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Abstract 
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cellular heterogeneity through high-
throughput analysis of individual cells. Nevertheless, challenges arise from prevalent sequencing dropout events and noise effects, 
impacting subsequent analyses. Here, we introduce a novel algorithm, Single-cell Gene Importance Ranking (scGIR), which utilizes 
a single-cell gene correlation network to evaluate gene importance. The algorithm transforms single-cell sequencing data into a 
robust gene correlation network through statistical independence, with correlation edges weighted by gene expression levels. We 
then constructed a random walk model on the resulting weighted gene correlation network to rank the importance of genes. Our 
analysis of gene importance using PageRank algorithm across nine authentic scRNA-seq datasets indicates that scGIR can effectively 
surmount technical noise, enabling the identification of cell types and inference of developmental trajectories. We demonstrated that 
the edges of gene correlation, weighted by expression, play a critical role in enhancing the algorithm’s performance. Our findings 
emphasize that scGIR outperforms in enhancing the clustering of cell subtypes, reverse identifying differentially expressed marker 
genes, and uncovering genes with potential differential importance. Overall, we proposed a promising method capable of extracting 
more information from single-cell RNA sequencing datasets, potentially shedding new lights on cellular processes and disease 
mechanisms. 

Keywords: single-cell RNA sequencing; heterogeneity analysis; gene expression weighted network; gene correlation network; gene 
importance 

INTRODUCTION 
Single-cell RNA sequencing (scRNA-seq) is a technology that mea-
sures RNA transcripts at the single-cell level, providing technical 
support for a more in-depth study of the heterogeneity and com-
plexity among individual cells [1–3]. scRNA-seq technology has 
revealed the composition of different cell types and functions in 
highly organized tissues, organs, or organisms. This advancement 
promotes research on complex diseases, development, and evo-
lution, offering broad prospects for maintaining human health 
[4, 5]. Developing effective analytical tools to extract information 
from scRNA-seq data can provide a high-resolution perspective 
on intercellular differences, including accurate identification of 
cell types, recognition of various expression patterns, and the 
discovery of potential biological mechanisms. These tools aid in 
gaining a better understanding of the function, specificity, and 
interactions of cells [6]. However, the sparse and noisy nature 
of single-cell sequencing data poses considerable challenges in 
extracting reliable and meaningful information. Currently, devel-
oping new tools to process single-cell sequencing data from a 
multidisciplinary perspective is a research focus in bioinformatics 
[7–9]. 

Traditional analysis tools that are based on single-cell 
gene expression matrix (GEM) have yielded fruitful results in 

downstream analyses, such as cell clustering analysis and 
developmental potential inference [10–13]. However, these tools 
have neglected the instability of raw expression data and the 
correlation between genes. The biological system is a highly 
complex non-linear system, and noise from both internal and 
external sources can lead to significant variations in gene 
expression in individual cells [14]. These variations might even 
result in cells executing entirely different fate decisions [15]. 
There is significant evidence that gene expression within cells 
is controlled by a precise signal transduction network [16]. 
Despite significant differences in gene expression among cells 
of the same type, their gene correlation networks are relatively 
stable [17]. Inferring gene correlation networks from gene 
expression data is an important research topic in the analysis 
of single-cell sequencing data [18–20]. Recent studies show 
that the network information within single-cell-specific gene 
correlation networks is effective for analyzing cell heterogeneity 
and complexity [17, 21]. However, relying solely on network 
information analysis from gene correlation networks may lead 
to the loss of some expression information. Therefore, there 
is an urgent need for a new analysis tool that simultaneously 
considers both gene network information and expression 
information.
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Table 1: Nine scRNA-seq datasets are used in this paper 

Datasets Number of Cells Number of Genes Cell Types Data Sources 

PBMC4k 4340 16 653 8 10X genomics 
Mouse bladder cells 2746 20 670 16 figshare.com 
Li 359 57 241 5 GSE81861 
Chu-time 1018 8700 7 GSE75748 
Gokce 705 18 840 10 GSE82187 
Chu-type 758 9600 6 GSE75748 
HND 483 8800 6 GSE102066 
Tasic 1634 24 057 23 GSE71585 
Trapnell 372 6600 4 GSE52529 

In this study, we proposed a single-cell sequencing data anal-
ysis tool, Single Cell Gene Importance Ranking (scGIR), based 
on complex network theory and page ranking algorithms. The 
model, constructed on complex network theory, uniquely inte-
grates gene expression information with gene correlation network 
data, creating a single-cell weighted gene correlation network 
for the first time. The scGIR model comprises three main mod-
ules: the gene correlation network construction module, the gene 
expression weighted module, and the importance ranking matrix 
construction module. The gene correlation network construc-
tion module infers the correlation between genes at the single-
cell level. The gene expression weighted module incorporates 
the expression information of gene nodes on the single-cell-
specific gene correlation network and converts them into edge 
weights. The importance matrix construction module establishes 
a random walk model on the single-cell weighted gene corre-
lation networks. Drawing inspiration from the classic web page 
ranking algorithm, this module introduces a weighted PageRank 
for the single-cell weighted gene correlation network [ 22]. scGIR 
effectively converts the single-cell GEM into a single-cell gene 
importance matrix (GIM), and the sizes of these two matrices 
are consistent. Finally, we illustrated the advantages of using 
GIM in the analysis of single-cell heterogeneity analysis. Compu-
tationally, GIM maintains a similar scale to GEM and does not 
introduce increased computational complexity. Leveraging the 
scGIR methodology enables a more refined examination of cellu-
lar subtypes, elucidating differences in gene correlation networks 
among these subtypes. Furthermore, scGIR has the capability to 
identify key genes with insignificantly differential expression at 
the network level, revealing richer systemic biological information 
within scRNA-seq datasets. Overall, scGIR proves to be an effective 
tool for accurately identifying cellular heterogeneity from vast 
amounts of single-cell sequencing data, contributing to a better 
understanding of the diversity of life phenomena and the intrica-
cies of cell development and evolution. 

MATERIALS AND METHODS 
Datasets 
In this study, we compiled nine scRNA-seq datasets from diverse 
species and tissues, gathering data from previous research 
projects and the National Center for Biotechnology Information 
database (Table 1) The  PBMC4k dataset of peripheral blood 
mononuclear cells comprises 4340 cells, including eight distinct 
cell types. The Mouse Bladder Cells dataset is sourced from the 
Mouse Cell Atlas, providing comprehensive gene expression 
data for nearly 50 distinct types of mouse cells, covering over 
0.4 million individual cells [23]. We selected a subset of 2746 
cells from mouse bladder tissue for heterogeneity analysis. The 
Li dataset results from scRNA-seq performed on 11 primary 

colorectal tumors and their corresponding normal mucosa, 
offering valuable insights into the transcriptional heterogeneity 
in colorectal tumors and their microenvironment [24]. The Chu-
time dataset encompasses 758 cells sampled at six distinct time 
points throughout the process of cellular differentiation, from 
human embryonic stem cells into qualitative endoderm cells 
[25]. The Gokce dataset comprises 705 cells of 10 different types, 
including immune cells, astrocytes, vascular cells, and neuron 
cells [26]. The Chu-type dataset is derived from lineage-specific 
progenitor cells obtained from human embryonic stem cells, 
consisting of 1018 cells belonging to seven different cell types 
[25]. The HND dataset comprises 483 cells at six different time 
points from human neuronal differentiation experiment [27]. The 
Tasic dataset comprises 49 transcriptionally cell types from the 
primary visual cortex of adult mice, covering 23 GABAergic, 19 
glutamatergic and 7 non-neuronal cell types. We selected only 
the GABAergic group for subsequent analyses [28]. The Trapnell 
dataset is obtained from primary adult myocytes and comprises 
372 cells belonging to four different cell types [29]. 

Data preprocessing 
scGIR is motivated by the fact that the reaction rate of genes 
or proteins molecular interactions in intracellular biochemical 
reactions are positively correlated with molecular concentration 
[30–33]. We proposed to weight the gene–gene correlation in 
scRNA-seq data based on gene expression levels and evaluate 
the importance of genes within single cells using the PageRank 
algorithm [22]. To construct a reliable single-cell gene correlation 
network, we must overcome the challenges posed by sparse and 
noisy single-cell sequencing data. Therefore, we preprocessed 
the scRNA-seq data by removing genes that are expressed in 
only a very small number of cells, and cells with abnormally low 
or high total gene expression levels [34]. We also performed a 
logarithmic transformation to the original gene expression data 
(Eorig.) in the sequencing data to reduce the degree of dispersion, as 
follows: 

E = log
(
Eorig. + 1

)
(1) 

To optimize the computational cost of constructing single-cell 
gene correlation networks and downstream analysis, we used fea-
ture extraction techniques to perform dimensionality reduction 
on the data. In this study, we selected the top 2000 highly variable 
genes from all scRNA-seq data and represented the data as a GEM 
(Figure 1A). 

Construction of single-cell gene correlation 
network 
Building upon the statistical independence assumption between 
two genes, the identification of correlation between gene pairs
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Figure 1. Schematic diagram of scGIR workflow. (A) The preprocessed single-cell GEM. (B) All cells were mapped onto a two-dimensional gene expression 
plane, and statistical independence was used to determine whether there was a correlation between any two genes across all cells. (C) Edges in the single-
cell gene correlation network were weighted by gene expression levels. (D) Construct random walk models on each of the weighted gene correlation 
networks for all single cells. (E) A single-cell GIM was obtained through a ranking algorithm. (F) Cellular heterogeneity was examined, and specific core 
gene correlation motifs for each cell type were inferred by analyzing the single-cell GIM. 

from the GIM and the construction of a single-cell gene correlation 
network have been subjects of prior research. [ 17]. As shown in 
Figure 1B, two genes i and j are arbitrarily selected from GIM, and 
all cells are mapped to the two-dimensional gene space. In cell 
k, the independence index of gene i and gene j is given by the 
following formula: 

ρk 
ij = 

nk 
ij 

nC 
− 

nk 
i 

nC 
· 

nk 
j 

nC 
(2) 

where ni 
k and nj 

k denote the number of cells in which the expres-
sion levels of gene i and gene j are close to that of cell k. nij 

k 

represents the number of cells in which the expression levels 

of both gene i and gene j are close to that of cell k, indicating 
the intersection of ni 

k and nj 
k. nC represents the total number of 

cells in GIM. The range of independence index ρ ij 
k is −1 to 1.  For  

simplicity, we fixed ni 
k and nj 

k at 0.1nC for all cells. When genes i 
and j are independent across all cells, it has been demonstrated 
that ρ ij follows an approximately standard normal distribution. 
The significance level, set consistently at 0.01 as the threshold, 
serves as the criterion for assessing the correlation between two 
genes within individual cells, aligning with previous relevant 
reports [17]. Cells falling within the rejection interval are deemed 
to lack correlation between the two genes, whereas cells within 
the acceptance interval are considered associated. By applying
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this criterion, we could extract nC single-cell gene correlation 
networks from the single-cell GEM. 

Gene expression weighted correlation 
The presence of a correlation between two genes suggests a 
potential for mutual regulation, and the expression levels of the 
genes are positively correlated with the weight of their correlation. 
The correlation weight of gene i to gene j in cell k is defined as 
follows: 

Wk 
ij = 

Ek 
i∑

m∈Lk 
j 

Ek 
m 

(3) 

where Ei 
k represents the expression level of gene i in cell k. Lj 

k rep-
resents the set of adjacent genes of gene j in the gene correlation 
network in cell k, and  Em 

k represents the expression level of gene 
j adjacent genes. The operation of expression-weighted trans-
formed the single-cell gene correlation networks into single-cell 
weighted gene correlation networks ( Figure 1C). It is imperative 
to clarify that our approach exclusively relies on pre-processed 
sequencing data to construct a single-cell weighted gene correla-
tion network, employing an unsupervised methodology. 

Ranking of gene importance 
PageRank algorithm has been widely employed to assess the 
significance of web pages on the Internet [35]. The algorithm relies 
on two fundamental assumptions: (i) the quantity assumption, 
which posits that a web page’s importance increases with the 
number of inbound links it receives from other web pages and 
(ii) the quality assumption, which suggests that when multiple 
high-quality web pages link to a particular web page, it signifies 
its importance. We employed PageRank algorithm to assess the 
importance of genes within single cells. In single-cell biology, the 
gene correlation network can be equivalently likened to the Inter-
net, with each gene functioning like a web page. The foundational 
assumptions of the PageRank algorithm are reasonably valid in 
single-cell analysis. Specifically, regulated by numerous others, 
are crucial, and genes connected to them are likely important 
as well. Assessing gene importance in single cells via the PageR-
ank algorithm involves constructing a random walk model on 
the gene correlation network. In the process of random walks, 
transitioning from the current gene node to the next gene node 
occurs randomly based on the correlative relationships within the 
network, unaffected by the previously traversed pathways. This 
aligns with the characteristics of a Markov process. Assuming 
equal probability for transitions between associated genes, the 
PageRank score is calculated using the following equation: 

PRk 
i = (

1 − d
) + d

∑

j∈Lk 
i 

PRk 
j 

Nk 
j 

(4) 

where PRi 
k represents the PageRank score of gene i in cell k. d 

is the dampening factor and is fixed to 0.85 [ 36]. Li 
k represents 

the set of neighbor-associated genes for gene i in cell k, and  Nj 
k 

denotes the number of genes in cell k that are associated with the 
presence of gene j. In this study, we constructed a random walk 
model for each single-cell gene’s weighted correlation network, 
and iteratively calculated the access probability of each gene node 
from the gene correlation network and its weights (Figure 1D). 
Unlike the conventional approach of assigning PageRank values 
based on node in-degree and out-degree, our approach considered 

the correlation weight for assigning PageRank values, detailed as 
follows: 

PRk 
i = (

1 − d
) + d

∑

j∈Lk 
i 

PRk 
j · Wk 

ji. (5)  

Employing a single-cell data-based weighted gene correlation 
network, we determined the importance index of each gene. This 
approach enabled us to develop a single-cell GIM, maintaining 
the original dimensions of the single-cell GEM (Figure 1E). Uti-
lizing a scRNA-seq data analysis algorithm, we used the GIM to 
reduce dimensionality, cluster cells for heterogeneity analysis, 
and discern core gene motif variations among different cell types 
(Figure 1F). 

RESULTS 
scGIR significantly improves cell type 
identification 
To validate the effectiveness of scGIR in analyzing scRNA-seq 
data, we performed non-linear dimensionality reduction (t-SNE) 
visualization on the GEM, gene correlation network degree matrix 
(NDM), and GIM of the nine datasets outlined in Table 1 [37]. The 
visualization results of the PBMC4k, Chu-type and Wang datasets 
are shown in Figure 2. Comparing the dimensionality reduction 
visualization results of the three matrices, we observed superior 
performance of the GIM generated by scGIR, which integrates both 
expression information and gene correlation network data. As 
shown in Figure 2, the GIM distinctly highlights the position of 
the eighth cell type in the PBMC4k dataset, providing a clearer 
separation of Shadow 1. After dimensionality reduction of the 
Chu-type dataset, GIM not only accurately identified different 
cell types but also separated different cell subtypes within the 
neural progenitor cell (NPC) cluster. Particularly, scGIR demon-
strates significant potential in the realm of generating cell lineage 
trajectories. In the analysis of the neuronal time-course differ-
entiation dataset (HND), GIM accurately predicted the develop-
mental states and trajectories of neuronal cells, as indicated by 
arrow 3 in Figure 2. Day 0 cells exhibit heightened differentiation 
potential, showcasing a significant distinction from cells in the 
later stages of differentiation. The GIM analysis reveals a distinct 
spatial separation of day 0 cells within the phase space com-
pared to their differentiated counterparts. And, GIM demonstrates 
high accuracy in identifying cell types at different differentiation 
states, and it accurately depicts the temporal continuity of cell 
state transitions during development. The dimensionality reduc-
tion visualizations for the remaining 6 datasets are presented in 
Figure S1. 

To quantify the effectiveness and universality of scGIR in 
analyzing cell heterogeneity in single-cell sequencing data, we 
applied seven distinct clustering methods to GEM, NDM, and GIM 
data across 9 datasets. Using the Adjusted Rand Index (ARI) as 
a conventional evaluation metric, we compared the clustering 
results against the original cell type labels [17, 21, 38]. The 
data presented in Table 2 indicates that GIM outperformed GEM 
and NDM on the majority datasets and clustering algorithms. 
These quantitative metrics provide compelling evidence that the 
scGIR algorithm, by integrating expression information and gene 
correlation networks, severs as a highly effective and reliable tool 
for the analysis of cell heterogeneity in scRNA-seq data.
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Figure 2. Comparison of GEM (left column), NDM (middle column), and GIM (right column) on non-linear dimensionality reduction (t-SNE) visualization 
for three typical datasets. Shadow-1 shows GIM’s improved ability to distinguish cell types in PBMC data. Shadow-2 shows improved identification of 
NPC subtypes in the Chu-type dataset. Arrow-3 highlights GIM’s improved inference of cell differentiation trajectories in the HND dataset. 

Gene expression-weighted is a key factor for 
improving scGIR performance 
To identify the critical role of gene expression-weighted modules, 
we conducted a comparative analysis between scGIR without 
gene expression weighting and scGIR incorporating weighted 
module influences. This comparison involved the application 
of 6 distinct clustering methods, assessing comprehensive 
performance across 9 scRNA-seq datasets. To mitigate potential 
instability in results due to randomness during the random 
walk process, we conducted 10 repeated measurements for each 
independent experiment. As depicted in Figure 3, the statistical 
results depicted in the box plots highlight the contribution of gene 
expression-weighted modules to enhancing the performance 
of scGIR to a certain extent. Removing the gene expression-
weighted modules resulted in a module importance ranking 
matrix that connects the single-cell-specific network (CSN), 
which is an unweighted graph. We used the original PageRank 
algorithm to calculate node importance instead of the weighted 

PageRank. The original PageRank algorithm involves a random 
walk through the directed graph, where the probability of 
visiting each node converges to a stationary distribution, and 
the stationary probability value of each node is output as its 
importance. This importance is not affected by edge weights, 
and therefore does not allocate different importance based 
on the weight of each neighboring node’s inbound link. GIM 
with gene expression-weighted exhibited strong compatibility 
with various clustering algorithms, showcasing higher average 
precision compared to its unweighted counterpart. 

Cellular heterogeneity from gene-level and 
network-level 
The single-cell GIM analysis of cellular heterogeneity is based 
on the mean importance of gene nodes in the weighted gene 
correlation networks of individual cell clusters, i.e., the mean 
importance. Based on average importance for the 7 labeled cell 
types in the Chu-type dataset, we generated a heatmap depicting
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Table 2: The comparison of GEM, NDM, and GIM in cluster analysis, with the highest score highlighted, as assessed by ARI 

Cluster 
Methods 

Matrix PBMC Mouse 
bladder cells 

Li Chu-time Gokce Chu-type HND Tasic Trapnell 

k-means GEM 0.74 0.42 0.10 0.64 0.70 0.75 0.39 0.24 0.14 
NDM 0.66 0.32 0.04 0.53 0.49 0.73 0.25 0.22 0.04 
GIM 0.76 0.45 0.13 0.68 0.76 0.76 0.62 0.27 0.21 

Hierarchical GEM 0.56 0.43 0.08 0.56 0.71 0.76 0.43 0.23 0.04 
NDM 0.53 0.34 0.05 0.52 0.60 0.80 0.27 0.23 0.07 
GIM 0.67 0.46 0.15 0.67 0.82 0.99 0.62 0.28 0.23 

k-means (t-SNE) GEM 0.48 0.42 0.09 0.70 0.45 0.96 0.45 0.24 0.14 
NDM 0.51 0.26 0.03 0.75 0.45 0.98 0.48 0.20 0.02 
GIM 0.52 0.41 0.11 0.73 0.43 0.99 0.26 0.26 0.22 

Hierarchical(t-SNE) GEM 0.45 0.46 0.09 0.57 0.45 0.97 0.43 0.27 0.14 
NDM 0.51 0.26 0.03 0.76 0.47 0.98 0.51 0.24 0.04 
GIM 0.58 0.42 0.12 0.83 0.48 0.99 0.23 0.27 0.21 

k-medoids GEM 0.38 0.31 0.09 0.62 0.26 0.65 0.39 0.24 0.14 
NDM 0.49 0.29 0.06 0.57 0.32 0.45 0.31 0.19 0.10 
GIM 0.50 0.44 0.15 0.46 0.25 0.69 0.53 0.24 0.18 

Spectral GEM 0.48 0.00 0.03 0.00 0.39 0.00 0.10 0.00 0.03 
NDM 0.63 0.14 0.08 0.48 0.54 0.77 0.01 0.00 0.01 
GIM 0.73 0.52 0.12 0.67 0.70 0.72 0.47 0.24 0.19 

Seurat GEM 0.40 0.52 0.03 0.54 0.41 0.88 0.65 0.24 0.13 
NDM 0.45 0.53 0.08 0.59 0.40 0.80 0.64 0.25 0.15 
GIM 0.61 0.56 0.12 0.65 0.48 0.97 0.65 0.29 0.22 

Figure 3. Performance comparison of scGIR methods with and without 
gene expression-weighted across 9 scRNA-sqe datasets. 

the top 10 highly variable genes ( Figure 4A), employing the 
Wilcoxon rank-sum test [39]. The t-SNE and k-means clustering 
were employed for visualizing the 7 cell clusters in the Chu-type 
dataset. UMAP and PCA are also extensively used to visualize 
gene expression data [40, 41]. The results of PCA and UMAP 
dimensionality reduction visualizations are depicted in Figure S2. 
In comparison, t-SNE is more suitable for analyzing cellular 
heterogeneity and discovering novel cell subtypes in the Chu-type 
dataset. We investigated the minimal gene combinations that 
could distinguish the 7 cell types, and a violin plot was used to 
display the average importance of the 7 labeled genes in each cell 
type (Figure 4B). Among these findings, gene UBE2L6 emerged as 
highly important in both trophoblast-like cells (TB) and definitive 
endoderm cells (DEC), while gene VCAN showed specificity with 
elevated importance in TB. VCAN encodes Versican, a protein 
belonging to the family of proteoglycans, and is a structurally 
complex macromolecule [42]. Versican plays an important role 
in trophoblast cells. Notably, genes COLEC12 in H1 human 

embryonic stem cells (H1) and H9 human embryonic stem cells 
(H9) displayed high importance, with gene RPS4Y1 showing 
specificity for high importance exclusively in H9. RPS4Y1, located 
on the Y chromosome, encodes the protein RPS4Y1, a component 
of the ribosome, the primary cellular organelle responsible 
for protein synthesis [43, 44]. As a Ribosomal protein, RPS4Y1 
collaborates with others to regulate the protein synthesis process. 
Furthermore, genes HDDC2, LIN28B and CD9 were specifically 
identified in endothelial cells (EC), human foreskin fibroblasts 
(HFF) and neural progenitor cells (NPC), respectively. 

To unveil the connections between known biological func-
tions and pathways derived from gene importance, the results 
of the top 10 highly variable gene importance across seventh 
cell clusters in the Chu-type dataset are depicted in Figures 4C 
and S3, as revealed through the Matespace Enrichment Analy-
sis [45]. The most important enrichment pathways for the gene 
importance in H1 cells are associated with sensory organ devel-
opment and blood vessel development. While the genes’ impor-
tance in H9 cells is related to the response to estradiol, pan-
creas development, blood vessel development, and growth factor 
response. 

The scGIR not only reveals differences in gene expression 
among different cell clusters but also identifies discrepancies in 
core gene network motifs among these clusters. Figure 5 shows 
a weighted correlation network of 14 marker genes across seven 
cell types in the Chu-type dataset, where the color and size of the 
nodes represent the degree of the nodes, and the color of the 
edges represents the correlation strength. The weighted marker 
gene correlation networks for DEC, H1 and H9 clusters exhibit 
greater complexity, while those for HFF and TB clusters are com-
paratively sparse. On one hand, cells with high differentiation 
potential appear to possess a more intricate gene regulatory 
network, as they necessitate the regulation of various genes at 
different developmental stages and under diverse environmental 
conditions to differentiate into various cell types. On the other 
hand, the complexity of a cell’s gene regulatory network also 
depends on the functions it needs to execute. The complexity
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Figure 4. Using the scGIR method to obtain cell heterogeneity and functional enrichment visualization of the GIM analysis of Chu-type dataset. (A) t-SNE 
dimensionality reduction visualizes seven cell clusters in the Chu-type dataset, and the heatmap shows the mean importance (MI) of the Top-10 marker 
genes obtained through the Wilcoxon rank-sum test for each cell cluster. (B) Visualization of marker genes for each cell cluster. (C) Gene Ontology 
biological processes analysis of the mean importance marker genes in H1 and H9 cell clusters. 

of the weighted gene correlation networks in EC cluster sur-
passes that of NPC cluster. EC constitute the primary components 
of blood vessels and lymphatic vessels, playing crucial roles in 
various physiological processes such as blood clotting, immune 
responses, and nutrient exchange. The gene correlation network 
of EC must be capable of responding to diverse physiological and 
pathological conditions to maintain the normal functionality of 
blood vessels [ 46]. Genes with high importance indices in each 
cell have a larger node degree and higher correlation weights with 
other genes (highlighted in yellow). Additionally, subtle variations 
in the weighted network of marked genes are underscored among 
different subtypes of NPC. In a holistic perspective, the network 

of subtype 1 appears to be sparser compared to subtype 2. When 
comparing individual gene nodes, apart from CD9, there are more 
neighboring genes around the E1F1AY in subtype 1, whereas in 
subtype 2, the COLEC2 exhibits a higher number of surrounding 
neighbor genes. 

Reverse identification of expression marker 
genes by GIM 
To reconcile the inconsistencies observed between the results of 
GEM and GIM analyses, we first identified marker genes with 
differential expression across distinct cell types employing GEM 
analysis, as presented in Figures S4 and S5. Subsequently, we
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Figure 5. Network analysis of marker genes for seven cell clusters in the Chu-type dataset, showing the gene correlation networks of different subtypes 
of NPC cells. The size of the nodes represents the degree, and the color of the edges represents the expression weight. 

selected the top highly variable gene from each cluster along 
with highly variable genes of significant importance from the 
previous section, as illustrated in Figure 6A. In the bubble plot, 
the average gene expression level is represented by the size of each 
point, while the average gene importance is indicated by the color. 
The outcomes revealed a negative correlation between expression 
level and importance metrics of marker genes obtained from both 
GIM and GEM analyses. Specifically, genes with higher expression 
levels exhibited lower importance, and vice versa. 

We projected the average expression level and average impor-
tance of all cell clusters onto a two-dimensional space, depicted 
in Figure 6B and S6. In  Figure 6B, importance marker genes in EC 
cell clusters were highlighted with blue dots, whereas expression 
marker genes were represented by red triangle dots. It is evi-
dent that importance marker genes are primarily concentrated 
in the upper left corner, while expression marker genes are pre-
dominantly located in the lower right corner. CER1 and NLRP2 
genes serve as marker genes for the expression levels of DEC 
and H9 cells, respectively. They are highly expressed in a specific 

manner within their respective cell clusters, but also exhibit low 
specificity and importance within these clusters. Conversely, CD9 
and RPS4Y1 genes act as importance marker genes for NPC and 
H9 cells, respectively. They are highly important and specific 
within their respective cell clusters, but also demonstrate low 
specificity and expression within these clusters. Overall, GIM not 
only identifies genes with high differences in importance within 
gene correlation networks but also serves as a tool to recognize 
marker genes for differential expression. 

GIM outperforms NDM in identifying ‘dark’ 
genes with higher precision 
If a gene cannot be distinguished as cell-specific based on its 
expression level but can be distinguished as cell-specific based 
on other indicators, it is referred to as a ‘Dark’ gene [17]. Here, 
we report the identification of two ‘Dark’ genes, SERPINB9 and 
TERF1, using GEM, as depicted in Figure 6A. The expression levels, 
degree centrality, and gene importance of SERPINB9 and TERF1 
were individually mapped onto the dimensionality reduction plot.
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Figure 6. Comparative analysis of expression marker genes and importance marker genes. (A) Visualization of 7 expression marker genes and 7 important 
marker genes. The size of the nodes represents the average expression level, and the color represents the average importance. (B) All genes in the EC 
cell cluster mapped onto a two-dimensional space based on expression and importance, with marker genes highlighted separately. (C) Performance of 
genes CER1, NLRP2, CD9 and RPS4Y1 in the t-SNE plot, with red and blue boxes colored by expression and importance, respectively. 

While the expression of SERPINB9 and TERF1 is relatively pro-
nounced in DEC and H1/9 clusters, their expression in other 
cell clusters should not be overlooked. The quantitative analysis 
of gene expression alone fails to elucidate the specific roles 
played by SERPINB9 and TERF1 in DEC and H1/9 clusters. HDM 
identified the degree centrality of SERPINB9 and TERF1 as nodes 
in the single-cell gene correlation networks. However, SERPINB9 
exhibited significant degree centrality in both DEC and EC, while 
TERF1 showed significant degree centrality in H1/9, DEC, EC, HFF, 
and TB. HDM was also unable to ascertain the specific roles of 
SERPINB9 and TERF1 in the DEC and H1/9 clusters. GIM, through 
assessing the gene importance of SERPINB9 and TERF1, reveals 
heightened specificity of SERPINB9 in DEC compared to other 
cell clusters. Additionally, TERF1 exhibits increased specificity in 
H1/9 when compared to other clusters. The protein encoded by 
SERPINB9 is a serine protease inhibitor, also known as Proteinase 
Inhibitor 9. On the other hand, the TERF1 gene encodes a protein 
known as telomere-binding protein, which serves as an inhibitor 
of telomerase throughout all stages of the cell cycle [ 47]. 

Weighted gene correlation networks that encompass both 
‘Dark’ and importance marker genes exhibit topological vari-
ations across seven cell clusters, as depicted in Figure 7B. 
The networks in highly efficient differentiated cells, including 
embryonic stem cells H1 and H9, are more intricate, featuring 
the key regulatory factor gene COLEC12, which encodes a C-type 

lectin family protein with a carbohydrate recognition domain. 
During cellular differentiation, the COLEC12 cell surface protein 
may play a role in intricate signal transduction processes. Notably, 
the gene COLEC12 is associated with dark genes such as SERPINB9 
and TERF1, which may be critical for regulating cell apoptosis and 
the cell cycle during embryonic development [48–50]. Conversely, 
in cells with lower differentiation efficiency such as HFF, the gene 
correlation network is sparser, and the degree of correlation of 
the COLEC12 gene is considerably reduced, while its correlation 
with cryptic genes is disconnected. 

DISCUSSION AND CONCLUSION 
Developing effective methods for accurately identifying single-
cell heterogeneity is a fundamental challenge in scRNA-seq data 
analysis. Here, scGIR provides a method for constructing the 
weighted gene correlation networks at the single-cell level. The 
scGIR constructs a gene correlation network in an unsupervised 
manner and subsequently performs downstream analyses based 
on a relatively stable gene correlation network. This approach 
effectively addresses the issue of high noise levels commonly 
encountered in scRNA-seq analysis. However, solely relying on 
gene correlation networks analysis will lose information regard-
ing gene expression representation to some extent. To address 
this limitation, we incorporated gene expression as correlation
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Figure 7. The comparative performance of GIM, NDM and GEM in identifying ‘Dark’ genes was evaluated on the Chu-type dataset. (A) The panels from 
left to right respectively depict the gene expression levels, network degree, and importance levels of SERPINB9 and TERF1. (B) The weighted correlation 
networks of ‘Dark’ genes and mark genes exhibit differential network sparsity across distinct cellular clusters. 

weights into the gene correlation network and determined gene 
importance indices in single cells by constructing a random walk 
model on the single-cell weighted gene correlation networks. 
scGIR transforms the single-cell GEM into a GIM, and the dimen-
sionality reduction visualization of nine datasets shows that the 
GIM could significantly improve cell heterogeneity analysis accu-
racy and discover new cell subtypes. 

The identification of key genes and regulatory factors, along 
with predicting their impact on gene regulatory networks using 
network-based approaches, is a crucial aspect of systems biology. 
Gene correlation networks represent intricate regulatory systems 
within cells that govern a multitude of physiological processes 
[18, 19, 51, 52]. Analyzing the topological structure and dynamic 

properties of gene correlation networks could reveal the stabil-
ity, controllability, and robustness of cellular systems. Here, we 
introduce expression information to represent gene correlation 
weights based on the single-cell gene correlation network, further 
enhancing the network’s expressive power. The scGIR method 
transforms the GEM into an importance matrix, which has dis-
tinct advantages in separating cell subtypes, adapting to various 
clustering methods, and identifying ‘Dark’ genes when compared 
with GEM and NDM. scGIR exhibits stronger information extrac-
tion capabilities for sc-seq data. 

In the regulation and determination of physiological processes, 
certain gene nodes positioned at the ‘hub’ of a gene network are 
of crucial importance [53–55]. ‘Hub’ genes, such as transcription
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factors, which may exhibit comparatively lower expression lev-
els, have been evidenced to possess a heightened capability to 
distinguish cellular states [56]. Transcription factors, constituting 
approximately 8% of the human genome, are associated with 
various diseases and phenotypes [57]. Furthermore, internally 
matured microRNAs, characterized by their short length and low 
expression levels, play a crucial role in governing development, 
metabolism, and immune responses [58]. This class of key ‘hub’ 
genes is often overlooked when relying solely on single-cell gene 
expression matrices for analysis due to their low expression lev-
els. However, through construction of single-cell weighted gene 
correlation networks and establishment of a random walk model, 
scGIR effectively identifies crucial ‘hub’ genes within the gene 
correlation network, potentially pivotal in cell fate determination. 
Illustrated in Figure 4B are these crucial ‘hub’ genes within seven 
cell clusters of the Chu-type dataset, pivotal in physiological pro-
cesses like ubiquitination modification, DNA repair, and immune 
response. Among them, LIN28B, belonging to the lin-28 family, 
features a cold shock domain and CCHC zinc finger domains, 
involved in maintaining embryonic stem cell pluripotency and 
linked to let-7 microRNA expression suppression [59]. Utilizing 
scGIR for disease-related scRNA-seq datasets promises to signif-
icantly enhance intelligent drug target prediction and screening 
efficiency [60–62]. 

In a previous study, Dai et al.[17] developed a CSN method that 
established a way to infer single-cell gene correlation networks 
from single-cell sequencing data. However, the basic assumption 
of the CSN method for obtaining NDM is that the more correlation 
edges a gene has, the more important it is, which obviously 
ignores the status of the ‘neighbor genes’ in the entire gene 
correlation network. Here, we weighted the correlation edges by 
gene expression levels and systematically evaluated the impor-
tance of genes in the single-cell gene correlation network using 
a random walk model. Through the exploration of ‘Dark’ genes, 
we demonstrated the significant advantages of the scGIR. The 
nine scRNA-seq datasets selected in this study include multiple 
temporally differentiated datasets. scGIR not only identifies cell 
heterogeneity at different time points but also exhibits good 
temporal consistency. This suggests the applicability of scGIR in 
predicting the developmental potential of single cells. 

Overall, the application of systems biology and complex 
network theory in the analysis of biological big data is becoming 
increasingly crucial, especially in identifying key genes and 
regulatory factors, as well as predicting their impact on cell fate 
decisions [63, 64]. The primary advantage of these approaches 
lies in their effectiveness in extracting intricate correlations from 
large-scale biological data, aiding in a better comprehension 
of the structure and functionality of gene regulatory networks. 
We identify inter-gene correlations from extensive scRNA-
seq data, assessing the significance of each gene node in the 
network through a random walk model. Differential analysis 
of gene importance across distinct cell clusters allows for the 
identification of crucial genes and regulatory factors in the 
network. The scGIR algorithm provides a systematic perspective 
for understanding the complexity of gene regulatory networks. 
However, scGIR still faces limitations and challenges in dealing 
with single-cell weighted gene correlation networks. These 
networks are vast and dynamic, with significant differences 
even between networks originating from two cells within the 
same cluster. Uncovering the dynamic characteristics of complex 
single-cell weighted gene correlation networks will be crucial in 
elucidating the mechanisms behind cell fate decisions. Moreover, 
scGIR represents just an initial exploration of integrating complex 

network and systems biology theories into the development 
of algorithms for scRNA-seq data analysis, yet to comprehen-
sively unveil the dynamic behaviors and regulatory strategies 
underlying single-cell weighted gene correlation networks. With 
advancements in sequencing technologies, the development of 
effective algorithms for analyzing single-cell multi-modal data 
and spatial transcriptomics data is imminent, where multi-
layered complex networks and multi-scale dynamic modeling 
may serve as a crucial breakthrough. 

Key Points 
• The novel tool, scGIR, leverages single-cell weighted gene 

correlation network analysis to assess cellular hetero-
geneity, effectively addressing the issue of gene expres-
sion instability caused by transcriptional amplification 
noise and dropout events. 

• scGIR algorithm performs random walks on the single-
cell weighted gene correlation network to evaluate the 
importance of genes by statistically assessing the prob-
ability of gene node visitations. 

• The dimensions of the gene importance matrix obtained 
from the scGIR algorithm align with those of the gene 
expression matrix, thereby avoiding an increase in the 
complexity of the analysis. 

• scGIR algorithm offers a dual perspective at both the 
gene and single-cell network levels, excelling in iden-
tifying ‘Hub’ genes, ‘Dark’ genes, and network sparsity 
within various cell types, thereby offering an enhanced 
understanding of cellular heterogeneity. 
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