
Zhu et al. 
Health Information Science and Systems            (2024) 12:8 
https://doi.org/10.1007/s13755-023-00268-1

RESEARCH

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. 

Health Information Science 
and Systems

MEAs‑Filter: a novel filter framework utilizing 
evolutionary algorithms for cardiovascular 
diseases diagnosis
Fangfang Zhu1,2, Ji Ding3, Xiang Li1, Yuer Lu4, Xiao Liu5, Frank Jiang5, Qi Zhao6*   , Honghong Su3* and 
Jianwei Shuai4* 

Abstract 

Cardiovascular disease management often involves adjusting medication dosage based on changes in electrocardio-
gram (ECG) signals’ waveform and rhythm. However, the diagnostic utility of ECG signals is often hindered by various 
types of noise interference. In this work, we propose a novel filter based on a multi-engine evolution framework 
named MEAs-Filter to address this issue. Our approach eliminates the need for predefined dimensions and allows 
adaptation to diverse ECG morphologies. By leveraging state-of-the-art optimization algorithms as evolution engine 
and incorporating prior information inputs from classical filters, MEAs-Filter achieves superior performance while 
minimizing order. We evaluate the effectiveness of MEAs-Filter on a real ECG database and compare it against com-
monly used filters such as the Butterworth, Chebyshev filters, and evolution algorithm-based (EA-based) filters. The 
experimental results indicate that MEAs-Filter outperforms other filters by achieving a reduction of approximately 30% 
to 60% in terms of the loss function compared to the other algorithms. In denoising experiments conducted on ECG 
waveforms across various scenarios, MEAs-Filter demonstrates an improvement of approximately 20% in signal-to-
noise (SNR) ratio and a 9% improvement in correlation. Moreover, it does not exhibit higher losses of the R-wave com-
pared to other filters. These findings highlight the potential of MEAs-Filter as a valuable tool for high-fidelity extraction 
of ECG signals, enabling accurate diagnosis in the field of cardiovascular diseases.
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Introduction
ECG waveforms serve as a computer-based tool for 
analyzing heart activity and diagnosing cardiovascular 
diseases [1], as well as providing valuable insights for 
determining medication recommendations [2, 3]. Accu-
rate analysis of ECG parameters, including RR intervals 
and clarity of the P wave, plays a pivotal role in assess-
ing heart recovery and guiding decisions regarding 

medication dosage. By closely examining these ECG fea-
tures, healthcare professionals can make well-informed 
decisions regarding the optimal dosage of cardiac-related 
drugs, thereby optimizing therapeutic outcomes for 
patients with cardiovascular diseases. Unfortunately, 
ECG signals are susceptible to corruption during the 
recording process due to various interferences, such 
as noise originating from electrical instruments, elec-
trode misplacement, electromyographic (EMG) noise, 
or muscle artifacts [4]. The presence of such interfer-
ence compromises the integrity of ECG, making accu-
rate interpretation of cardiac conditions challenging. For 
example, baseline drift distorts ST segments and other 
low-frequency components of ECG signals. The fre-
quency noise component of the power lines can cause 
distortion of ECG morphological features. EMG noise 
is distributed from 0.01 to 100  Hz and can cause local 

*Correspondence:  zhaoqi@lnu.edu.cn; suhonghong@tsinghua-zj.edu.cn; 
shuaijw@ucas.ac.cn
3 Yangtze Delta Region Institute of Tsinghua University, Zhejiang, 
Jiaxing 314006, China
4 Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, 
University of Chinese Academy of Sciences, Wenzhou 325001, China
6 School of Computer Science and Software Engineering, University 
of Science and Technology Liaoning, Anshan 114051, China
Full list of author information is available at the end of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s13755-023-00268-1&domain=pdf
http://orcid.org/0000-0001-9713-1864


Page 2 of 13Zhu et al. Health Information Science and Systems            (2024) 12:8 

waveform distortion of ECG signal. To mitigate this 
problem, filtering techniques for ECG signals have gained 
importance by aiming to suppress noise and enhance 
the characteristic waveforms present in ECG signals, 
ultimately improving the accuracy and reliability of car-
diovascular disease diagnosis and medication dosage 
recommendations.

There are three categories of common filters for 
denoising ECG signals: frequency domain-based filters, 
adaptive-based filters, and convolutional network-based 
filters. Adaptive-based filters, like Wiener filters [5] and 
Kalman filters [6, 7], are suitable for handling non-sta-
tionary signals with time-varying properties. However, 
they come with certain limitations related to the assumed 
noise topography, algorithm design, parameter selec-
tion, and data requirements. Convolutional network-
based filters [8, 9], on the other hand, can automatically 
learn the characteristics of noise through training data, 
allowing them to effectively filter out noise. However, 
this approach requires high-quality training data and 
well-designed models. Frequency domain-based filters, 
including finite impulse response (FIR) filters [10], infi-
nite impulse response (IIR) filters [11], wavelet filters 
[12], are commonly used and serve as basic filters that 
separate the signals of interest and better represent the 
time-domain waveform. Overall, frequency domain fil-
ters continue to be a fundamental and widely used tech-
nique for denoising ECG signals. Moreover, they play a 
vital role in signal processing for diverse engineering 
applications, including single-cell multiomics data analy-
sis [13], miRNA-lncRNA interaction prediction [14], and 
metabolite-disease association prediction [15]. Nota-
bly, FIR and IIR filters are particularly prominent in this 
regard.

In recent years, there has been an emergence of EA-
based filter design method as a new technology in the 
field [16]. This approach offers an alternative to tra-
ditional frequency-domain-based filters, such as But-
terworth and Chebyshev, which are designed using 
classic filter prototypes. Traditional filters such as the 
Butterworth filter exhibit small pass-band and stop-
band fluctuations but have a wide transition bandwidth. 
Conversely, Chebyshev has narrow transition bands, 
but suffer from large fluctuations in the pass-band and 
stop-band. EA-based filters leverage the evolutionary 
algorithm to optimize filter parameters and generate 
optimal filters with minimal order. These filters can be 
implemented using a variety of evolutionary algorithms, 
such as genetic algorithm (GA) [17], simulated annealing 
(SA) [18], ant colony optimization (ACO) [19], particle 
swarm optimization (PSO) [20, 21], artificial bee colony 
algorithm (ABC) [22, 23], symbiotic organisms search 
(SOS) [24], whale optimization (WO) [25], and others. 

However, it is important to note that these methods also 
have their own limitations. GA converges quickly but 
may easily get stuck in local optima and lacks effective 
local search abilities. PSO, WO, and SOS exhibit strong 
global search capabilities but are limited in terms of local 
fine search. ABC, on the other hand, is proficient in local 
fine search but has slow convergence. Additionally, while 
EA-based filter designs can improve performance, their 
improvement relative to classical filter design methods 
is restricted by the finite number of iterations and infi-
nite search space. Furthermore, most EA-based filters are 
designed for fixed-length optimization problems, mean-
ing that the filter order must be predetermined within 
a single optimization process, thus making it impracti-
cal to automatically find filters with the minimum order. 
Although a variable-length search method has been pro-
posed for the PSO algorithm in [21], it is not applicable 
to other evaluation algorithms.

To address these challenges and offer a valuable filter 
tool for disease diagnosis [26] and biological analysis [27, 
28], we propose a novel filter design framework called 
MEAs-Filter. This framework aims to provide the follow-
ing key contributions:

(1)	 Multi-engine evolution framework: MEAs-Filter 
utilizes state-of-the-art evolutionary algorithms 
as a powerful optimization engine to facilitate the 
design of filters. By integrating multiple evolution-
ary algorithms, each possessing unique strengths 
and advantages, MEAs-Filter aims to identify the 
most effective filter design ensuring optimal signal 
denoising.

(2)	 Incorporating prior information: MEAs-Filter takes 
advantage of prior knowledge in the form of classi-
cal filter prototypes, known noisy signals, and key 
filter metrics. By incorporating this prior informa-
tion, MEAs-Filter can significantly enhance perfor-
mance, surpassing a two-fold improvement.

(3)	 Variable-length optimization framework: This work 
introduces a variable-length optimization frame-
work that is compatible with various evolutionary 
algorithms. This approach allows for designing fil-
ters with specified performance requirements in 
the minimum order. The incorporation of variable-
length functionality enhances flexibility and adapt-
ability during the filter design process.

This paper is structured as follows. Section II provides 
a brief explanation of the characteristic waves of ECG 
and the filter theory. The latter part of Section II outlines 
the algorithm framework proposed in this work and dis-
cusses the filter performance metrics. Section III pre-
sents the experimental and analytical results obtained. In 
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Section IV, discussion is provided, and the final section 
concludes the paper.

Problems and methods
ECG denoising problem
ECG-based cardiac diagnosis has become a reliable and 
standardized technique, following Willem Einthoven’s 
initial extraction of the first clean ECG waveform [29]. 
The ECG waveform, as depicted in Fig. 1a, exhibits vari-
ous features such as the P wave, QRS width, and ST seg-
ment, which serve as indicators of cardiac health and 
play a pivotal role in medication dosage control for heart 
disease treatment. Acquisition of the ECG signal involves 
placing electrodes on specific points of the body, typi-
cally on the chest, limbs, or both, to detect the electrical 
signals generated by the heart during the depolarization 
and repolarization of each heartbeat. However, ECG 
recording equipment may inadvertently capture EMG 
noise that covers the frequency range of 0 to 300 Hz [30]. 
Moreover, power frequency noise from the power sup-
ply and surrounding electromagnetic fields can interfere 
with the ECG signal. This noise often manifests as small 
periodic ripples with frequencies of 50 Hz or 60 Hz. As 
shown in Fig.  1b, this noise can distort the ECG wave-
form, posing challenges for medical professionals in 
accurately extracting diagnostic information from ECG. 
Therefore, it is crucial to extract clear and high-fidelity 
ECG waveforms to ensure accurate diagnosis.

IIR filter formulation problem
The IIR filter operates on the principle of a recursive 
difference equation, where the current output sample 
(y(m)) is determined by the current and past input sam-
ples (x(m), x(m-1), …) and past output samples (y(m-
1), y(m-2), …). This relationship is illustrated in Fig.  2. 

Mathematically, the difference equation for an IIR filter 
can be expressed as follows:

where x(m) and y(m) are the discrete time series of the 
input and output signals, respectively. b and a are the for-
ward and feedback coefficients of the filter. L represents 
the order of the forward feedback coefficient. M repre-
sents the order of the feedback coefficient, equal to the 
order of the filter.

The transfer function of an IIR digital filter can be 
expressed as:

Due to the infinite length of the impulse response in 
ideal filters, achieving these filters in practice is not fea-
sible. Instead, our objective is to determine filter param-
eters that closely approximate the behavior of an ideal 
filter. Key parameters that play a crucial role in evaluating 
filter performance include pass-band ripple δp , stop-band 
ripple δs , and transition band width �ω . These parame-
ters quantify the extent to which the filter behaves within 

(1)y(m) =

L∑
i=0

bi × x(m− i)−
M∑
i=1

ai × y(m− i), M ≥ L

(2)H(z) =

M∑
j=0

bjz
−j/(1−

L∑
i=1

aiz
−i)

Fig. 1  ECG waveforms. a Clean ECG waveform. b ECG waveform with noise

Fig. 2  Diagram illustrating the structural configuration of a typical IIR 
filter with M = L
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the desired pass-band and stop-band regions, as well as 
the smoothness of the transition between them.

Taking a low-pass filter as an example, we can define δp , 
δs , and �ω using Eqs. (3)–(5), respectively.

where |H( jω )| denotes the magnitude of the frequency 
response at angular frequency ω , ωp and ωs are the pass-
band cutoff frequency and stop-band cutoff frequency, 
respectively.

When designing a filter, the goal is to find a solution 
(sol) that can meet δp , δs , ωp and ωs . This solution can be 
defined using Eq. (6).

MEAs‑Filter
MEAs-Filter proposed in this work comprises three main 
components: the input configuration, the optimization 
engine, and the result output. Figure 3a provides an illus-
tration of these components. The input configuration 

(3)1− δp ≤
∣∣H(jω)

∣∣ ≤ 1+ δp, |ω| ≤ ωc

(4)
∣∣H(jω)

∣∣ ≤ δs,ωs ≤ |ω| ≤ π

(5)�ω = ωs − ωp

(6)sol = [n, b0, b1, · · · , bM , a1, a2, · · · , aL]

incorporates pre-design information using classical 
methods like Butterworth and Chebyshev filters. It also 
includes a training dataset with mixed signals having 
known noise characteristics, which can be non-station-
ary or non-periodic noise signals. In addition, the input 
configuration specifies the target objectives for filter 
design. The optimization engine is composed of multi-
ple evolutionary algorithms, including PSO [31], ABC 
[22], SSA (sparrow search algorithm) [32], WO [25], and 
SOS [24]. These algorithms provide parallel searches to 
leverage their diverse strengths, such as global search, 
local search, and search efficiency. By utilizing these 
algorithms, a more optimal filter design can be achieved. 
The result output represents the filter design solutions 
obtained by the optimization engine based on the input 
configuration. Also, it should be noted that using multi-
ple engines and pre-designed filters by classical methods 
increases the computational complexity of the system. 
However, in filter design, finding the ideal filter is pri-
oritized over time and computational costs. Typically, 
filter design is conducted offline for specific scenarios 
and does not impact the real-time nature of the objec-
tive system. During online usage, as depicted in Fig. 3b, 
the mixed signal passes through an offline-designed filter 
based on the configuration specified in Fig. 3a. This filter 
effectively removes unwanted signals, resulting in a clean 
signal.

Fig. 3  Methodology Framework of MEAs-Filter. a Fiter designed by off-line system. b The designed filter work on an on-line objective system
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Overall, this methodology framework offers a system-
atic and efficient approach for filter design that effectively 
eliminates unwanted noise signals. It introduces a valua-
ble tool for healthcare professionals to acquire high-fidel-
ity ECG signals, thereby aiding in disease diagnosis.

Variable‑length method
In the field of signal processing, the order of a filter plays 
a crucial role. Higher order leads to increased compu-
tational complexity and latency. Hence, it is essential 
to design a filter with the minimum order necessary to 
meet the specified requirements. However, traditional 
evolutionary algorithms are designed primarily for prob-
lems with fixed dimensions. This section proposes a 
method that dynamically adjusts the dimensions of the 
solution to find the minimum dimension that satisfies 
the given condition. In filter design, the number of filter 
coefficients can be determined based on the filter order, 
which directly influences the solution’s dimension. By 
utilizing a mask model, a variable-length solution can 
be implemented. The mask model is used to extract the 
coefficients when evaluating the objective function or 

obtaining the optimal solution. However, during the 
search for the optimal solution, a fixed length is utilized.

Let us define the first parameter of the solution as the 
filter order, denoted by n. The value of n can be deter-
mined by Eq. (7).

where n represents the filter order, sol represents a candi-
date solution, round denotes the mathematical operation 
of rounding values to the nearest integer.

The forward coefficient a’s mask can be obtained by 
using Eq. (8).

(7)n = round(sol(1))

where Ma represents the mask used to extract the coeffi-
cient a from the solution sol, D denotes the dimension of 
the solution, and n represents the filter order.

The feedback coefficient b’s mask can be obtained by 
using Eq. (9).

where Mb represents the mask used to extract the coef-
ficient b from sol.

Then the solution for variable length problems can be 
defined as Eq. (10). This equation differs from Eq. (6) in 
that it includes reserved bits and utilizes a placeholder 
’---’. When calculating the objective function or output-
ting the optimal solution, Algorithm 1 converts the solu-
tion formatted with Eq. (10) to Eq. (6).

Algorithm 1  Mask-based conversion for variable length solutions

The proposed variable-length approach, as described in 
Algorithm 1, allows the search process of the algorithm 
to dynamically adopt to variable-length problem. When 
it is necessary to compute the objective function value, a 
mask model is employed to transform it into a candidate 
solution that meets specific conditions. This approach 
ensures that the search procedure of the algorithm aligns 
accurately with the calculation of the objective function. 
Additionally, this method has wide applicability and can 
be applied to almost all evolutionary algorithms for solv-
ing variable-length problems.

Objective functions
In MEAs-Filter, the objective functions are divided into 
two categories: one for achieving optimal filter perfor-
mance and the other for adaptive noise reduction.

(8)

Ma = [α1,α2, · · · ,αD], αi =

{
1, i ∈ [D/2+ 2,D/2+ n+ 1]

0, others

(9)

Mb = [β0,β1,β2, · · · ,βD], βi =

{
1, i ∈ [2, n+ 2]

0, others

(10)sol = [n, b0, b1, · · · , bM ,−−−, a1, a2, · · · , aL,−−−]
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Regarding filter performance, we consider three met-
rics: filter frequency response absolute error (FAE), δp 
and δs . They can be defined as follows.

where Hd(ωi) = 1 in pass-band, Hd(ωi) = 0 in stop-band, 
and �I denotes union of frequency bands of interest. �p 
and �s stand for pass-band and stop-band, respectively.

Regarding adaptive noise reduction, the following met-
rics are considered: frequency domain mean square error 
(FMSE), time domain mean square error (TMSE), and 
Pearson correlation (R). The definitions of these three 
metrics are provided below.

where xo and xd denote the original ECG signal and the 
denoised ECG signal, respectively. DFT denotes the dis-
crete Fourier transform of the signal x.

For the purpose of quantitative assessment, the objec-
tive function values are utilized to compare the perfor-
mance of the filter. Furthermore, we have incorporated 
the SNR improvement metric [33] and the rate of change 
of R-wave amplitude �Rpeak for evaluation purposes, 
stated as follows.

(11)FAE =
∑

ωi

|�H(ωi)� −Hd(ωi)|,ωi ∈ �I

(12)δp = max
ωi∈�p

(|�H(ωi)� −Hd(ωi)|)

(13)δs = max
ωi∈�s

(�H(ωi)�)

(14)TMSE =
1

N
×

N∑
i=1

(xo(i)− xd(i))
2

(15)

FMSE =
1

N
×

N∑
i=1

(DFT (xo(i))− DFT (xd(i)))
2

(16)R =

N ×

N∑
i=1

(xo(i)× xd(i))−
N∑
i=1

xo(i)×
N∑
i=1

xd(i)
√

N ×

N∑
i=1

xd(i)2 − (
N∑
i=1

xd(i))2 ×

√
N ×

N∑
i=1

xo(i)2 − (
N∑
i=1

xo(i))2

(17)�SNR = 10 log10




N�
i=1

|xn(i)− xo(i)|
2

N�
i=1

|xd(i)− xo(i)|2




(18)
�Rpeak = (Rpeak(filtered)− Rpeak (raw))/Rpeak(raw)

where xn refers to the noisy ECG signal, and 
Rpeak(filtered) refers to the amplitude of the R-wave after 
it has undergone filtering, and Rpeak(raw) denotes the 
amplitude of the R-wave in the original signal.

Experimental evaluation
To comprehensively evaluate the effectiveness of MEAs-
Filter, two independent experiments are conducted. The 
primary experiment aims to validate the advantages of 
MEAs-Filter in filter design and compares the perfor-
mance improvement of the output filter with classical 
methods. Additionally, an assessment is performed using 
the MIT-BIH arrhythmia database [34, 35] to examine 
the efficacy of the output filter in terms of noise reduc-
tion and fidelity as compared to classical filters. The ECG 
signals in this database are digitized at a rate of 360 sam-
ples per channel per second, with a resolution of 11 bits 
and a range of 10 millivolts. To generate noisy ECG sig-
nals, different frequency noise signals corresponding to 
the stop-band and transition band of the filter are intro-
duced into the original ECG signals. These noisy signals 
have varying SNRs. These experiments provide compre-
hensive insights into the effectiveness of MEAs-Filter. 
Furthermore, they demonstrate its ability to reduce noise 
and maintain fidelity compared to classical filters.

Validation of MEAs‑Filter
As mentioned above, the design and implementation of 
filters involve distinct procedures, with the design phase 
taking place offline. The primary objective is to develop 
high-quality filters, even if it requires additional compu-
tational time. In our work, we employ the conventional 
filter design method as a prior input for MEAs-Filter. 
Figure 4 presents a comparative analysis of three differ-
ent approaches: filters designed using the traditional 
method, filters designed using MEAs-Filter without prior 
input, and filters designed using MEAs-Filter with prior 
input. Notably, the objective function values for these 
approaches are recorded as 20.17, 20.8, and 8, respec-
tively. It is evident that the design outcome without prior 
input only marginally outperforms the performance 
achieved by the traditional filtering approach. However, 
when incorporating prior input into the design process, 
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a significant improvement in performance is witnessed, 
resulting in improvements exceeding twofold. This find-
ing underscores the advantageous effect of utilizing prior 
input in the MEAs-Filter, leading to more efficient and 
effective filtering outcomes. By leveraging prior knowl-
edge and information, MEAs-Filter demonstrates its abil-
ity to yield superior results.

To evaluate the robustness and sensitivity of differ-
ent methods, we employ various filters as optimiza-
tion objectives, including high-pass and low-pass filters 
with cutoff frequencies ranging from 0.2 to 0.8. Fig-
ure  5a displays the box plot for design bias when tar-
geting low-pass filters. It is evident that MEAs-Filter 
exhibits the narrowest box width, indicating its supe-
rior robustness. The median design bias associated 

with MEAs-Filter shows a reduction of approximately 
28% to 62% compared to the other algorithms, while 
the mean bias is reduced by approximately 28% to 59%. 
In Fig.  5b, the box plot for high-pass filters reveals a 
similar pattern, with MEAs-Filter demonstrating a nar-
rower box width and reductions of approximately 30% 
to 60% in both median and mean design bias. Ranking 
behind MEAs-Filter are SSA-filter and SOS-filter, they 
demonstrate narrow box widths but a considerable 
number of potential outliers. Moreover, their design 
bias is approximately 50% higher than that of MEAs-
Filter. These results clearly demonstrate that MEAs-Fil-
ter exhibits higher robustness and smaller design bias, 
confirming its capability to design filters that closely 
approach the ideal ones.

Fig. 4  Investigating the influence of prior inputs on filter performance. The red dashed line represents the objective function value of the filter 
designed by traditional methods. Each solid line represents an EA-based filter design. a SOS is selected as the output of MEAs-Filter without prior 
input. b SAA is selected as the output of MEAs-Filter with prior input

Fig. 5  Comprehensive analysis of various methods. a The objective function values obtained by different methods when the cutoff frequency from 
0.2 to 0.8 is taken at 0.1 intervals. b The objective function values obtained by different methods when the cut-off frequency of the high-pass filter is 
taken from 0.2 to 0.8 at the interval of 0.1
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Comparison of filters performance
The frequency response plot is a highly intuitive way to 
assess a filter’s performance, while the pole-zero plot pro-
vides insights into its stability. Figure  6a illustrates the 
frequency response plot, showing that the Butterworth-
based filter exhibits the smallest δp but the widest �ω . In 
contrast, the Chebyshev-based filter demonstrates the 
narrowest �ω but experiences the largest δp , particularly 
cheby08. Moreover, the results obtained from the top 
three evolutionary algorithms in MEAs-Filter surpass 
those of traditional methods. These algorithms achieve 
a favorable trade-off between δp , δs , and �ω . Figure  6b 

displays the pole-zero plot of the SSA-based filter (the 
top evolutionary algorithm in MEAs-Filter for this prob-
lem), revealing that all poles and zeros reside within the 
unit circle. This observation confirms the stability of 
MEAs-Filter.

Table 1 provides a comprehensive comparison of δp , δs 
and �ω for all filters. Among these filters, MEAs-Filter 
demonstrates minimal values for δp and δs measuring at 
0.8 and 0.09 respectively. Moreover, its �ω is significantly 
smaller compared to the Butterworth filter. Although the 
SSA-based filter (which is the output of MEAs-Filter) has 
a slightly wider ∆ω of 0.03 in comparison to cheby08, its 

Fig. 6  Frequency response. a Frequency response diagram. b Pole-zero plot. The filters Cheby01, Cheby04, and Cheby08 correspond to Chebyshev 
filters with maximum pass-band ripples of 1 dB, 4 dB, and 8 dB, respectively

Table 1  Quantitative analysis of filter performance

Bold values are pivotal in showcasing that the filter performance of the MEAs-filter design achieves a good balance in terms of transition band width, band 
fluctuation, and stopband attenuation, which are crucial for better recovery of physiological signals with specific characteristics

Sum(p) and Sum(s) represent the cumulative errors at each point of the filter’s amplitude-frequency response in the pass-band and stop-band, respectively. Similarly, 
Std(p) and Std(s) represent the standard deviation of errors at each point of the filter’s amplitude-frequency response in the pass-band and stop-band, respectively

Methods Algorithm δp δs Sum(p) Sum(s) Std(p) Std(s) �ω

Traditional methods Butterworth 0.099 0.095 1.037 1.66 0.018 0.02 0.16

cheby01 0.11 0.1 9.78 1.23 0.04 0.02 0.06

cheby04 0.37 0.1 36.87 1.05 0.13 0.02 0.04
cheby08 0.6 0.1 68.25 0.95 0.2 0.01 0.03

EA-based methods with Prior ABC 0.09 0.09 0.9 6.05 0.01 0.02 0.07

PSO 0.09 0.09 0.65 1.3 0.01 0.01 0.06

SOS 0.09 0.09 1.47 1.82 0.01 0.01 0.05
SSA 0.08 0.1 0.69 1.55 0.01 0.01 0.06

WOA 0.09 0.09 1.48 1.74 0.01 0.01 0.07

EA-based methods without Prior ABC 0.08 0.1 2.1 4.71 0.01 0.02 0.08

PSO 0.09 0.09 5.99 2.5 0.02 0.01 0.09

SOS 0.09 0.09 3.13 1.32 0.02 0.01 0.06

SSA 0.09 0.1 0.91 2.83 0.01 0.02 0.08

WOA 0.08 0.1 2.39 7.83 0.01 0.03 0.04
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δp is only 13% of that exhibited by cheby08, indicating an 
improvement of approximately 87%. In practical engi-
neering applications, large δp can result in an amplitude 
distortion of the original signal, which will be investi-
gated further in the subsequent experiment.

MEAs‑Filter for ECG denoising
In this section, we evaluate the effectiveness of MEAs-
Filter in processing ECG signals. Our evaluation consists 
of both a qualitative evaluation, where the filter is applied 
to a simulated ECG signal, and a quantitative assessment, 
where real ECG signals from the MIT-BIH arrhythmia 

database are subjected to varying levels of noise meas-
ured by SNR.

Figure 7a and b represent the simulated ECG signal and 
the ECG signal with added simulated noise, respectively. 
Figure  7c depicts the ECG signal post-processing with 
the Butterworth filter. The R-wave amplitude remains 
largely unaffected, however, the SNR is −  2.57  dB due 
to the filter’s limited ability to remove noise in the tran-
sition band. Moving on to Fig.  7d–f, the ECG signals 
processed using the Chebyshev filters exhibit SNRs of 
11.2  dB, 4.44  dB, and 1.64  dB respectively. The deploy-
ment of the Chebyshev filter effectively eliminates noise 
and enhances the SNR, resulting in a clear visualization 
of the R-wave. However, the larger δp causes a significant 

Fig. 7  Qualitative comparison of ECG denoising. a Simulated ECG without noise. b Corrupted ECG signal with added noise, where the SNR is 
− 20.36 dB. c Filtered ECG signal using Butterworth filters, output with a SNR of − 2.57 dB. d Filtered ECG signal using cheby01 filter, output with a 
SNR of 11.2 dB. e Filtered ECG signal using cheby04 filter, output with a SNR of 4.44 dB. f Filtered ECG signal using cheby08 filter, output with a SNR 
of 1.64 dB. g Filtered ECG signal using MEAs-Filter, output with a SNR of 27.04 dB
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distortion in the amplitude of the R-wave, resulting in a 
retention of only approximately half of its original ampli-
tude. In Fig.  7g, MEAs-Filter effectively balances δp and 
�ω , yielding an output SNR of 27.04  dB while main-
taining a consistent R-wave amplitude comparable to 
the original signal. It is evident that MEAs-Filter excels 
at extracting high-quality ECG signals from noisy ones, 
making it a highly promising foundation for subsequent 
disease diagnosis.

A quantitative comparative analysis experiment is con-
ducted using a real ECG signal obtained from MIT-BIH 
arrhythmia database. These ECGs can be categorized 
into four distinct classes: N (normal heartbeat), SVEB 
(supraventricular ectopic beat), VEB (ventricular ectopic 
beat), and F (fusion of ventricular and normal beat), 
representing different application scenarios. Denois-
ing experiments are then performed on each category to 
assess the performance of different filters. In the experi-
ment, white Gaussian noise and frequency domain noise 
are added to the ECG signal, resulting in a SNR ranging 
from −  15 dB to 10 dB. Figure 8 illustrates the restora-
tion level of denoised signals using different filters for 
various ECGs. The denoising effectiveness is evaluated 
based on three metrics: SNR improvement, R between 
denoised and original ECG waveforms, and �Rpeak val-
ues. Figure 8a to c, d to f, g to i, and j to l correspond to 
N, SVEB, VEB, and F categories, respectively. The results 
indicate that different algorithms exhibit similar perfor-
mance when applied to different categorized ECG sig-
nals. This can be attributed to the fact that these filters 
are specifically designed to target and eliminate specific 
types of noise, resulting in relatively stable and consist-
ent filter efficiency. However, as shown in Fig.  8a, d, g, 
and j, MEAs-Filter leads to a significant improvement in 
SNR compared to other filters. Notably, it demonstrates 
an approximately 20% improvement in SNR compared 
to the second-ranked Butterworth filter. Furthermore, 
Fig. 8b, e, h, and k illustrate that ECG waveform obtained 
through the implementation of MEAs-Filter consist-
ently exhibits a strong correlation with the original ECG 
waveform. Specifically, MEAs-Filter promises a 95% cor-
relation between the filtered waveform and the original 
waveform, an approximately 9% improvement compared 
to other filters. This favorable outcome can be attrib-
uted to the smaller δp and narrower �ω of MEAs-Filter. 
In contrast, the Butterworth filter, due to its wider �ω , 
fails to provide sufficient noise suppression and results in 
inferior improvements in SNR and waveform correlation 
metrics compared to the Chebyshev method and MEAs-
Filter. To evaluate the effectiveness of waveform restora-
tion, we calculate the rates of change of the R-wave peak 
amplitude. As depicted in Fig.  8c, f, i, and l, both the 
MEAs-Filter and the Butterworth filter, characterized by 

smaller δp , successfully preserve the integrity of the fil-
tered ECG signal with minimal distortion. On the other 
hand, the Chebyshev filter exhibits varying degrees of 
distortion on the R-wave amplitude owing to larger δp . 
Overall, the experimental analysis confirms the superior 
performance of MEAs-Filter in enhancing SNR, preserv-
ing waveform correlation, and maintaining high-fidelity 
ECG waveform across various ECG scenarios.

Discussion
Traditional filter design methods, such as Butterworth 
and Chebyshev, have limitations in achieving a balanced 
trade-off between pass-band ripple, stop-band attenua-
tion, and transition band width with a limited order. In 
contrast, MEAs-Filter introduces an effective filter design 
approach that leverages evolution algorithms along with 
prior information. This approach demonstrates effec-
tiveness in achieving balanced performance across three 
metrics while maintaining filter stability. Although adopt-
ing a multi-engine strategy and utilizing prior knowledge 
increase computational complexity and time during the 
offline filter design process, the primary objective is to 
obtain the most suitable filter. Therefore, MEAs-Filter in 
this work presents a novel and feasible solution.

The presence of pass-band ripple in a filter can lead to 
waveform distortion and variations in signal amplitude 
at different frequencies. Furthermore, a wider transi-
tion band can limit the filter’s ability to eliminate noise 
frequencies close to the signal frequencies, particularly 
if they fall within the transition band. Figures  7 and 8 
clearly depict these challenges. However, MEAs-Filter 
effectively addresses these issues by striking a balance 
between pass-band ripple, transition band width, and 
stop-band attenuation. As a result, it can remove noise 
while preserving the integrity of useful signals with 
high fidelity. This capability is crucial for accurately 
diagnosing cardiovascular diseases using ECG signals.

Conclusions
The proposed MEAs-Filter for designing filters using 
multi-evolutionary algorithms demonstrates promis-
ing results in effectively filtering noise signals and cap-
turing the desired ECG signal. By incorporating prior 
knowledge from traditional filter design methods and 
leveraging multi-engine technology, MEAs-Filter aims 
to achieve a harmonious balance between pass-band 
ripple, stop-band attenuation, and transition band 
width. The verification results obtained from ECG 
data sets indicate that the filters designed by MEAs-
Filter excel at reducing the distortion of the amplitude 
through minimal pass-band ripple while accurately 
eliminating unwanted periodic signals with narrow 
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transition bands. The findings underscore the poten-
tial of this design method in creating ideal filters that 
contribute to obtaining clearer and higher-fidelity ECG 
signals. MEAs-Filter can serve as valuable tools for 
clinical diagnosis and drug control, providing essential 
capabilities for ECG signal restoration.

However, there are still areas for further improve-
ment and research. First, the design of objective func-
tion determines whether the filter output meets the 
engineering requirements. Therefore, further research 
is needed to enhance the design of objective functions. 
Second, MEAs-Filter mainly focuses on improving tra-
ditional frequency filters, which have relatively limited 
capabilities in handling random noise. This aspect can 

Fig. 8  Quantitative comparison of ECG denoising using different filters in various scenarios. The categories N, SVEB, VEB, and F correspond to (a)–(c), 
(d)–(f), (g)–(i), and (j)–(l), respectively. Specifically, (a), (d), (g), and (j) demonstrate the improvement in SNR. (b), (e), (h), and (k) show the correlation 
coefficient (R) of ECG waveform between the filtered signal and the raw signal. Finally, (c), (f), (i), and (l) present the change in R-peak (∆Rpeak) after 
applying the filters
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be a key consideration for future research. Finally, the 
selection of evolutionary algorithms is also an impor-
tant area for future investigations as they determine the 
core engine of filter design.
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