges.

Ablation study
FM-FCN is an advanced extension of DeepPhys (CAN). To 
evaluate the impact of distinct modules integrated into FM-FCN, 
we have undertaken an ablation study. In this subsection, we 
introduce 2 variations: FM-CAN, which incorporates FM into 
DeepPhys, and FCN-CAN, which replaces DeepPhys’ fully con-
nected layer with FCN. These variations are rigorously trained 
on 75% of the RLAP dataset and subsequently assessed on the 

Fig.  8.  Comprehensive evaluation of various methods using bubble charts. The 
optimal performance region is located in the top left corner, with the bubble diameter 
indicative of the HR SD.

Fig.  7.  Bland–Altman consistency analysis on small datasets. The subplots (A) to (D) correspond to the evaluations conducted on FM-FCN, DeepPhys, TS-CAN, and EfficientPhys, 
respectively.
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remaining 25%, along with additional datasets such as PURE, 
UBFC-rPPG, and COHFACE. This methodology allows for a 
thorough examination of the enhancements and contributions 
each module brings to the FM-FCN’s performance.

Table 9 offers a detailed analysis from an ablation study, com-
paring the performance enhancements of FM-FCN, FM-CAN, 
and FCN-CAN against DeepPhys. In terms of BVP quality metrics, 
implementing FM and FCN separately yields reductions in MAE 
of 21% and 27%, respectively, and substantial improvements in the 
SNR by 62% and 83%. The combined FM-FCN framework notably 
reduces MAE by 52% and increases SNR by an impressive 206%. 
Regarding HR accuracy metrics, both FM and FCN contribute 
to MAE reductions of 38% and 41%, respectively, and achieve a 
42% narrowing in the LoA width. The integration of FM and FCN 

enhances these effects, leading to an outstanding 61% reduction 
in MAE and a significant 58% decrease in LoA width. These results 
strongly support the essential contributions of FM and FCN to 
improving the accuracy and reliability of rPPG measurements.

The results for the RLAP, UBFC-rPPG, and COHFACE data-
sets are provided in Tables S4 to S6, respectively. Figure 10 
shows the improvement statistics for BVP MAE, HR MAE, BVP 
R, and HR SD. It is evident that both FM and FCN modules 
significantly enhance the waveform quality of BVP, with FM-FCN 
showing a more pronounced improvement. However, FM-FCN 
performs relatively worse than FM-CAN and FCN-CAN on 
COHFACE. A significant factor contributing to this discrepancy 
is the video compression by COHFACE, which leads to consider-
able rPPG signal loss. In scenarios with degraded signal quality, 

Table 2. Quantitative statistics for training on UBFC-rPPG and testing on PURE

Method

BVP HR

 MAE  SNR R  MAE  MRE  SD R  ACC  LoA ([L, U])

FM-FCN (ours) 0.30 9.21 0.90 0.59 1.05% 2.61 0.99 98.64% [−4.92, 5.51]
DeepPhys [35] 0.54 3.97 0.76 1.25 1.59% 6.72 0.96 97.50% [−13.87, 12.83]

TS-CAN [37] 0.46 5.28 0.81 1.15 1.68% 6.15 0.96 98.18% [−12.41, 12.11]

EfficientPhys [38] 0.42 6.35 0.83 1.56 2.06% 7.78 0.94 95.23% [−15.94, 15.12]

POS [12] 1.42 −4.74 −0.51 8.6173 15.82% 15.38 0.73 75.45% [−25.46, 38.65]

CHROM [27] 0.79 0.26 0.48 9.66 17.40% 16.51 0.67 71.36% [−28.72, 41.78]

ICA [13] 1.30 −3.85 −0.29 9.7878 12.85% 17.51 0.55 66.36% [−42.13, 35.45]

GREEN [11] 1.35 −4.23 −0.36 13.0877 16.42% 20.14 0.30 53.18% [−51.72, 39.16]

LGI [15] 1.41 −4.55 −0.45 7.8902 10.52% 15.99 0.66 71.59% [−37.16, 32.01]

PBV [31] 1.09 −2.29 0.04 13.2275 18.53% 19.83 0.41 56.82% [−48.15, 45.15]

Notes: Considering the variation in PPG intensity across different parts, the normalization and band-pass filtering of both the rBVP waveforms and the eBVP 
waveforms are carried out before HR computation. L = mean – 1.96 × SD and U = mean + 1.96 × SD.

Table 3. Intradataset testing on RLAP

Method

BVP HR

 MAE  SNR R  MAE  MRE  SD R  ACC  LoA

FM-FCN (ours) 0.36 7.93 0.87 0.97 1.31% 3.16 0.94 96.54% [−6.71, 6.21]
DeepPhys [35] 0.70 1.67 0.62 2.87 3.73% 6.82 0.75 88.27% [−15.97, 11.94]

3D-CAN [37] 0.45 5.51 0.82 1.93 2.88% 4.71 0.84 92.14% [−9.85, 10.11]

TS-CAN [37] 0.56 3.59 0.73 1.78 2.33% 4.80 0.87 93.16% [−10.87, 8.78]

EfficientPhys [38] 0.51 4.40 0.77 1.44 1.91% 4.22 0.90 94.30% [−9.35, 7.89]

POS [12] 1.44 −4.69 −0.49 3.15 4.28% 6.52 0.75 88.09% [−13.65, 14.65]

CHROM [27] 0.83 −0.08 0.45 4.16 5.73% 8.08 0.64 83.49% [−17.23, 18.33]

ICA [13] 1.23 −3.23 −0.16 7.79 10.17% 10.24 0.42 64.50% [−28.24, 18.20]

GREEN [11] 1.29 −3.90 −0.25 11.36 14.99% 11.05 0.29 46.77% [−34.86, 21.07]

LGI [15] 1.42 −4.55 −0.45 6.11 7.92% 9.64 0.54 73.12% [−25.10, 15.71]

PBV [31] 1.18 −2.88 −0.08 8.42 11.09% 10.80 0.39 62.38% [−29.99, 20.01]
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Table 4. Cross-datasets testing on UBFC-rPPG

Method

BVP HR

 MAE  SNR R  MAE  MRE  SD R  ACC  LoA

FM-FCN (ours) 0.35 7.76 0.88 0.48 0.51% 1.87 0.99 98.96% [−3.91, 3.63]
DeepPhys [35] 0.51 4.66 0.77 1.74 1.79% 7.16 0.92 95.83% [−15.52, 12.94]

3D-CAN [37] 0.77 1.03 0.49 22.36 19.96% 20.05 −0.07 39.58% [−61.96, 17.75]

TS-CAN [37] 0.52 4.23 0.76 1.43 1.47% 5.23 0.95 95.49% [−11.33, 9.65]

EfficientPhys [38] 0.39 6.90 0.85 0.57 0.60% 2.01 0.99 98.96% [−4.21, 3.96]

POS [12] 1.53 −5.03 −0.61 2.70 2.73% 7.81 0.89 94.10% [−17.28, 14.72]

CHROM [27] 0.68 1.68 0.61 3.34 3.28% 9.22 0.86 92.36% [−20.86, 16.71]

ICA [13] 1.37 −3.90 −0.36 11.74 11.26% 20.41 0.51 73.26% [−51.81, 29.78]

GREEN [11] 1.43 −4.57 −0.45 15.89 15.14% 22.41 0.40 62.85% [−60.11, 29.98]

LGI [15] 1.47 −4.76 −0.52 13.06 12.39% 21.23 0.46 69.79% [−54.81, 30.68]

PBV [31] 1.24 −3.10 −0.17 15.04 14.13% 22.33 0.39 66.67% [−59.05, 30.78]

Table 5. Cross-datasets testing on COHFACE

Method

BVP HR

 MAE  SNR R  MAE  MRE  SD R  ACC  LoA

FM-FCN (ours) 0.75 0.75 0.52 5.91 7.64% 9.73 0.58 73.19% [−24.94, 16.62]

DeepPhys [35] 0.90 −0.86 0.35 5.97 7.71% 9.57 0.61 72.88% [−24.78, 15.60]
3D-CAN [37] 1.02 −1.91 0.18 31.49 28.14% 20.75 −0.18 16.49% [−73.26, 11.42]

TS-CAN [37] 0.89 −0.88 0.35 8.43 11.02% 11.52 0.36 63.79% [−31.31, 20.50]

EfficientPhys [38] 0.86 −0.49 0.39 8.04 10.69% 10.93 0.43 64.41% [−29.58, 20.66]

POS [12] 1.15 −3.20 −0.06 19.82 22.12% 17.79 0.09 39.29% [−51.89, 52.54]

CHROM [27] 1.04 −2.51 0.08 19.15 21.99% 18.00 0.04 42.37% [−49.41, 53.38]

ICA [13] 1.15 −3.09 −0.05 21.99 22.58% 18.91 0.07 34.67% [−63.77, 39.74]

GREEN [11] 1.23 −3.65 −0.18 36.40 34.29% 24.28 −0.10 18.80% [−89.17, 22.93]

LGI [15] 1.15 −3.25 −0.07 38.56 35.92% 22.93 −0.05 12.33% [−87.78, 14.94]

PBV [31] 1.08 −2.68 0.05 40.59 38.51% 20.96 −0.06 5.55% [−88.76, 13.87]

Table 6. Cross-datasets testing on PURE

Method

BVP HR

 MAE  SNR R  MAE  MRE  SD R  ACC  LoA

FM-FCN (ours) 0.28 10.06 0.92 0.4275 0.65% 2.30 0.99 99.32% [−4.64, 4.54]
DeepPhys [35] 0.58 3.29 0.72 1.1026 1.48% 5.52 0.97 98.18% [−11.29, 10.73]

3D-CAN [37] 0.66 2.61 0.60 13.5871 19.61% 19.09 0.12 58.86% [−45.03, 46.78]

TS-CAN [37] 0.45 5.56 0.82 1.3104 1.78% 6.71 0.96 97.05% [−13.69, 13.08]

EfficientPhys [38] 0.39 6.90 0.85 0.9868 1.66% 4.39 0.98 97.50% [−8.68, 8.95]
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there is a need for parallel optimization of HR computation 
algorithms. Nonetheless, a consistent approach utilizing the fast 
Fourier transform to analyze the pulse signal spectrum for HR 
calculation has been implemented across all experiments in this 
work. Overall, the FM and FCN modules greatly enhance both 
the BVP waveform extraction and the accuracy of HR computa-
tion across the network. The marked improvement following 
the FM-FCN combination preliminarily suggests its efficacy for 
rPPG applications.

Discussion

In this work, we propose FM-FCN for processing physiological 
signals. The FCN component serves as the foundation for mul-
tiframe signal processing in the temporal dimension, aligning 
with the periodic characteristics of signal processing. By fusing 
classical signal processing techniques with deep learning tech-
nology, FM effectively suppresses noise and enhances the signal. 
The significance of these 2 modules is demonstrated through 
ablation experiments.

The results obtained from testing on both small-scale and 
large-scale datasets provide comprehensive evidence of the gen-
eralization ability and robustness of FM-FCN. To further sup-
port our conclusions, we conduct rankings based on the results 
presented in Tables 2 to 6, and the average rankings consistently 
place FM-FCN in the top position. For a more intuitive perfor-
mance comparison, Fig. 11 visually illustrates that FM-FCN 
achieves close to or the best results in each metric. Notably, 
FM-FCN shows considerable improvements in both BVP and 
HR compared to the second-ranked method. Specifically, the 
quality of BVP waveform reconstruction sees a decrease of 
20.23% in MAE and an increase of 79.95% in SNR. In terms of 
HR accuracy index, there is a decrease of 35.85% in MAE, 
29.65% in SD, and 32.88% in LoA width. These achievements 
can be attributed not only to FM but also to the design of FCN. 
By replacing fully connected layers with FCN, we reduce the 

Fig.  9.  Comparative performance improvements of models trained on the RLAP 
dataset versus those trained on the UBFC-rPPG dataset. The improvement metrics 
are calculated by subtracting the values listed in Table 6 from their counterparts in 
Table 2, and then dividing by the values in Table 2.

Table  8. Pair-wise t-test comparative analysis of significant performance improvements of FM-FCN over other models on UBFC-rPPG 
(α = 0.05). The analysis involves t tests between FM-FCN and each of the other models.

FM-FCN vs. DeepPhys [35] 3D-CAN [37] TS-CAN [37] EfficientPhys [38]

BVP MAE P(h) 1(1.17 × 10−43) 1(2.84 × 10−78) 1(1.15 × 10−54) 1(2.49 × 10−9)

CI [−0.18, −0.14] [−0.44, −0.38] [−0.19, −0.15] [−0.05, −0.03]

BVP SNR P(h) 1(9.89 × 10−46) 1(1.36 × 10−82) 1(1.37 × 10−55) 1(2.63 × 10−9)

CI [2.75, 3.46] [6.26, 7.22] [3.19, 3.89] [0.59, 1.14]

BVP R P(h) 1(2.45 × 10−36) 1(1.26 × 10−70) 1(2.89 × 10−49) 1(6.92 × 10−10)

CI [0.10, 0.13] [0.36, 0.43] [0.11, 0.13] [0.02, 0.04]

HR error P(h) 1(1.97 × 10−3) 1(3.64 × 10−50) 1(1.26 × 10−3) 1(7.93 × 10−3)

CI [−2.05, −0.47] [−24.23, −19.52] [−1.52, −0.37] [−0.15, −0.02]

Table 7. Significance analysis of model performance: RLAP versus UBFC-rPPG trained models via t test (α = 0.05). A value of 1 indicates a 
significant difference, while 0 denotes no significant difference between models. The term “CI” represents the confidence interval, highlight-
ing the magnitude and direction of significant changes. HR error denotes the error between eHR and rHR.

Method

BVPR HR Error

h P CI h p CI

FM-FCN (ours) 1 1.55 × 10−7 [0.009, 0.020] 0 0.28 [−0.46, 0.13]

DeepPhys [35] 1 2.09 × 10−22 [−0.04, −0.027] 0 0.49 [−0.57, 0.27]

TS-CAN [37] 1 2.69 × 10−4 [0.006, 0.019] 0 0.56 [−0.38, 0.71]

EfficientPhys [38] 1 3.89 × 10−11 [0.017, 0.030] 0 0.11 [−1.28, 0.13]
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number of parameters and enable effective weight parameter 
sharing, leveraging temporal information correlations.

In summary, FM-FCN is an innovative approach to process-
ing physiological signals. Its smaller scale of model parameters, 
enhanced accuracy, and robustness renders it a promising 
method in the realm of rPPG and a potential tool in various 
physiological fields.

Conclusion and Future Works
The amplitude and morphology exhibiting periodicity are typi-
cal characteristics of physiological signals. The presence of 
noise is a key challenge that interferes with the extraction of 
physiological signals. In this work, we propose a novel FM-FCN 
that fuses classical signal processing theory with deep learning 
techniques, enabling FM-FCN to retain spatial extraction capa-
bilities while incorporating the fusion ability of temporal infor-
mation. The fusion of temporal information enhances the 
model’s resistance to noise interference. Specifically, by replacing 
fully connected layers with FCN, FM-FCN achieves parameter 
reduction and enhanced parameter sharing. Moreover, FCNs 
are better suited to capture the periodic characteristics of signals. 
By utilizing input data with a duration of at least twice the sig-
nal’s period and combining it with FM, FM-FCN effectively 

Table 9. Ablation study of FM-FCN on PURE.

Method

BVP HR

 MAE  SNR R  MAE  SD  LoA

FM-FCN 0.28 10.06 0.92 0.43 2.30 [−4.64, 4.54]
FM-CAN 0.46 5.32 0.82 0.68 3.16 [−6.46, 6.22]

FCN-CAN 0.43 6.01 0.84 0.65 3.17 [−6.45, 6.23]

DeepPhys (CAN) 0.58 3.29 0.72 1.10 5.52 [−11.29, 10.73]

Fig. 11. Overall performance ranking of different rPPG approaches.

Fig. 10. Performance improvements across various modules of the FM-FCN, demonstrated through enhancements in BVP MAE, HR MAE, BVP R, and HR SD. (A) The improvement 
of BVP MAE. (B) The improvement of HR MAE. (C) The improvement of BVP R. (D) The improvement of HR SD. Impr. is short for improvement.
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leverages temporal correlation and achieves higher-quality 
extraction of physiological signals. Experimental evaluations 
affirm that FM-FCN significantly improves BVP waveform 
extraction quality and HR accuracy across various datasets. 
Overall, FM-FCN, which comprehensively considers the peri-
odicity and temporal correlation of physiological signals by 
effectively fusing traditional signal processing technology with 
deep learning, holds promise as an important tool for process-
ing physiological periodic data.

In our future work, we will design a multitask network to 
simultaneously collect HR, breathing, and other variables. In 
addition, we plan to combine FM with other convolutional 
networks to maximize the utilization of temporal dimension 
information while minimizing parameter costs.

Methods
Overview of models
Classical-theory-based rPPG
The main steps of classical-theory-based rPPG are as follows: 
(a) face detection; (b) extraction of the region of interest (ROI), 
typically areas rich in capillaries; (c) signal preprocessing and 
color transform; (d) signal postprocessing and BVP signal recon-
struction; and, (e) eventually, estimation of vital signs signal. 
Verkruysse et al. [3] conducted a study on estimating HR using 
facial videos and validating its feasibility. However, the ROI was 
manually selected using bounding boxes. Poh et al. [11] intro-
duced an automatic BVP extraction technique that utilizes auto-
matic face tracking and BSS to decompose color channels into 
independent components, enabling automatic extraction of BVP 
signals from facial videos. Lewandowska et al. [30] achieved 
similar accuracy as ICA-based methods with lower computa-
tional complexity by extracting “pulse” components using prin-
cipal components analysis. Haan and Jeanne [27] developed 
chrominance-based rPPG methods that exploit color changes 
caused by blood flow. These methods outperformed BSS-based 
approaches in terms of accuracy. De Haan and Van Leest [31] 
proposed a technique to map the PPG image signals by linear 
combination of red–green–blue data. This mapping is designed 
to be orthogonal to motion-induced artifacts, resulting in supe-
rior motion robustness. Pilz et al. [15] leverage LGI to enhance 
HR estimation from facial videos in uncontrolled environments 
by introducing features invariant to local transformations, thus 
concentrating the blood volume signal energy distribution. These 
advancements have significantly contributed to the theoretical 
foundation and evolution of rPPG technology.

While classical-theory-based rPPG techniques have shown 
promising results under normal ambient light conditions, they 
may face challenges and limitations under complex conditions, 
such as noise interference and model limitations. These limita-
tions arise from the loss of critical information [6], leading to 
less accurate estimation of vital signs. Deep-learning-based 
methods provide an alternative approach to addressing these 
limitations and improving the quality of BVP waveforms for 
better estimation of vital signs.

Deep-learning-based rPPG
In recent years, there has been a growing interest in deep-
learning-based rPPG technologies. This can be attributed to 
the powerful capabilities of deep learning techniques in spatial 
decomposition, adaptive information extraction, and informa-
tion reconstruction [32,33].

By utilizing well-designed network models, deep learning 
algorithms have shown effectiveness in restoring high-quality 
BVP signals. Some notable examples include HR-CNN [34], 
which uses a 2-step CNN to extract the rPPG signal and then 
feeds it to a one-dimensional (1D) CNN for HR estimation. 
DeepPhys captures physiological motions in videos by calculat-
ing normalized frame differences based on the skin reflection 
model and improves motion estimation using attention from 
human appearance in neural networks [35]. PhysNet intro-
duces a 3D network that accurately recovers BVP signals from 
facial videos by considering temporal context [36]. TS-CAN 
leverages temporal shift modules (TSMs) to perform efficient 
temporal modeling and remove various sources of noise with-
out additional computational overhead [37]. EfficientPhys cre-
ates a preprocessing-free neural architecture that is simple to 
use and deploy, efficient on mobile devices, and accurate on 
settings with various types of noise [38].

BVP signal, being a temporal signal, serves as the foundation 
for extracting other vital sign signals. While CNN networks 
such as HR-CNN and DeepPhys excel at capturing spatial 
information and demonstrating robustness in different motion 
scenarios, they may be weak in incorporating temporal infor-
mation. However, the integration of temporal information is 
the crucial for accurate waveform reconstruction. PhysNet 
addresses this by incorporating temporal information through 
a 3D-CNN model, but this increases complexity and affects 
real-time performance. TS-CAN, on the other hand, reduces 
complexity while utilizing temporal information through TSM. 
However, its effectiveness lies in video action recognition using 
a random movement strategy, with limited improvement on 
extracting periodic physiological signals. EfficientPhys com-
prises both convolution-based and transformer-based models, 
achieving significant improvements in HR accuracy. The per-
formance of the transformer-based variant of EfficientPhys is 
not as robust as that of its convolution-based counterpart, 
largely due to a scarcity of pretraining data. Consequently, ref-
erences to EfficientPhys in subsequent experiments are specifi-
cally directed toward the convolution-based variant. However, 
it is important to note that all EfficientPhys variants incorporate 
temporal information across a limited frames through the TSM, 
which results in a constrained and arbitrary integration of tem-
poral data. In this work, we aim to develop a novel spatiotem-
poral network model for periodic physiological signals.

Spatiotemporal networks
Spatial and temporal information constitute 2 fundamental 
data types essential for understanding the real world [39,40]. 
Spatial data delineate the physical locations or positions of 
objects, facilitating the analysis of patterns, spatial relation-
ships, proximity, accessibility, and distributions. Conversely, 
temporal data offer insights into the timing of events and how 
phenomena change over time, pivotal for grasping processes, 
trends, and evolving patterns.

Deep learning has provided significant advantages in image 
spatial data processing tasks, such as texture filtering [41,42], 
image dehazing [43], and edge-preserving smoothing [44], 
among others [45]. This success has sparked increased interest 
in merging spatial and temporal data to bolster performance 
in video or sequential data tasks. Leading methodologies 
include 3D-CNNs [46], 2-stream network frameworks [16], 
LSTM networks [7], attention mechanisms [35], temporal rela-
tion network [47], and TSM [48]. Each method not only offers 
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distinct advantages but also comes with inherent limitations. 
For instance, while 3D-CNNs are adept at learning spatiotem-
poral features, they may be prone to overfitting or fail to con-
verge. Two-stream networks and attention mechanisms offer 
layered integration of spatial and temporal data, albeit confined 
to specific network locations. LSTMs are effective in processing 
temporal data but are complex to train and may falter with long-
term dependencies. Meanwhile, temporal relation network and 
TSM maintain lower complexity and adeptly map relationships 
within temporal sequences yet might not fully leverage signals’ 
inherent properties, like periodicity.

Physiological signals are characterized by gradual changes, 
periodic patterns, and repetitive morphology, presenting unique 
opportunities for signal extraction from interference-rich data. 
Classical signal processing techniques, which harness these 
time-domain characteristics, have been instrumental in isolat-
ing weak signals. This work aims to design an innovative spa-
tiotemporal network that marries classical signal processing 
with deep learning technologies, tailored for the efficient extrac-
tion of physiological signals.
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