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A B S T R A C T   

X-rays, commonly used in clinical settings, offer advantages such as low radiation and cost-efficiency. However, 
their limitation lies in the inability to distinctly visualize overlapping organs. In contrast, Computed Tomography 
(CT) scans provide a three-dimensional view, overcoming this drawback but at the expense of higher radiation 
doses and increased costs. Hence, from both the patient’s and hospital’s standpoints, there is substantial medical 
and practical value in attempting the reconstruction from two-dimensional X-ray images to three-dimensional CT 
images. In this paper, we introduce DP-GAN+B as a pioneering approach for transforming two-dimensional 
frontal and lateral lung X-rays into three-dimensional lung CT volumes. Our method innovatively employs 
depthwise separable convolutions instead of traditional convolutions and introduces vector and fusion loss for 
superior performance. Compared to prior models, DP-GAN+B significantly reduces the generator network pa
rameters by 21.104 M and the discriminator network parameters by 10.82 M, resulting in a total reduction of 
31.924 M (44.17%). Experimental results demonstrate that our network can effectively generate clinically 
relevant, high-quality CT images from X-ray data, presenting a promising solution for enhancing diagnostic 
imaging while mitigating cost and radiation concerns.   

1. Introduction 

After Wilhelm Rntgen’s discovery in 1895, X-rays became the most 
commonly used image technique in clinical practice as it offers a non- 
invasive view of the internal structures of the human body. However, 
their two-dimensional nature inevitably leads to the overlapping of or
gans in images. Computed Tomography (CT), by providing a three- 
dimensional perspective, effectively resolves this issue of information 
overlap caused by organ superimposition. A major concern in the use of 
X-ray and CT imaging is the associated radiation dose, which has im
plications for patient health. Past research indicates that a chest X-ray 
exposes the body to approximately 0.1 millisieverts (mSv) of radiation, 
while a standard CT chest scan administers about 7 mSv [1]. Thus, the 

radiation from X-ray procedures is significantly lower than that from CT 
scans, underscoring the practical importance of developing methods to 
reconstruct three-dimensional CT scans from two-dimensional X-ray 
images. 

In recent years, artificial intelligence has been widely used in many 
fields, including image processing [2] and bionics [3]. It has also pro
vided great opportunities and achieved promising results in biomedical 
applications, such as medical image segmentation [4–8], drug analysis 
[9], disease diagnosis and prediction [10–13], single-cell multi-omics 
data analysis [14], RNA-RNA interaction [15], RNA-protein interaction 
[16], proteomics research [17], and Gene/protein signaling networks 
[18]. However, reconstructing CT from X-rays remains a challenging 
task. The primary challenge in CT reconstruction from X-rays lies in the 
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inherent lack of depth information. This limitation significantly in
creases the complexity of the reconstruction process, particularly when 
the number of available X-ray images is limited, thus presenting sub
stantial challenges to the accuracy and efficacy of CT reconstruction 
methods. Recent studies have attempted to address this issue by incor
porating prior knowledge of human anatomy with advanced 
deep-learning models [19–25]. 

Earlier approaches utilized a 2D encoder-3D decoder structure to 
extract features from a single X-ray for CT reconstruction [20,23,25]. 
Henzler et al. [20] successfully reconstructed a complete 3D skull using 
X-rays from a single skull. Shen et al. [23] introduced PatReconNet, 
aiming to learn the feature space transformation between a single lung 
X-ray and 3D CT, generating the 3D CT volume from the single X-ray. 
However, relying on a single X-ray often leads to incomplete 
three-dimensional information [26], resulting in a considerably blurry 
effect in the three-dimensional reconstruction. Methods using multiple 
images tend to yield clearer results, but they also raise questions about 
the authenticity of the generated CT, potentially limiting their clinical 
application. 

Another challenge is the high computational cost due to complex 
encoder-decoder structures. Since the advent of deep convolutional 
neural networks, such as AlexNet [27], there has been a trend towards 
deeper networks for improved accuracy [28–30]. While enhancing the 
depth of a neural network facilitates more comprehensive feature 
extraction, the number of parameters of the deep learning model con
tinues to expand as the depth of the network increases. This not only 
adds to the complexity of the model but also imposes significant memory 
demands during training. Consequently, it elevates the training 
complexity threshold, leading to substantial resource utilization and 
raising the risk of overfitting, which are critical considerations in the 
model development process. 

In numerous medical applications, such as real-time diagnostics and 
telesurgery, there is a critical need for prompt task execution on plat
forms with limited computational capabilities. Overly complex network 
models are thus impractical for use in portable medical devices, which 
often face strict constraints in processing capacity. Consequently, there 
is a growing interest in the development of lightweight and efficient 
neural networks that can perform effectively within these computational 
limits. A notable innovation in this regard is the depthwise separable 
convolution, a technique employed in advanced models like Xception 
[31], MobileNets [32], and ShuffleNet [33]. This approach is instru
mental in designing networks that are both powerful and 
resource-efficient, catering to the needs of modern medical applications. 
Depthwise separable convolutions divide standard convolutions into 
depthwise convolutions and pointwise convolutions. This separation 
method significantly reduces the number of parameters in the model, 
making the network more lightweight, reducing the consumption of 
computing resources, and making it easier to deploy in hospitals. At the 
same time, in the 3D CT image reconstruction task, depthwise separable 
convolution processes spatial information and channel information 
respectively, which helps to better capture the spatial characteristics and 
channel correlation of 2D X-ray images and 3D CT images. This helps 
improve the model’s sensitivity to image structure and texture, thereby 
improving the accuracy of image reconstruction. 

In this work, we employ depthwise separable convolution to develop 
an efficient network structure for converting two-dimensional X-rays 
into three-dimensional CT scans. This approach significantly reduces the 
parameters in the model by 31.924 M (44.17%) through separating 
spatial and channel processing. Our aim is to develop compact, low- 
latency models for seamless integration with medical applications. To 
improve the accuracy of the generated CT scans, we introduce fusion 
loss and vector loss, ensuring high fidelity and texture similarity to 
actual CT scans. This method aligns with the diagnostic needs of clini
cians. Our contributions in this paper can be summarized as follows. 

1)We propose DP-GAN+B, a generative adversarial network, to 
reconstruct 3D CT volumes from 2D X-ray image. 
2)We employ depthwise separable convolution to achieve light
weight network. 
3)We propose fusion loss and vector loss to enhance the fidelity of 
generated CT images. 
4)We empirically show that DP-GAN+B can significantly improve 
the performance of 3D reconstruction. When compared against the 
baseline model, DP-GAN+B produces better results than SOTA 
methods on the LIDC_IDRI dataset and reduces the number of pa
rameters by 44.17%. 

This article is organized as follows: Section 2 reviews related work, 
Section 3 details our proposed model DP-GAN+B, Section 4 discusses 
the loss function, Section 5 presents experimental results on LIDC-IDRI 
datasets and a detailed discussion, Section 6 discusses clinical applica
tions, and Section 7 concludes the article. 

2. Related work 

In this section, we introduce previous related work, including the 3D 
reconstruction from single images, the 3D reconstruction from X-rays 
and Lightweight network. 

2.1. The 3D reconstruction from single images 

The task of reconstructing 3D volumes from single images, while 
challenging, is crucial for various practical applications. Humans have 
the unique ability to intuit 3D shapes from a single image, drawing on 
their prior knowledge and visual experience of the 3D world. Research 
in this area is predominantly focused on voxel-based reconstruction and 
point cloud reconstruction methods. 

There has been considerable research focused on voxel-based 
reconstruction [34–36]. In these studies, 2D convolutional neural net
works are typically employed to encode shape knowledge into vector 
representations, while 3D convolutional neural networks decode these 
into 3D object shapes [34]. Neubert Boris et al. [35] explored density 
estimation of 2D image projections using voxel values for guiding 3D 
reconstruction. Similarly, Tulsiani et al. [36] worked on integrating 
attitude estimation networks with 3D object voxel prediction for effec
tive 3D reconstruction. However, voxel-based methods encounter 
computational challenges at high resolutions. To solve this problem, Fan 
et al. [37] introduced a point cloud-based 3D reconstruction represen
tation as an alternative approach. Yotam Livny et al. [38] used a series of 
global optimizations to reconstruct the skeleton structure from tree 
point clouds. 

These methods, while adept at reconstructing object surfaces, often 
fall short in detailing internal structures, thus limiting their applicability 
in clinical diagnostics. Methods for extracting 3D models from X-rays, 
which can penetrate most objects and produce layered 2D images, vary 
significantly from voxel and point cloud techniques and hold more 
clinical relevance. 

2.2. The 3D reconstruction from X-rays 

Recent studies have investigated the use of statistical models in 
conjunction with X-rays for 3D reconstruction. Aubert et al. [39] 
introduced a novel approach for the 3D reconstruction of rib cages from 
bi-planar radiographs using statistical parametric modeling. With some 
manual adjustments, the alignment between the generated results and 
original images can be further refined. Similarly, another study [40] 
employed a 3D statistical shape model of the rib cage, which is adapted 
to individual 2D projections. Lamecker et al. [41] developed a technique 
to reconstruct 3D shapes from X-rays, using3D statistical shape models 
combined with an algorithm that optimizes a similarity measure 
accessing the differences between projections of the reconstruction 
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results and the actual X-ray images. These approaches utilize the known 
general shape of the rib cage and lungs for reconstruction. Koehler et al. 
[42] harnessed expert knowledge and anatomical insights to convert 
basic 3D templates into detailed models of these structures. Despite their 
innovation, such methods typically fall short of producing CT-like 3D 
volumes, which may limit their clinical utility. This highlights the need 
for techniques that can generate more detailed and clinically applicable 
3D reconstructions. 

To address existing challenges in medical imaging, the utilization of 
convolutional neural networks (CNNs) for three-dimensional recon
struction has gained prominence in the field [19–24]. Through convo
lution operations, convolutional neural networks adeptly extract and 
learn features from X-ray images. Notably, study [24] utilized an X-ray 
sinogram as input, a format not discernible to the human eye. Shen et al. 
[23] innovatively adjusted feature dimensions from X-rays to construct 
CT volumes. Henzler et al. [20] employed ResNet for extracting features 
from a single skull X-ray, achieving three-dimensional reconstruction. 
This approach used a single X-ray for CT reconstruction, employing 
traditional convolutions in both encoder and decoder components. 
X2Teeth [22] developed a novel ConvNet, reconstructing 
three-dimensional teeth from a single panoramic radiograph of cavities. 
This ConvNet comprises three CNN-based subnets. Further, Megumi 
Nalao et al. [43] combined CNNs for feature extraction from 

two-dimensional images with Graph neural networks [44] for learning 
mesh deformation, generating three-dimensional kidney meshes. 
Research [21] introduced an end-to-end CNN method for reconstructing 
knee bones from bi-planar X-rays, using a hop-connected network be
tween the encoder and decoder. Tan et al. [45] proposed a lightweight 
CNN feature fusion network for lung CT reconstruction, demonstrating 
the broad applicability of CNNs in medical imaging. 

In 2014, following the invention of generative adversarial networks 
(GAN) [46] by Goodfellow, GANs emerged as one of the most significant 
architectures in machine learning. Unlike CNNs, a GAN comprises two 
neural networks: a generator and a discriminator. The generator 
network uses random signals to create synthetic outputs, which are then 
assessed by the discriminator network against real data. GANs are 
extensively used in image processing, notably in converting 
low-resolution images to high-resolution [47,48], image-to-image 
translation [49], medical samples augmentation [50], medical image 
segmentation [51], disease diagnosis [52], etc. They also have signifi
cant applications in 3D X-ray reconstruction [53–55]. Projects like 
Oral-3D [54] and spine structure reconstructions [55] have utilized 
densely connected networks in the generator for feature extraction, with 
a hop-connected architecture linking the encoder and decoder. Studies 
[53] have demonstrated GANs’ potential in improving abdominal 
anomaly predictions from orthogonal X-ray derived CT scans. 

Fig. 1. Input of bi-planar X-ray images. (a) Frontal X-ray in public datasets. (b) Lateral X-ray in public datasets. (c) Frontal X-ray in hospital datasets. (d) Lateral X-ray 
in hospital datasets. 

Fig. 2. Overview of DP-GAN+B 3D generator Architecture.  
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X2CT-GAN [25] innovatively applies this for lung reconstruction, using 
a 3D generator and discriminator for authenticating CT reconstructions. 
However, the reliance on deep networks for feature extraction can lead 
to redundancy in the model. 

2.3. Lightweight network 

Optimizing neural network structures for a balance between 
parameter efficiency and performance is a key research area. Since 
AlexNet [27], convolutional neural networks have become popular 
among researchers. However, increasing network depth often leads to 
challenges like gradient vanishing. Balancing parameter efficiency and 
performance in neural network structures is a crucial research focus. 
Laurent Sifre’s invention of depthwise separable convolutions [56] was 
a breakthrough in addressing these issues. This innovation, inspired by 
the Transformation-invariant scattering theory by Sifre and Mallat [56, 
57], was integrated into AlexNet during Sifre’s internship at Google. It 
resulted in improved accuracy, enhanced speed, and reduced model size, 
offering a promising solution to the existing problems in deep neural 
networks. 

MobileNetV1 [32] utilized depthwise separable convolutions to 
create a lightweight neural network, achieving only 1% reduction in 
accuracy compared to ImageNet with significantly fewer parameters. 
This approach was also adopted in Inception models [58,59] to reduce 
computations in initial layers. The Xception network [31] further 
refined this by replacing Inception modules with depthwise separable 
convolutions, maintaining parameter count while enhancing perfor
mance. This method reduces parameters by separating spatial filtering 
from feature generation, defined as depthwise convolution for spatial 
filtering and 1x1 pointwise convolution for feature generation. 

In summary, the current 3D reconstruction technology based on 
neural networks still has problems such as model redundancy and 
ambiguous reconstruction results, which lead to low clinical feasibility. 
In order to solve these problems, we design our model based on the 
lightweight model. The specific model design is shown below. 

3. DP-GANþB: the depthwise separable convolution-based 
network for generating CT volumes 

In this section, the network designed for 3D CT reconstruction from 
2D bi-planar X-rays is presented. The input, as shown in Fig. 1, consists 
of bi-planar X-ray images. 

Our model, drawing inspiration from X2CT-GAN+B [25], features 
both 3D generator and 3D discriminator architectures. These two com
ponents interact crucially in creating CT reconstructions. The process 
involves using two 2D X-ray projection images as input and aims to 

produce 3D CT volumes. The network follows an encoder-decoder 
structure, where extracted features are integrated and processed 
through a novel sampling decoder to yield the final 3D CT output. 

Fig. 2 provides a detailed overview of our generator network. This 
network is composed of encoder blocks, decoder blocks, transition 
blocks, and fusion blocks. In the diagram, the circle marked ’C’ denotes 
the concatenate operation, and the circle marked ’A’ represents a 
combination of concatenate operation and Transition-C. Our network’s 
architecture is built around an encoder-transition-decoder structure. 
Initially, the encoder section takes in front and lateral X-ray images. 
Subsequent to the encoder, a series of blocks are employed to adjust 
feature dimensions, which then lead into the decoder blocks. The pri
mary objective of our network is to effectively translate the 2D X-ray 
inputs in feature space into the desired 3D CT volume. By utilizing two 
parallel encoder-transition-decoder networks, our model incorporates a 
feature fusion module. This module is integral in reconstructing the 3D 
CT volume, as it synthesizes the bi-planar information from both 
encoder-decoder networks. 

Fig. 3 illustrates the transition architectures and the discriminator 
network, including Transition-A, Transition-B, and 3D Discriminator. In 
the following section, we will introduce the generator (including 
encoder blocks, transition blocks, decoder blocks, and fusion blocks), 
and the discriminator. 

3.1. Encoder 

Each encoder block in our design comprises a down block, a Den
seNet block, and a compressed block. Dense connections, a hallmark of 
DenseNet [60], are crucial for facilitating feature extraction across 
network layers. We have integrated a DenseNet architecture in the 
encoder to harness the full potential of information extracted from X-ray 
inputs. The encoder is structured into a 5-layer network, with each layer 
containing a specific number of depthwise separable layers (6, 12, 24, 
16, and 6, respectively) and a progressive increase in channels by 32. 
The down block consists of an Instance Normalization (IN) layer, a 
Rectified Linear Unit (ReLU) layer, and a depthwise separable convo
lution layer with a stride of 2. In the compressed block, there is an IN 
layer, a ReLU layer, and a depthwise separable convolutional layer with 
halved channels. Moreover, our architecture adopts a cascading 
approach where features extracted layer by layer are transmitted to the 
decoder network through skip connections, ensuring efficient feature 
transmission to the decoder network and minimizing feature loss 
throughout the process. 

Fig. 3. Overview of DP-GAN+B transition architectures and 3D discriminator architecture. (a) Transition-A. (b) Transition-B. (c) 3D discriminator.  
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3.2. Transition 

In our network’s Transition section, three distinct blocks are utilized 
to map 2D to 3D features. Initially, the Transition-A block is responsible 
for transforming 2D features into 3D. To connect with the encoder 
network effectively, the Transition-B block is then used for converting 
encoder features into inputs suitable for the decoder. Finally, the 
Transition-C block plays a crucial role in enabling feature fusion within 
the parallel encoder-transition-decoder structure, ensuring seamless 
integration of features for accurate 3D reconstruction. As demonstrated 
in Fig. 3 (a), the Transition-A block orchestrates the progression of two- 
dimensional features through a sequence comprising a Fully Connected 
layer, a Dropout layer, and a ReLU layer. This process refines the vector, 
which is then transformed into a three-dimensional form via the view() 
function in pytorch. 

In the context of the Transition-B block, depicted in Fig. 3 (b), the 
procedure involves channeling the two-dimensional features through a 
Convolutional 2D layer with a kernel size of 1, an IN layer, and a ReLU 
layer. Following this, the expand() function in pytorch augments the 
two-dimensional vector into a three-dimensional structure. This 
enhanced three-dimensional feature subsequently undergoes processing 
through a depthwise convolution layer (kernel size=3), a pointwise 
convolution layer (kernel size=1), an IN layer, and a ReLU layer, which 
collectively prepare the feature for input into the decoder. The spatial 
distribution of the features yielded by the Transition-A and Transition-B 
blocks, termed Feature A, is contingent on the input being a frontal X- 
ray. Conversely, if a lateral X-ray is used as input, the resultant spatial 
feature distribution is referred to as Feature B. 

In the Transition-C block, the parallel encoder-transition-decoder 
network necessitates the amalgamation of the extracted features. To 
facilitate this, the three-dimensional vectors are aligned into a uniform 
coordinate space. Following alignment, an averaging method is 
employed to fuse the three-dimensional features. 

To encapsulate, the fundamental roles of Transition-A and 
Transition-B are to evolve two-dimensional features into a three- 
dimensional framework. Transition-C, on the other hand, is respon
sible for aligning Feature A and Feature B within the same coordinate 
space and subsequently averaging these features through an additive 
process. 

3.3. Decoder 

In the decoder block, the architecture incorporates an initial feature 
up block followed by four decoder blocks. This design mirrors the 
encoder network’s approach, specifically in its application of depthwise 
separable convolution for effective feature extraction. Each decoder 
block is comprised of two distinct layers, both of which are three- 
dimensional depthwise separable convolution layers. Delving into the 
structural details, each three-dimensional depthwise separable convo
lution layer is constituted by a depthwise convolution layer with a 
kernel size of 3, a pointwise convolution layer with a kernel size of 1, an 
IN layer, and a ReLU layer. Furthermore, the termination of each 
decoder block is marked by an ’up’ block. This up block is configured 
with a depthwise convolution layer (kernel size=3), a pointwise 
convolution layer (kernel size=1), an IN layer, and a ReLU layer, tasked 
with the upscaling of features. In alignment with the encoder network’s 
framework, the extracted features at each layer are methodically 
channeled to the decoder network through the Transition-B block. The 
integration of features from the encoder with those continuously 
transmitted through the network is achieved using a concatenate oper
ation. This operation ensures that post-merging, the amalgamated fea
tures persist in their propagation through the network’s subsequent 
layers, maintaining a streamlined and efficient feature processing 
pipeline. 

3.4. Feature fusion 

It is crucial to acknowledge that features generated by distinct X-ray 
sources can display varying spatial arrangements. To address this vari
ability and ensure uniformity in spatial arrangement prior to the fusion 
operation, we introduce connect A into our architecture. Connect A 
encompasses the Transition-C block followed by a concatenate opera
tion. This configuration is instrumental in aligning the spatial arrange
ments of features from different sources, thereby facilitating a seamless 
integration. Parallel to this process, the decoder block executes a sys
tematic up-sampling of the three-dimensional features on a layer-by- 
layer basis. This meticulous up-sampling is integral to the progression 
of the features through the decoder block, ultimately culminating in the 
generation of the final CT image. 

3.5. Discriminator 

In our 3D discriminator, we employ Phillip’s 3DPatchDiscriminator 
[58] as the foundational model. The discriminator begins with Block1, 
which is composed of a depthwise convolution layer with a kernel size of 
4, followed by a pointwise convolution layer with a kernel size of 1, and 
concluding with a Leaky Rectified Linear Unit (Leaky ReLU) layer. This 
initial block sets the stage for feature extraction and preliminary 
processing. 

Following Block1, the discriminator’s architecture includes a 
sequence of three Block2 structures. Each of these Block2 units is simi
larly configured, containing a depthwise convolution layer with a kernel 
size of 4, a pointwise convolution layer with a kernel size of 1, an IN 
layer, and a Leaky ReLU layer. The progression of the discriminator 
culminates in Block3. This final block is comprised of a depthwise 
convolution layer with a kernel size of 4, and a pointwise convolution 
layer with a kernel size of 1. The configuration of Block3 serves as the 
concluding stage of feature processing within the discriminator. The 
entire structure of the 3D discriminator, encompassing Block1, the three 
iterations of Block2, and Block3, is detailed and visualized in Fig. 3 (c). 

In general, the encoder blocks in X-ray image processing are 
responsible for extracting features that will be used in subsequent pro
cesses. The Transition-A and Transition-B blocks convert the feature 
dimensions from two to three dimensions. Transition-C and Connect A 
implement feature fusion in a parallel network architecture. The 
decoder blocks generate the final three-dimensional volume by pro
gressively upsampling the three-dimensional vector. All these blocks, 
including the encoders, transition blocks, fusion blocks, and decoders, 
constitute the generator. The discriminator uses a loss function to 
constrain the generated three-dimensional volume to ensure that the 
generated results are similar to the actual results. 

4. Loss functions 

In this section, we outline the loss functions utilized for constraining 
the proposed network. The composite loss function includes four com
ponents: adversarial loss, projection loss, and our specially developed 
fusion loss and vector loss. These components collectively guide and 
optimize the network’s performance. 

4.1. Adversarial loss 

The learning process in a generative adversarial network (GAN) is 
analogous to the interaction between a counterfeiter, represented by the 
Generator D, and a policeman, represented by the Discriminator G. The 
Generator D aims to produce realistic fake data to fool the Discriminator 
G, while the Discriminator tries to distinguish between real and fake 
data. The goal is to reach a state of Nash Equilibrium, where the 
Generator creates data indistinguishable from real data, making it 
difficult for the Discriminator to differentiate. The mini-max game be
tween generator D and discriminator G can be expressed mathematically 
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by the following formula [46]: 

min
G

max
D

V(G,D)=Ex∼pdata [log D(x)] + Ez∼noise[log(1 − D(G(z)))] (1)  

where z is sampled from noise distribution. 
The conventional GAN assumes the discriminator to be a classifier 

with a sigmoid cross-entropy loss function. However, this loss function 
may cause the vanishing gradient problem during the learning process. 
To overcome this issue, we use the Least Squares Generative Adversarial 
Network (LSGAN) [61] in this paper. LSGAN adopts the least squares 
loss function as the discriminator, which has two advantages over con
ventional GAN. First, LSGAN generates higher quality images. Second, it 
performs more stably during the learning process. LSGAN is deemed 
more suitable for our task. 

We use the loss function of LSGAN with the following expressions: 

LLSGAN(D) =
1
2

[
Ey∼p(CT)(D(y|x) − 1 )2

+ Ex∼p(Xray)(D(G(x)|x ) − 0 )2
]

(2)  

LLSGAN(G)=
1
2

[
Ex∼p(Xray)(D(G(x)|x) − 1)2

]
(3)  

where x is the input of two synthetic X-rays and y is the reconstructed 
CT. Discriminator D and Generator G are alternately trained to compete 
with each other. The LSGAN replaces the logarithmic loss with a least- 
square loss, which helps to stabilize the training process. 

4.2. Projection loss 

To boost training efficiency, we utilize simpler shapes to facilitate 
the regularization process. Drawing on concepts from existing works 
[25,62], we implement volumetric projection loss. We use orthogonal 
projection to simplify process, this loss focuses on the consistency of the 
shape, producing stronger visual effects. Projection is carried out from 
three directions: the axial plane, the coronal plane, and the sagittal 
plane. The projection loss is defined as follows:  

Where Pax, Pco, Psa represent the projection in the axial, coronal, and 
sagittal plane, respectively. 

4.3. Fusion loss and vector loss 

To tackle the accuracy issue observed before and after the three- 
dimensional vector fusion in the decoder network, we introduce two 
specific loss functions: fusion loss and vector loss. The primary objective 
of these losses is to minimize the information loss that occurs before and 
after the fusion of feature vectors. By implementing these losses, we aim 
to enhance both the authenticity and accuracy of the generated results 
from the network, ensuring that the critical information is effectively 
retained and accurately represented throughout the fusion process. 

In order to minimize the loss before and after feature fusion, we 
design loss functions based on Manhattan distance and Euclidean dis
tance respectively. Experimental results show that using Euclidean dis
tance is more suitable for our task. Euclidean distance can be used to 
accurately measure the error between vectors to constrain the generator, 
making the generated CT closer to the real CT. 

The fusion loss is defined as: 

LFL =Ex,y
⃦
⃦Ty − Tx

⃦
⃦2

2 (5)  

where Ty represents the vector of the real CT and Tx represents the 
vector after fusion. 

The vector loss is defined as: 

LTL =
[
Ex1,y1

⃦
⃦Ty1 − Tx1

⃦
⃦2

2 + Ex2,y2
⃦
⃦Ty2 − Tx2

⃦
⃦2

2

]
(6)  

where Ty1 represents the three-dimensional vector representing the front 
plane of the real CT and Tx1 represents the three-dimensional vector 
converted from the front X-ray before fusion. Ty2 represents the three- 
dimensional vector representing the side of the real CT and Tx2 repre
sents the three-dimensional vector converted from the side X-ray before 
fusion. 

4.4. Total loss 

Given the definitions of adversarial loss, projection loss, fusion loss, 
and vector loss, our total loss function is formulated as： 

D∗ = argmin
D

λ1LLSGAN(D) (7)  

G∗ = argmin
G

[λ1LLSGAN(D)+ λ2LPL + λ3LFL + λ4LTL] (8)  

Where λ1 , λ2 , λ3 and λ4 represent the importance of difference loss 
terms. In the reconstruction of 3D CT from X-ray projection, the 
adversarial loss is important to encourage local realism of the synthe
sized CT, but global shape consistency should be prioritized during the 
optimization process. Thus, we set λ1 = 0.1, λ2 = 10, λ3 = 10 and λ4 = 10 
in our experiment. The interaction of the loss functions is shown in 
Fig. 4. 

5. Simulation experiments 

In this section, we delve into the experiments and results that were 
conducted to assess the performance of our proposed GAN model. To 
evaluate its efficacy, we compared the performance of our model with 
baseline models through a series of quantitative experiments and visu
alizations of the results. Additionally, structure ablation experiments 
were carried out to gain deeper insights into the model’s architecture. 
These experiments played a crucial role in understanding the impact of 

Fig. 4. The interaction of the loss functions.  

LPL =
1
3
[
Ex,y‖Pax(y) − Pax(G(x) )‖1 + Ex,y‖Pco(y) − Pco(G(x) )‖1 + Ex,y‖Psa(y) − Psa(G(x) )‖1

]
(4)   
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different components and structures within the model. The basis for our 
experiments was a range of public datasets. These datasets provided a 
robust and reliable foundation for testing and validating the effective
ness of our model. Using public datasets also ensures that our results are 
reproducible and comparable with other studies. To comprehensively 
evaluate the proposed model, we employed several widely recognized 
metrics. These include the Mean Absolute Error (MAE), 3D Peak Signal- 
to-Noise Ratio (PSNR-3D), Structural Similarity (SSIM), and Cosine 
Similarity. Each of these metrics offers a different perspective on the 
model’s performance, covering aspects from error measurement to 
image quality and structural similarity. The combination of these 
diverse metrics provides a holistic view of the model’s capabilities and 
areas of improvement. 

5.1. Datasets 

For our experiments, we utilized the LIDC-IDRI datasets [63], which 
include 1018 chest CT scans. Due to the practical challenges in collecting 
real paired datasets, we used digitally reconstructed radiograph (DRRs) 
technology to create synthetic X-rays from the CT volumes. This resulted 
in 1018 synthesized frontal and lateral X-ray images. 

To account for pixel and noise disturbances, we employed Ten-fold 
cross-validation in our experiment. In this method, the dataset is 
divided into ten parts, with a training to testing ratio of 9:1, resulting in 
916 training images and 102 testing images. The final results are ob
tained by averaging the quantitative outcomes of the same metrics 
across all ten experiments, with values reported to two decimal places. 

To verify the compatibility of the model with real data, we use the 
hospital datasets to validate the model. We use private hospital X-ray 
and paired CT datasets containing 1 chest CT scan and frontal and lateral 
X-ray images. We perform preprocessing operations on the data to meet 
the model input conditions, including adjusting X-rays to 8bit and 
resampling the resolution to 256*256 pixels, and resampling CT scans to 
256*256*256 voxels. 

5.2. Metrics 

MAE [64] is a commonly used metric for measuring the difference 
between predicted and ground-truth images in image reconstruction. It 
calculates the L1-norm discrepancy between the reconstructed and 
actual images. We computed MAE across the complete 3D volume in our 
experiments, which provided comprehensive evaluation of the model’s 
accuracy in image reconstruction. This measure is widely adopted and 
helpful in assessing the fidelity of our predictions, providing insights 
into the overall performance of our 3D reconstruction methodology. 

PSNR-3D [65] is an improved version of the PSNR metric, designed 
specifically for three-dimensional image. It measures the accuracy of 
volumetric reconstructions by comparing the peak signal strength to the 
noise level, providing a comprehensive evaluation of 3D image quality. 
Using PSNR-3D in our methodology ensures a robust and accurate 
assessment of the reconstruction results, which is essential for deter
mining the effectiveness of our 3D reconstruction approach. 

SSIM [66] serves as a comprehensive index that includes factors such 
as brightness, contrast, and structural similarity between two images. 
Unlike other indicators, SSIM is closer to human subjective evaluation. 
In our method, SSIM plays a crucial role in assessing the fidelity of the 
reconstructed 3D images, ensuring that the reconstructed images are 
convenient for clinicians to judge, thereby enhancing the clinical utility 
of our 3D reconstruction method. 

Cosine Similarity [67] evaluates the cosine of the angle formed be
tween the vectors of the predicted CT image and the vectors of the real 
CT image, providing a similarity score from − 1 to 1. This metric serves 
as a valuable measure of similarity, capturing the directional relation
ship between predicted and real image vectors. In our approach, cosine 
similarity helps quantify the consistency between predicted and actual 
CT images, providing a robust assessment of directional alignment, 

which is crucial to ensure the accuracy of the 3D image reconstruction 
process. 

5.3. Training and inference details 

In our training methodology, the generator and discriminator of the 
GAN were trained alternately, adhering to the standard process. We 
utilized the Adam optimizer for this purpose, starting with an initial 
learning rate of 2e-4 and setting the momentum parameters at β1 = 0.5 
and β2 = 0.99. The training regimen spanned over 100 epochs. During 
the first 50 epochs, we maintained the initial learning rate, and then 
implemented a linear decay strategy for the learning rate, gradually 
bringing it down to zero over the remaining 50 epochs. All the experi
ments detailed in this paper were conducted using the PyTorch frame
work. For the computational resources, we used Nvidia A100 GPUs, 
each with a memory size of 80 GB, to carry out the experiments. The 
training loss curves for DP-GAN+B and X2CT-GAN+B can be seen in 
Fig. 5. In these visualizations, the loss curve of DP-GAN+B is represented 
by a blue line, while the loss curve for X2CT-GAN+B is depicted in or
ange. These curves provide a graphical representation of the loss trends 
over the course of the training epochs. 

5.4. Results compared with other models 

In this section, we focus on the metric enhancement of our proposed 
method. To quantitatively evaluate the outcomes of our methods, we 
employ a set of metrics: PSNR-3D, SSIM, MAE, Cosine Similarity, and 

Fig. 5. The training loss curves.  

Table 1 
Comparison of metrics of different networks.  

Model PSNR-3D(dB)↑ SSIM ↑ MAE ↓ Cosine Similarity ↑ 

2DCNN 23.10 0.461 – – 
X2CT-GAN+B 26.19 0.656 93.17 0.955 
DP-GAN+B 26.39 0.672 87.48 0.959 

Note: ’-’ means we cannot find the specific parameter value. 

Table 2 
Comparison of parameters of different networks.  

Method Parameters_G 
（M） 

Parameters_D 
（M） 

Parameters_T 
（M） 

2DCNN – – 9.068 
X2CT- 

GAN+B 
61.740 11.055 72.795 

DP-GAN+B 40.636 0.235 40.871  
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network parameters. The results of these evaluations are presented in 
Table 1 and Table 2. In Table 1, we compare different models. ’2DCNN’ 
refers to the X2CT-GAN+B reproduced baseline model, which uses only 
a single X-ray input. ’X2CT-GAN+B′ is identified as our baseline 
network. ’DP-GAN+B′ represents our proposed model, where ’+B′ in
dicates the use of bi-planar X-rays input. Table 2 provides insights into 
the network parameters. ’Parameters_G′ denotes the parameters of the 
Generator network. ’Parameters_D′ refers to the parameters of the 
Discriminator network. ’Parameters_T′ signifies the parameters of the 
total network. These tables collectively offer a comprehensive view of 
the performance and complexity of each model under consideration. 

Our analysis reveals that 3D reconstruction using the GAN network 
outperforms traditional CNN methods. The use of dual-view inputs, 
which contain more information, contributes to higher reconstruction 
accuracy. Specifically, our model, DP-GAN+B, shows a PSNR-3D that is 
3.29 dB higher and an SSIM that is 0.211 higher than the 2DCNN model. 
Compared to X2CT-GAN+B, DP-GAN+B demonstrates an improvement 
of 0.2 dB in PSNR and 0.016 in SSIM, indicating better image quality and 
structural similarity. Notably, DP-GAN+B achieves a significant reduc
tion in parameters by 31.925 M (44.17%), with the generator network 
streamlined to 0.235 M. This reduction enhances model performance, as 
evidenced by a decrease of 5.69 in MAE and an increase of 0.004 in 

Fig. 6. Reconstructed CT scans from different approaches. (a) GroundTruth: the real CT scans. (b) X2CT-GAN+B: the baseline model. (c) DP-GAN+B: our pro
posed model. 
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Cosine Similarity, reflecting lower average absolute error and improved 
feature vector similarity. 

The results from training loss and experimental comparisons indicate 
that incorporating depthwise separable convolution in the adversarial 
network is more effective for learning tasks, adapts better to training 
data, and significantly reduces the number of model parameters while 
improving overall model performance. 

5.5. Result visualization 

Fig. 6 illustrates the enhanced accuracy in the reconstruction ach
ieved by our model, DP-GAN+B, in comparison to the baseline model, 
X2CT-GAN+B. CT slices in our experiment are sequentially numbered 
starting from 1. For analysis, we extracted CT slices at a sampling in
terval of 10, beginning with slice number 5. The reconstructions are 
highlighted in Fig. 6, where the red box draws attention to the enhanced 

shape details in our model’s reconstruction, DP-GAN+B. This area 
demonstrates a more accurate and precise representation of the CT 
structure, particularly in terms of tissue slice structure and shape, 
compared to the baseline model X2CT-GAN+B. Additionally, the 
yellow-boxed area in the figure focuses on the reconstruction results of 
the vertebrae. Notably, the reconstructions of the vertebrae region by 
our DP-GAN+B model exhibit a closer resemblance to the ground truth 
when compared to those generated by X2CT-GAN+B. 

In summary, our DP-GAN+B model demonstrates a consistent and 
accurate reconstruction of major anatomical structures, maintaining a 
high level of detail. The model is particularly effective in capturing bone 
tissue details, with a special emphasis on the accuracy in the vertebrae 
region. These results underscore the superiority of our approach in 
generating high-fidelity CT reconstructions. 

Fig. 7 presents the reconstructed three-dimensional (3D) computed 
tomography (CT) volumes of lung structures alongside the skeletal 

Fig. 7. Reconstructed CT volumes from different approaches. (a) Groundtruth, the real lung and chest rib volumes. (b) X2CT-GAN+B, the baseline model. (c) DP- 
GAN+B, our proposed model. 
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framework of the chest. In this figure, the 3D lung reconstructions are 
depicted as green volumes, while the 3D reconstructions of chest ribs are 
indicated in red. Our model demonstrates a notable improvement in 
alignment with the ground truth, especially when compared to X2CT- 
GAN+B. This enhanced alignment is particularly evident within the red 
oval, which highlights our model’s superior visualization of the lung 

field’s extent and the detailed trajectory of the small bronchi. Further
more, as delineated within the blue box, our method exhibits increased 
accuracy and completeness in the reconstruction of skeletal structures, 
with a specific emphasis on the ribs, when contrasted with the results 
obtained from X2CT-GAN+B. 

In summary, the performance of our reconstruction method is 

Fig. 8. Reconstructed CT scans from hospital datasets.  
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exemplary across multiple dimensions, including 2D slice views, 3D lung 
CT volumes, and 3D lung skeleton structures. It is crucial to acknowl
edge that, despite the significant advancements our reconstructed CT 
images represent over traditional X-ray images, they do not completely 
replace real CT scans, primarily due to the ultra-low radiation levels 
utilized in our X-ray imaging technique. However, our reconstructed CT 
from X-ray images substantially mitigates the challenges associated with 
overlapping tissues and organs in conventional X-rays, thereby signifi
cantly enhancing the visibility and differentiation of specific tissues and 
organs. As a result, our proposed reconstruction method has consider
able potential for application in clinical settings. This includes uses in 
pre-operative planning, intra-operative guidance for minimally invasive 
procedures, and aiding in the diagnosis of fractures and other organic 
pathologies. 

To verify the transferability of the model, we use hospital dataset to 
validate the model. Fig. 8 shows the CT slices generated using the hos
pital’s datasets input model. We select the middle 15 CT slices in order. 
The result show that the generated slices have very accurate tissue 
structure and details, which is consistent with anatomical knowledge. It 
also proved that our model has strong transferability and has very 
important clinical value. 

5.6. Ablation experiments 

To assess the impact and effectiveness of depthwise separable 
convolution, tensor loss, and fusion loss within the DP-GAN+B frame
work, we executed a comprehensive ablation study. The outcomes of 
these ablation experiments are presented in Table 3. In this table, ’DP’ is 
used to denote depthwise separable convolution, while ’TL’ and ’FL’ 
correspond to tensor loss and fusion loss, respectively. 

The integration of depthwise separable convolution within our 
model has resulted in a substantial reduction of parameters by 44.17%. 
This modification has led to significant performance enhancements, 
evidenced by a 0.06 dB increase in PSNR-3D, a 0.013 enhancement in 

SSIM, and a decrease in MAE from 93.17 to 89.11. 
Furthermore, the incorporation of specialized loss functions has been 

instrumental in further improving the model’s efficacy. Notably, the 
addition of fusion loss to the network has yielded the most significant 
improvements. While tensor loss also contributes to performance 
enhancement, its impact is comparatively modest. The combined 
application of these two loss functions has cumulatively increased the 
PSNR by 0.14 dB and improved the SSIM by 0.004. Additionally, there 
has been a noticeable reduction in MAE by 0.9 and an increase in cosine 
similarity by 0.002. The empirical results of these improvements are 
visually represented in Fig. 9. Specifically, Fig. 9(a) illustrates the PSNR- 
3D improvements, while Fig. 9(b) displays the enhancements in SSIM. 

6. Discussion 

In this section, we provide a certain clinical discussion of the pro
posed model, including its clinical application value, clinical application 
potential, and how to integrate this technology into actual clinical 
workflows. 

The algorithm for generating chest CT based on frontal and lateral 
chest radiographs through neural adversarial network training can 
simulate or predict high-quality 3D CT images through low-dose, low- 
cost X-rays, which has significant clinical application value. 

Firstly, the risk of radiation exposure can be reduced. Traditional CT 
scans have a higher radiation dose than ordinary chest. Thus, our al
gorithm can protect patients from potential long-term health effects. 
Secondly, it enhances diagnostic accuracy. Although X-rays are common 
screening methods, their two-dimensional spatial characteristics limit 
the assessment of the three-dimensional position relationship of lesions. 
By generating 3D CT images, doctors can obtain richer anatomical in
formation, facilitating more accurate lesion localization, mass volume 
measurement, observation of the spatial relationship between the 
mediastinum and lung tissue, and improving the diagnostic accuracy of 
complex diseases. Thirdly, it contributes to reducing medical costs and 
enhancing medical efficiency. In areas with limited medical resources, 
obtaining three-dimensional information similar to CT from X-rays can 
save a lot of CT equipment purchase and operating costs, shorten patient 
waiting time, and improve the efficiency of medical services. Fourthly, 
monitor the progression of the disease. For patients with chronic res
piratory diseases, consecutive time-point CTs generated by the model 
can be used to observe disease evolution, assisting clinicians in evalu
ating treatment responses and adjusting treatment plans. Lastly, it fa
cilitates quick decision-making in emergency situations. During 
emergencies when immediate CT examinations are not feasible, the 

Table 3 
Evaluation of different settings in the base GAN network.  

Combination Metrics 

DP TL FL PSNR-3D SSIM MAE Cosine Similarity Params    

26.19 0.656 93.17 0.955 72.796 
✓   26.25 0.669 89.11 0.957 40.871 
✓ ✓  26.30 0.668 88.38 0.958 40.871 
✓ ✓ ✓ 26.39 0.672 87.48 0.959 40.871  

Fig. 9. Visualization of ablation experiment results. (a) PSNR-3D. (b) SSIM.  
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model can quickly generate preliminary 3D images from existing X-rays, 
providing clinicians with timely information to guide initial treatment 
plans. 

Our technology addresses the challenge of converting two- 
dimensional to three-dimensional imaging, a limitation in current 
technology. While X-ray images offer only two-dimensional plane in
formation and CT scans provide three-dimensional spatial data, our deep 
learning algorithms effectively bridge this gap, enabling transformation 
from two-dimensional to three-dimensional space. This innovation fills a 
critical technical void in medical image technology. At the same time, it 
can also reduce hospitals’ over-reliance on expensive equipment. More 
precise imaging techniques require expensive equipment to support 
them. Our technology helps relieve the pressure on CT equipment in 
large medical institutions and reduces hospitals’ reliance on expensive 
equipment. 

In order to use this technology in actual clinical work, we can start 
from these aspects. First of all, we can use lots of real data to train the 
model, and conduct strict testing and verification through a large 
number of X-rays and corresponding CT images under different patho
logical conditions to ensure that the generated CT images are reliable 
enough in terms of clinical accuracy. Secondly, the model is packaged 
into easy-to-use software and integrated into the existing medical im
aging information system (PACS), so that clinicians can directly use the 
model to output corresponding CT images when viewing X-rays. Then, 
technical training is provided to medical staff to educate them on the 
advantages and limitations of this technology and how to use the soft
ware to ensure that clinicals can accurately judge the patient’s condition 
from the generated results. And establish a real-time monitoring and 
feedback mechanism. When the model is used in clinical practice, clin
icals’ actual usage and opinions are collected, and the model is contin
uously optimized and updated based on real-world diagnostic results. 
Under the conditions of legal compliance and ethics, through some novel 
and effective patient privacy protection [68] and data retrieval methods 
[69], ensure that this technology can truly serve patients and improve 
the efficiency of diagnosis and treatment. 

7. Conclusion 

In this paper, we apply depthwise separable convolution to construct 
a lightweight model, addressing the redundancy in existing models and 
improving performance. Our experimental results indicate that replac
ing traditional convolutions with depthwise separable convolutions not 
only reduces the model’s parameters but also significantly improves its 
performance. Importantly, our method demonstrates a superior ability 
to reconstruct CT volumes with enhanced visual quality, capturing more 
accurate anatomical structures and shapes. Compared with Xception, 
MobileNets, ShuffleNet, we pioneered the application of depthwise 
separable convolution on GANs for generative tasks, while previous 
work only applied it on AlexNet, VGG and so on for classification, se
mantic segmentation and object detection tasks. 

At the same time, we aim to develop compact, low-latency models for 
real-time inference on hospital mobile devices or deployment in PACS. 
Therefore, building a model based on depthwise separable convolution 
is a good choice. Depthwise separable convolution divides standard 
convolution into two steps: depth convolution and point-wise convolu
tion. The depth convolution stage uses a convolution kernel to process 
each input channel, while the pointwise convolution stage uses a 1x1 
convolution kernel for blending between channels. This separation 
method significantly reduces the number of parameters in the model, 
making the network more lightweight, reducing the consumption of 
computing resources, and facilitating deployment in hospitals. 

Although the use of depthwise separable convolution is usually to 
reduce the cost of calculation and parameters, for some specific situa
tions or specific tasks, it can show excellent performance. The reason 
why the model accuracy does not decrease but increases may be that in 
the 3D CT image reconstruction task, depthwise separable convolution 

processes spatial information and channel information respectively, 
which helps to better capture the spatial features and channel correla
tions of 2D X-ray and 3D CT images. This feature helps improve the 
model’s sensitivity to image structure and texture, thereby improving 
the accuracy of image reconstruction. 

The DP-GAN+B network addresses several clinical challenges. It 
shows promise in early pneumonia diagnosis, assessing post-treatment 
recovery, and providing precise measurements of chest nodule sizes. 
One of the notable benefits of our algorithm is its facilitation of rapid 
examinations. This is particularly advantageous in scenarios involving 
uncooperative pediatric patients, leading to improved detection rates 
and reduced waiting times for CT scans. The efficiency of our method 
saves crucial time for both healthcare providers and patients. Further
more, it ensures patient safety by utilizing the significantly lower radi
ation doses associated with X-ray imaging compared to traditional CT 
scans. 

Our work has three main limitations. First of all, currently only the 
lungs can be reconstructed. In theory, a variety of organs and tissues can 
be reconstructed as long as they comply with the model input. Secondly, 
only frontal and lateral X-rays are allowed as input to the model. It is 
known that there are not only frontal and side X-ray images, but also 
left-side and right-side X-ray images in clinical settings. If we could feed 
all of these images into the model, the accuracy of the results would be 
significantly enhanced and the outcomes would be more relevant from 
clinical standpoint. Finally, during the training process, we found that 
the training of GAN is very unstable and difficult to achieve conver
gence. Perhaps we can consider using a stable diffusion model to replace 
GAN to improve training efficiency and stability. 

Looking forward, our research will pursue addressing the above 
limitations. Firstly, we aim to expand the reconstruction capabilities of 
our network to include different organs. This expansion will encompass 
the lumbar spine, liver, heart, and the application to pediatric chest X- 
rays for detecting conditions such as mycoplasma infections or pneu
monia. Secondly, instead of being limited to frontal and side inputs, we 
can expend the range of input images, such as left-side and right-side 
images, so that the model can learn more features to reconstruct a 
more accurate model. Finally, we plan to incorporate diffusion models 
into our framework for 3D organ reconstruction. The diffusion model, 
known for its training stability and ability to generate more realistic 
visual effects compared to GAN networks, is expected to produce med
ical images that are more conducive for clinical diagnosis. 

Code availability 

All code used for dataset preparation and image processing will be 
available on request. 

Funding 

This work is supported by the Ministry of Science and Technology of 
the People’s Republic of China (STI2030-Major Proj
ects2021ZD0201900), the National Natural Science Foundation of 
China under Grant 12090052, and Wenzhou Institute University of 
Chinese Academy of Sciences (WIUCASQD2022010). 

CRediT authorship contribution statement 

Xinlong Xing: Methodology, Software, Writing – original draft. 
Xiaosen Li: Conceptualization, Methodology. Chaoyi Wei: Conceptu
alization, Methodology. ZhanTian Zhang: Data curation, Validation, 
Visualization. Ou Liu: Funding acquisition, Methodology, Supervision, 
Writing – review & editing. Senmiao Xie: Data curation, Resources. 
Haoman Chen: Data curation, Resources. Shichao Quan: Data cura
tion, Resources. Cong Wang: Writing – review & editing. Xin Yang: 
Software. Xiaoming Jiang: Conceptualization, Methodology. Jianwei 
Shuai: Writing – review & editing, Supervision, Funding acquisition, 

X. Xing et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 174 (2024) 108393

13

Methodology. 

Declaration of competing interest 

The authors declare that the research was conducted in the absence 
of any commercial or financial relationships that could be construed as a 
potential conflict of interest. 

References 

[1] P. Safety, Radiation Dose in X-Ray and CT Exams, American College of Radiology 
and Radiological Society of North America, 2012. 

[2] X. Zhang, T. Wang, J. Wang, et al., Pyramid channel-based feature attention 
network for image dehazing, in: Computer Vision and Image Understanding, 197, 
2020 103003. 

[3] H. Liang, H. Bai, K. Hu, et al., Bioinspired polarized skylight orientation 
determination artificial neural network, JBE 20 (2023) 1141–1152. 

[4] X. Li, X. Qin, C. Huang, et al., SUnet: a multi-organ segmentation network based on 
multiple attention, Comput. Biol. Med. 167 (2023) 107596. 

[5] K. Hu, L. Zhao, S. Feng, et al., Colorectal polyp region extraction using saliency 
detection network with neutrosophic enhancement, Comput. Biol. Med. 147 (2022) 
105760. 

[6] X. Jiang, Y. Ding, M. Liu, et al., BiFTransNet: a unified and simultaneous 
segmentation network for gastrointestinal images of CT & MRI, Comput. Biol. Med. 
165 (2023) 107326. 

[7] A. Qi, D. Zhao, F. Yu, et al., Directional mutation and crossover boosted ant colony 
optimization with application to COVID-19 X-ray image segmentation, Comput. 
Biol. Med. 148 (2022) 105810. 

[8] H. Su, D. Zhao, H. Elmannai, et al., Multilevel threshold image segmentation for 
COVID-19 chest radiography: a framework using horizontal and vertical multiverse 
optimization, Comput. Biol. Med. 146 (2022) 105618. 

[9] W. Liu, Y. Du, G. Fang, et al., Efficient Gaussian sample specific network marker 
discovery and drug enrichment analysis validation, Comput. Biol. Chem. 83 (2019) 
107139. 

[10] H. Chen, H. Ye, F. Chen, et al., Revolutionizing infection risk scoring: an ensemble 
“from weak to strong” deduction strategy and enhanced point-of-care testing tools, 
Adv. Intell. Syst. 5 (2023) 2300224. 

[11] H. Gao, J. Sun, Y. Wang, et al., Predicting metabolite–disease associations based on 
auto-encoder and non-negative matrix factorization, Briefings Bioinf. 24 (2023) 
bbad259. 

[12] C. Wei, X. Xiang, X. Zhou, et al., Development and validation of an interpretable 
radiomic nomogram for severe radiation proctitis prediction in postoperative 
cervical cancer patients, Front. Microbiol. 13 (2023) 1090770. 

[13] F. Zhu, J. Ding, X. Li, et al., MEAs-Filter: a novel filter framework utilizing 
evolutionary algorithms for cardiovascular diseases diagnosis, Health Inf. Sci. Syst. 
12 (2024) 8. 

[14] H. Hu, Z. Feng, H. Lin, et al., Gene function and cell surface protein association 
analysis based on single-cell multiomics data, Comput. Biol. Med. 157 (2023) 
106733. 

[15] W. Wang, L. Zhang, J. Sun, et al., Predicting the potential human lncRNA–miRNA 
interactions based on graph convolution network with conditional random field, 
Briefings Bioinf. 23 (2022) bbac463. 

[16] J. Zhao, J. Sun, S.C. Shuai, et al., Predicting potential interactions between 
lncRNAs and proteins via combined graph auto-encoder methods, Briefings Bioinf. 
24 (2023) bbac527. 

[17] Q. He, C.-Q. Zhong, X. Li, et al., Dear-DIAXMBD: deep autoencoder enables 
deconvolution of data-independent acquisition, Proteomics, Research 6 (2023) 
179. 

[18] X. Chen, R. Zhu, J. Zhong, et al., Mosaic composition of RIP1–RIP3 signalling hub 
and its role in regulating cell death, Nat. Cell Biol. 24 (2022) 471–482. 

[19] K. Hammernik, T. Würfl, T. Pock, et al., A deep learning architecture for limited- 
angle computed tomography reconstruction, Bildverarbeitung für die Medizin 
2017, Springer, 2017, pp. 92–97. 

[20] P. Henzler, V. Rasche, T. Ropinski, et al., Single-image tomography: 3D volumes 
from 2D cranial x-rays, Comput. Graph. Forum 37 (2018) 377–388. 

[21] Y. Kasten, D. Doktofsky, I. Kovler, End-to-end convolutional neural network for 3D 
reconstruction of knee bones from bi-planar X-ray images, in: Machine Learning for 
Medical Image Reconstruction, Springer, 2020, pp. 123–133. 

[22] Y. Liang, W. Song, J. Yang, et al., X2teeth: 3d teeth reconstruction from a single 
panoramic radiograph, in: International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI), Springer, 2020, pp. 400–409. 

[23] L. Shen, W. Zhao, L. Xing, Patient-specific reconstruction of volumetric computed 
tomography images from a single projection view via deep learning, Nat. Biomed. 
Eng. 3 (2019) 880–888. 

[24] T. Würfl, F.C. Ghesu, V. Christlein, et al., Deep learning computed tomography, in: 
International Conference on Medical Image Computing and Computer-Assisted 
Intervention (MICCAI), Springer, 2016, pp. 432–440. 

[25] X. Ying, H. Guo, K. Ma, et al., X2CT-GAN: reconstructing CT from biplanar X-rays 
with generative adversarial networks, in: Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 10619–10628. 

[26] M. Bertero, T.A. Poggio, V. Torre, Ill-posed problems in early vision, Proc. IEEE 76 
(1988) 869–889. 

[27] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep 
convolutional neural networks, Commun. ACM 60 (2017) 84–90. 

[28] K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, in: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2016, pp. 770–778. 

[29] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale 
Image Recognition, 2014 arXiv preprint arXiv:1409.1556. 

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, et al., Rethinking the inception architecture for 
computer vision, in: Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), 2016, pp. 2818–2826. 

[31] F. Chollet, Xception: deep learning with depthwise separable convolutions, in: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2017, pp. 1251–1258. 

[32] A.G. Howard, M. Zhu, B. Chen, et al., Mobilenets: efficient convolutional neural 
networks for mobile vision applications, in: arXiv Preprint arXiv:1704.04861, 
2017. 

[33] X. Zhang, X. Zhou, M. Lin, et al., Shufflenet: an extremely efficient convolutional 
neural network for mobile devices, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6848–6856. 

[34] C.B. Choy, D. Xu, J. Gwak, et al., 3d-r2n2: a unified approach for single and multi- 
view 3d object reconstruction, in: European Conference on Computer Vision 
(ECCV), Springer, 2016, pp. 628–644. 

[35] B. Neubert, T. Franken, O. Deussen, Approximate image-based tree-modeling using 
particle flows, ACM Trans. Graph. 26 (2007) 88. 

[36] S. Tulsiani, A.A. Efros, J. Malik, Multi-view consistency as supervisory signal for 
learning shape and pose prediction, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2897–2905. 

[37] H. Fan, H. Su, L.J. Guibas, A point set generation network for 3d object 
reconstruction from a single image, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 605–613. 

[38] Y. Livny, F. Yan, M. Olson, et al., Automatic reconstruction of tree skeletal 
structures from point clouds, Proc. of ACM SIGGRAPH Asia (2010) 1–8. 

[39] B. Aubert, C. Vergari, B. Ilharreborde, et al., 3D reconstruction of rib cage 
geometry from biplanar radiographs using a statistical parametric model approach, 
Comput Methods Biomech Biomed Eng Imaging Vis 4 (2016) 281–295. 

[40] J. Dworzak, H. Lamecker, J. von Berg, et al., 3D reconstruction of the human rib 
cage from 2D projection images using a statistical shape model, Int. J. Comput. 
Assist. Radiol. Surg. 5 (2010) 111–124. 

[41] H. Lamecker, T.H. Wenckebach, H.-C. Hege, Atlas-based 3D-shape reconstruction 
from X-ray images, in: Proceedings of the International Conference on Pattern 
Recognition (ICPR), 2006, pp. 371–374. 

[42] C. Koehler, T. Wischgoll, Knowledge-assisted reconstruction of the human rib cage 
and lungs, IEEE Comput Graph Appl 30 (2010) 17–29. 

[43] M. Nakao, F. Tong, M. Nakamura, et al., Image-to-graph convolutional network for 
deformable shape reconstruction from a single projection image, in: International 
Conference on Medical Image Computing and Computer Assisted Intervention 
(MICCAI), Springer, 2021, pp. 259–268. 

[44] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional 
networks, arXiv preprint arXiv:1609.02907 (2016). 

[45] Z. Tan, J. Li, H. Tao, et al., XctNet: reconstruction network of volumetric images 
from a single X-ray image, Comput. Med. Imag. Graph. 98 (2022) 102067. 

[46] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial networks, 
Commun. ACM 63 (2020) 139–144. 

[47] C. Ledig, L. Theis, F. Huszár, et al., Photo-realistic single image super-resolution 
using a generative adversarial network, in: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 
pp. 4681–4690. 

[48] B. Wu, H. Duan, Z. Liu, et al., SRPGAN: perceptual generative adversarial network 
for single image super resolution, in: arXiv Preprint arXiv:1712.05927, 2017. 

[49] J.-Y. Zhu, T. Park, P. Isola, et al., Unpaired image-to-image translation using cycle- 
consistent adversarial networks, in: Proceedings of the IEEE International 
Conference on Computer Vision, ICCV), 2017, pp. 2223–2232. 

[50] B. Jahanyar, H. Tabatabaee, A. Rowhanimanesh, MS-ACGAN: a modified auxiliary 
classifier generative adversarial network for schizophrenia’s samples augmentation 
based on microarray gene expression data, Comput. Biol. Med. 162 (2023) 107024. 

[51] H. Zhao, X. Qiu, W. Lu, et al., High-quality retinal vessel segmentation using 
generative adversarial network with a large receptive field, Int. J. Imag. Syst. 
Technol. 30 (2020) 828–842. 

[52] Z. Wang, S. Stavrakis, B. Yao, Hierarchical deep learning with Generative 
Adversarial Network for automatic cardiac diagnosis from ECG signals, Comput. 
Biol. Med. 155 (2023) 106641. 

[53] S. Bhattacharya, A. Bhattacharya, S. Shahnawaz, Generating synthetic computed 
tomography (CT) images to improve the performance of machine learning model 
for pediatric abdominal anomaly detection, in: Proceedings of the IEEE 
International Conference on Computer Vision, ICCV), 2023, pp. 3865–3873. 

[54] W. Song, Y. Liang, J. Yang, et al., Oral-3d: reconstructing the 3d structure of oral 
cavity from panoramic x-ray, Proc. AAAI Conf. Artif. Intell. (2021) 566–573. 

[55] C.J. Yang, C.L. Lin, C.K. Wang, et al., Generative adversarial network (GAN) for 
automatic reconstruction of the 3D spine structure by using simulated Bi-planar X- 
ray images, Diagnostics 12 (2022) 1121. 

[56] L. Sifre, S. Mallat, Rigid-motion Scattering for Texture Classification, 2014 arXiv 
preprint arXiv:1403.1687. 

[57] L. Sifre, S. Mallat, Rotation, scaling and deformation invariant scattering for 
texture discrimination, in: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), 2013, pp. 1233–1240. 

X. Xing et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0010-4825(24)00477-3/sref1
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref1
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref2
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref2
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref2
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref3
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref3
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref4
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref4
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref5
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref5
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref5
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref6
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref6
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref6
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref7
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref7
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref7
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref8
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref8
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref8
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref9
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref9
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref9
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref10
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref10
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref10
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref11
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref11
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref11
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref12
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref12
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref12
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref13
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref13
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref13
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref14
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref14
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref14
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref15
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref15
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref15
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref16
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref16
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref16
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref17
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref17
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref17
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref18
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref18
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref19
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref19
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref19
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref20
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref20
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref21
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref21
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref21
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref22
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref22
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref22
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref23
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref23
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref23
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref24
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref24
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref24
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref25
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref25
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref25
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref26
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref26
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref27
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref27
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref28
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref28
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref28
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref29
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref29
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref30
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref30
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref30
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref31
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref31
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref31
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref32
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref32
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref32
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref33
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref33
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref33
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref34
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref34
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref34
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref35
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref35
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref36
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref36
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref36
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref37
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref37
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref37
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref38
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref38
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref39
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref39
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref39
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref40
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref40
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref40
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref41
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref41
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref41
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref42
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref42
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref43
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref43
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref43
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref43
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref44
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref44
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref45
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref45
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref46
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref46
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref47
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref47
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref47
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref47
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref48
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref48
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref49
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref49
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref49
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref50
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref50
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref50
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref51
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref51
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref51
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref52
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref52
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref52
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref53
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref53
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref53
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref53
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref54
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref54
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref55
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref55
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref55
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref56
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref56
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref57
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref57
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref57


Computers in Biology and Medicine 174 (2024) 108393

14

[58] C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with convolutions, in: Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 
2015, pp. 1–9. 

[59] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by 
reducing internal covariate shift, in: International Conference on Machine 
Learning, 2015, pp. 448–456. 

[60] G. Huang, Z. Liu, L. Van Der Maaten, et al., Densely connected convolutional 
networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), 2017, pp. 4700–4708. 

[61] X. Mao, Q. Li, H. Xie, et al., Least squares generative adversarial networks, in: 
Proceedings of the IEEE International Conference on Computer Vision, ICCV), 
2017, pp. 2794–2802. 

[62] L. Jiang, S. Shi, X. Qi, et al., Gal: geometric adversarial loss for single-view 3d- 
object reconstruction, in: Proceedings of the European Conference on Computer 
Vision, ECCV), 2018, pp. 802–816. 

[63] S.G. Armato 3rd, G. McLennan, L. Bidaut, et al., The lung image database 
consortium (LIDC) and image database resource initiative (IDRI): a completed 
reference database of lung nodules on CT scans, Med. Phys. 38 (2011) 915–931. 

[64] T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error 
(MAE)? – Arguments against avoiding RMSE in the literature, Geosci, Model 
Develop 7 (2014) 1247–1250. 

[65] A. Hore, D. Ziou, Image quality metrics: PSNR vs. SSIM, in: 2010 20th International 
Conference on Pattern Recognition, 2010, pp. 2366–2369. 

[66] Z. Wang, A.C. Bovik, H.R. Sheikh, et al., Image quality assessment: from error 
visibility to structural similarity, IEEE Trans. Image Process. 13 (2004) 600–612. 

[67] F. Rahutomo, T. Kitasuka, M. Aritsugi, Semantic cosine similarity, in: The 7th 
International Student Conference on Advanced Science and Technology (ICAST), 
2012, p. 1. 

[68] Z. Wu, H. Liu, J. Xie, et al., An effective method for the protection of user health 
topic privacy for health information services, World Wide Web (2023) 1–23. 

[69] Z. Mei, J. Yu, C. Zhang, et al., Secure multi-dimensional data retrieval with access 
control and range query in the cloud, Inf. Syst. 122 (2024) 102343. 

X. Xing et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0010-4825(24)00477-3/sref58
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref58
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref58
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref59
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref59
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref59
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref60
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref60
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref60
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref61
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref61
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref61
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref62
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref62
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref62
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref63
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref63
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref63
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref64
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref64
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref64
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref65
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref65
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref66
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref66
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref67
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref67
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref67
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref68
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref68
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref69
http://refhub.elsevier.com/S0010-4825(24)00477-3/sref69

	DP-GAN+B: A lightweight generative adversarial network based on depthwise separable convolutions for generating CT volumes
	1 Introduction
	2 Related work
	2.1 The 3D reconstruction from single images
	2.2 The 3D reconstruction from X-rays
	2.3 Lightweight network

	3 DP-GAN+B: the depthwise separable convolution-based network for generating CT volumes
	3.1 Encoder
	3.2 Transition
	3.3 Decoder
	3.4 Feature fusion
	3.5 Discriminator

	4 Loss functions
	4.1 Adversarial loss
	4.2 Projection loss
	4.3 Fusion loss and vector loss
	4.4 Total loss

	5 Simulation experiments
	5.1 Datasets
	5.2 Metrics
	5.3 Training and inference details
	5.4 Results compared with other models
	5.5 Result visualization
	5.6 Ablation experiments

	6 Discussion
	7 Conclusion
	Code availability
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	References


