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Abstract
Stochastic optical reconstructionmicroscopy (STORM) is extensively utilized in thefields of cell and
molecular biology as a super-resolution imaging technique for visualizing cells andmolecules.
Nonetheless, the imaging process of STORM is frequently susceptible to noise, which can significantly
impact the subsequent image analysis.Moreover, there is currently a lack of a comprehensive
automated processing approach for analyzing protein aggregation states from a large number of
STORM images. This paper initially applies our previously proposed denoising algorithm,UNet-Att,
in STORM image denoising. This algorithmwas constructed based on attentionmechanism and
multi-scale features, showcasing a remarkably efficient performance in denoising. Subsequently, we
propose a collection of automated image processing algorithms for the ultimate feature extractions
and data analyses of the STORM images. The information extractionworkflow effectively integrates
automatedmethods of image denoising, objective image segmentation and binarization, and object
information extraction, and a novel image information clustering algorithm specifically developed for
themorphological analysis of the objects in the STORM images. This automatedworkflow
significantly improves the efficiency of the effective data analysis for large-scale original STORM
images.

1. Introduction

Stochastic optical reconstruction microscopy
(STORM) [1–3] is a super-resolution microscopy
technique that allows for the application of fluores-
cence spectroscopy and microanalysis to individual
molecules, resulting in a resolution more than ten
times higher than conventional optical microscopy
[4, 5]. The spatial resolution of traditional optical
microscopes is limited by the diffraction of light,
causing points to diffract into circular aperture
patterns and close points to partially coincide. How-
ever, STORM overcomes this limitation by utilizing
random interference, thereby improving the resolu-
tion by a factor of ten.

This STORM super-resolution technology enables
imaging in two or three dimensions, in multiple col-
ors, and can even capture images of living cells [6–8].
The utilization of this imaging technology varies
depending on the object of study, the imaging method
employed, and the desired image type. It finds applica-
tion in diverse areas of the life sciences and generates
high-resolution images that cater to a wide range of
research needs, spanning from neuroscience to sub-
cellular science. Since its introduction, researchers
have increasingly recognized the advantages of
STORM technology and have incorporated it exten-
sively in their investigations. Notably, STORM has
played a pivotal role in various important studies, such
as exploring the role of proteins in T-loop formation
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in chromatin [9], confirming the reduction of cyano-
bacterial self-fluorescence in Prochlorococcus spher-
icalus [10], observing the material aggregation around
meningococci [11], examining the localization of IFT
fusion proteins in cilia [12], investigating the impact of
the presence or absence of α5 integrins on spheroid
glioma cells [13], and studying the protein chimera
composition of RIP1-RIP3 to unveil their role in reg-
ulating cell death [14–16].

While STORM offers significant advantages and
plays a crucial role in life science, it also has certain
insurmountable drawbacks [17, 18] during the ima-
ging process. The imaging capabilities of STORM are
constrained by factors such as the microscope optics,
the chemical properties of the fluorophore, and the
maximum photon exposure permissible for the sam-
ple [19, 20]. These limitations necessitate a trade-off
between imaging speed, spatial resolution, light expo-
sure, and imaging depth [21, 22]. Under certain exper-
imental conditions, the use of low doses of fluorescent
dyes becomes necessary, resulting in a limited number
of photons received by the sample. A significant
amount of complex noise is generated, which mainly
derives from two aspects, quantum shot noise [23] and
detector-related noise [24], and obscures valuable
information within the image. Quantum shot noise
arises as a fundamental characteristic of photon detec-
tion, adhering to a Poisson distribution mathemati-
cally. This category of noise varies with the signal
intensity, leading to elevated noise levels in areas of
higher brightness, a consequence attributed to the
increase in photon counts. In contrast, detector noise,
characterized by a Gaussian distribution [25], affects
each pixel uniformly and is independent of the pixel’s
brightness. Quantum shot noise and detector noise
occur independently at the level of individual pixels,
without affecting adjacent pixels.

STORM image denoising can be categorized into
two approaches: traditional denoising methods and
deep learning-based methods. Traditional denoising
methods include Non-Local Means (NLM) [26], and
Block Matching 3D (BM3D) [27]. The traditional
denoising methods are grounded in statistical and
algorithmic principles that excel at removing noise
patterns that are consistent or pervasive across and
image [28]. For instance, NLMworks by averaging the
value of a pixel with values of similar pixels from other
parts of the image, which works well for Gaussian
noise where the statistical properties are uniform
across the image. BM3D extends this by operating in
3D collaborative filtering groups that can better pre-
serve details while reducing noise. However, these
methods are challenged by complex noise structures,
especially those found in advanced biological imaging
techniques like STORM, due to the non-uniform and
signal-dependent character. In contrast, deep learn-
ing-based methods utilize training datasets derived
from experiments or simulations to learn specific pat-
terns and achieve end-to-end image transformation

for effective image denoising [29–35]. Prominent
methods in the field of fluorescencemicroscopy image
noise reduction involve supervised training. Examples
of such methods include the CARE [19] method pro-
posed by Weigert et al in 2018, the Noise2noise [36]
method proposed by Lehtinen et al in 2018, and the
DeepCAD [37]method proposed by Li et al in 2021.

Although automatic processing techniques, such
as deep learning, have been widely used formany tasks
in image processing after denoising, there are still cer-
tain specific tasks that necessitate manual selection of
target materials for processing. For instance, the
extraction of information regarding specific states of
proteins requires manual intervention. Within the
domain of protein assembly analysis, the task of distin-
guishing between colocalizing and non-colocalizing
clusters remains a manual process [38, 39]. To
enhance the efficiency of image processing, it is crucial
to develop a comprehensive suite of automated meth-
ods for extracting and analyzing information pertain-
ing to specific objects within STORM images. A fully
automated image processing pipeline, extending from
the initial raw STORM image to the final biological
analysis, which includes determining the states of pro-
tein aggregation, would significantly boost efficiency
in handling and interpreting image data, particularly
in high-throughput scenarios. This advancement
holds substantial significance for the field of biological
imaging research, as it promises to streamline work-
flows and facilitate more rapid and accurate data ana-
lysis. In this study, we devised a workflow for
automatic image processing encompassing image
denoising, objective image segmentation and binariza-
tion, and final image analysis. Our workflow incorpo-
rates the previously proposed UNet-Att denoising
algorithm, as well as our devised image information
clustering algorithm. This integrated approach facil-
itates an exceptionally efficient denoising capability
for the STORM images and the effective ultimatemor-
phological analysis of the substances starting from raw
STORM images in amore time-efficient way.

2. Image denoising

2.1. Network design
The network structure of our image denoising algo-
rithm, UNet-Att, is illustrated in figure 1(a).
The python packages of UNet-Att are freely available
at https://github.com/YongfaYing/UNet_Att. This
algorithm is composed of three primary modules: the
downsampling module, attention module, and multi-
dimensional upsampling module. The network struc-
ture of each module is presented in figures 1(b)–(d).
The downsampling module extracts image features at
various scales, the attention module enhances the
weight of image texture information during fusion,
and the multidimensional upsampling module
restores image information and combines the output
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results of the multidimensional network. This algo-
rithm can effectively remove the image noise while
better preserving the original structural texture fea-
tures in the fluorescent microscopic images. Here, we
firstly apply this algorithm to the denoising of the
STORM images, and examine its effectiveness.

2.2. Loss function
The loss functions used in this study are the L1

parametric loss and the L2 arithmetic mean of the
parametric loss. The L1 loss is defined as the sum of the
absolute differences between the target pixel value and
the estimated pixel value for each pixel, as shown in
equation (1). Similarly, the L2 loss is defined as the sum
of the squared differences between the target pixel
value and the estimated pixel value for each pixel, as
shown in equation (2).

∣ ( )∣ ( )å= -
=

L y f x 1
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n

i i1
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( ( )) ( )å= -
=

L y f x 2
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where yi denotes the target pixel value, and ( )f xi

denotes the estimated pixel value of the network. The
L1 loss aims to minimize the absolute difference
between the pixel values of the target image and the
estimated image. It is more robust to outliers, as they
do not cause particularly large losses and result in
small and stable fluctuations. On the other hand, the
L2 loss aims to minimize the squared error between
pixel values of the target image and the estimated
image. Outlier points have a large impact on the loss,
leading to a smoother image.

2.3. Introduction to the dataset
The STORM image data used in this study were
obtained from a previous experiment conducted by
Chen’s team [14]. STORMmicroscopy was conducted
utilizing a Nikon Instruments N-STORM system (Ti-
E model). In summary, the setup incorporates an

Figure 1.Workflow schematic for theUNet-Att denoising algorithm. (a)The overall network architecture of UNet-Att, where x ,i
E

x ,i j
D
, ‘A’ and ‘L’ represents the downsamplingmodule themulti-dimensional upsamplingmodule, the attentionmodule and the loss

function, respectively. (b)The downsamplingmodule, comprising ‘Pool’ (pooling layer), ‘Conv’ (convolutional layer), ‘ReLU’
(activation layer), and ‘BN’ (batch normalization layer). (c)Themultidimensional upsamplingmodule consisting of ‘concat’ (channel
connection layer), ‘Conv’ (convolutional layer), ‘ReLU’ (activation layer), and ‘BN’ (batch normalization layer). (d)The attention
module, structuredwith ‘x’ as the input to the network, ‘g’ as the reference of the network, ‘Conv’ for convolution, ‘Sigmoid’ as the
normalization function, and x̂ as the network output.
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AgilentMLC400B for laser emission, comprising a red
diode laser (647 nm, 300 mW; MPBC), a green solid-
state laser (561 nm, 150 mW; Coherent), a blue solid-
state laser (488 nm, 200mW; Coherent), a violet diode
laser (405 nm, 100 mW; Coherent), and employs a
100 × NA 1.49 oil immersion lens. The system
separates emitted fluorescence through specific filters
(FF02-520/28-25, FF01-586/20-25 × 3.5, and FF01-
692/40-25; Semrock), capturing it with a back-
illuminated EMCCD camera (iXon DU897, Andor).
Cell cultures were prepared on eight-well chambered
coverglass slides (Thermo Fisher Scientific, 155409).
The preparation protocol for STORM mirrors that of
confocal microscopy, with an alteration for pRIP3
staining involving methanol fixation at −20 °C for
10 min to minimize background interference. Follow-
ing fluorescent antibody labeling, specimens were
placed in a buffer comprising 50 mM Tris (pH 8.0),
10 mM NaCl, 0.5 mg ml−1 glucose oxidase (Sigma,
G2133), 40 μgml−1 catalase (Sigma,C40), 10%glucose
by weight/volume, and 143 mM β-mercaptoethanol.
Single-colour STORM of CF 647 involved irradiation
with a 647 nm laser at 2 kW cm−2 power density. Dual-
colour imaging commenced with CF 647, followed by
CF 568 acquisition under 1–3 kW cm−2 laser power
density. A 405 nm laser was dynamically adjusted
during imaging to regulate blinking. For each channel,
10,000–20,000 frames were captured at 70 fps, with
reconstructions performed via the NIS-Elements AR
software’s N-STORMmodule. Chromatic precision in
STORM imaging was maintained through calibration
with 100 nm multi-fluorescent beads, following
Nikon’s chromatic calibration protocol (NIS-Elements
AR with an N-STORM module). Frame-to-frame
sample drift was adjusted by tracking multi-fluorescent
beads (Thermo Fisher Scientific, T7279) or through
image correlation techniques. Consistent settings
were maintained across all imaging procedures. In
the STORM images, each localization appears as a
Gaussian peak, its width proportional to the detected
photon count.

Employing the above detection systems, the
STOMR images of intracellular RIP1 and RIP3 amy-
loid proteins was obtained. The proteins undergo pro-
gressively aggregation from small circular monomers
to large rod-likemultimers [14]. It is important to note
that the cells were not observed in real time. Instead,
batches of cells from the same species were observed,
each developing different states of RIP1 and RIP3
amyloid aggregation. These batches were stained sepa-
rately and subsequently observed using N-STORM
microscopy to generate the STORM images.

The dataset consists of 54 sets of two-dimensional
images, each possessing a resolution of 5330 × 5200
pixels. Gaussian noise and Poisson noise were added
to each set of images, which were then cropped into
64× 64-sized image blocks. The rationale behind add-
ing Poisson and Gaussian noise is that these types of
noise are inherently present in the raw data acquired

from fluorescence microscopy procedures. Poisson
noise, often referred to as shot noise, and Gaussian
noise are commonplace in such imaging techniques.
Our objective in introducing both Poisson and Gaus-
sian noise is to simulate the authentic noise encoun-
tered in STORM microscopy data. This simulation
then serves as a foundation for training noise-free ima-
ges, with the aim of refining denoising algorithms and
models. Consequently, this approach is intended to
enhance the denoising performance on raw STORM
images that contain inherent noise. The comparative
experiments are conducted to validate the superiority
of our proposed image denoising algorithm over other
existing image denoisingmethodologies.

The noises were added according to a Python-
based algorithm, with Poisson noise being introduced
first, followed byGaussian noise. The addition of Pois-
son noise was facilitated through the np.random.pois-
son function in the numpy library, applying Poisson
noise to each pixel to conform to a Poisson distribu-
tion. Gaussian noise was introduced using the
skimage.util.random_noise function from the
skimage library, adding Gaussian noise to each pixel to
achieve a Gaussian distribution. The noise was added
separately to each image, subjecting them to the same
levels of Poisson and Gaussian noise. Each pixel was
subjected to both Poisson and Gaussian noise, where
the level of Poisson noise was related to the signal
intensity of the image, having a mean of 0. Gaussian
noise was randomly applied across any position in the
image, with its mean set by our defined parameters.
No scaling was applied to the stack of images, and the
noise level was independent of the image size. The
images used were not the original images from the
camera but processed noise-free images, thus devoid
of inherent noise. An overlap of 25% was applied
between adjacent images, resulting in a total of
approximately 610,000 images. For training purposes,
approximately 90% of the images were utilized as the
training set, while the remaining images were reserved
for testing the denoising effectiveness of themodel.

2.4. Experiment andAnalysis
We input the cropped STORM noise image training
set into the neural network described above in this
section for supervised learning training, and use Adam
optimizer to optimize the parameters of the network
model. The training process consists of 100 epochs
with a batch size of 64, and an initial learning rate of
0.00005. During training, the learning rate is gradually
adjusted using exponential decay.

After training, the denoised STORM images are
obtained by applying the trained network to the
STORM noisy images from the test set. The denoising
operation significantly eliminates the noise the
improves the readability of the images, as shown in
figure 2. To evaluate the denoising effect of the algo-
rithm on the STORM images, Poisson noise and
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multiple levels of Gaussian noise are added to the
STORM images in the test set, as shown in
figures 3(a)–(d). The denoising results of the algorithm
are compared with those of Noise2noise, and Deep-
CAD algorithms. The comparison is based on the
PSNR, SSIM, and MSE values of the denoised results,

and the average values of the algorithm models are
presented in table 1, table 2, and table 3, respectively.
The algorithms UNet-Att achieve better results than
themainstream algorithms atmultiple noise levels.

Furthermore, the denoised images with a
Gaussian noise level of σ = 0.25 are visualized and

Figure 2.Comparison of denoised imagewith noisy image andnoiseless image. (a)The image after adding noise; (b)The denoised
image of the algorithmUNet-Att in this section; (c)The corresponding noise-free image.

Figure 3. STORMnoise images with different levels. The noise image after adding Poisson noise andGaussian noise with standard
deviation of 0.15 (a), 0.2 (b), 0.25 (c), and 0.3 (d); (e)Denoised image using theNoise2noisemethod; (f)Denoised image using the
DeepCADmethod; (g)Denoised image using our previously proposedUNet-Att algorithm; (h)The corresponding ground truth
image devoid of noise.
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compared under different algorithms, as shown in
figures 3(e)–(h). It can be observed that all algorithms
are effective in removing noise, but the ability to
recover the original image information varies. Noise2-
noise and DeepCAD, although preserving the overall
structure of the original image, do not recover the
details as well as the algorithm UNet-Att. The algo-
rithmUNet-Att is closer to the original image in terms
of detail structure, which performs better than the
mainstream algorithms in denoising STORM images
in terms of PSNRmetric.

3. Image information extraction and
clustering processing

After denoising the STORM images, it is necessary to
extract information about the proteins present in the
images. This information needs to be organized in
order to perform statistical analysis and analyze the
protein distributions. In the case of the RIP1 and RIP3
amyloid proteins, they exhibit a gradual aggregation
process from monomers to multimers within the cell.
Additionally, these two proteins tend to cluster
together, forming heterodimers. The objective is to
extract information about the multimers and then
integrate the information from the same multimers
using an image information clustering algorithm.
Finally, the aim is to quantify the information regard-
ing the heterodimers. Within the domain of image
processing, the terms ‘particle’ and ‘cluster’ are

employed to designate objects of interest. In the
context of this study, we use ‘particle’ to analogously
represent what is biologically known as a ‘monomer,’
and ‘multicluster’ to correspond to the biological
concept of a ‘multimer.’ This terminology allows us to
bridge the understanding between biological struc-
tures and their digital representations in image
analysis.

3.1. Image information extraction based on Ilastik
and ImageJ
After image denoising, the vast majority of noise in the
image is eliminated. However, not all the information
in the image is relevant to our study. The image
contains both free oligomers and multimers, as
depicted in figure 4. Our focus is solely to study the
state of multimers. Therefore, we aim to eliminate
the free oligomers from the image, retaining only the
multimers. In this step, we employ Ilastik [40] to
perform a dichotomous operation to remove the free
oligomers and separate themonomers that cluster into
multimers. Ilastik is an interactive machine learning
image analysis software, primarily used for tasks such
as biomedical image classification, object detection
and pixel segmentation.

In Ilastik, we distinguish oligomers andmultimers
as two different classes of objects, and only keep the
multimer objects in the image for the following image
processing. As for the multimer objects, each mono-
mer comprising a multimer is separated from each
other in the same monomer. The as-obtained output

Table 1.PSNR values of different algorithms at different noise levels (in dB).

σ Raw BM3D Noise2noise DeepCAD

UNet-

Att

(ours)

0.15 18.91 23.19 27.10 26.12 29.38

0.2 16.69 21.50 26.89 26.89 29.40

0.25 14.87 20.01 26.27 27.48 29.04

0.3 13.36 18.67 25.64 26.73 27.56

Table 2. SSIM values of different algorithms at different noise levels.

σ Raw BM3D Noise2noise DeepCAD Att-UNet++ (ours)

0.15 0.99909 0.99945 0.99985 0.99980 0.99988

0.2 0.99847 0.99911 0.99985 0.99983 0.99993

0.25 0.99766 0.99867 0.99982 0.99986 0.99992

0.3 0.99668 0.99814 0.99978 0.99978 0.99982

Table 3.MSE values of different algorithms at different noise levels.

σ Raw BM3D Noise2noise DeepCAD Att-UNet++ (ours)

0.15 836.7 312.1 124.4 148.3 92.0

0.2 1392.5 460.1 131.0 136.4 71.7

0.25 2121.1 649.2 151.1 128.6 79.0

0.3 3002.7 882.4 175.8 170.5 134.3
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image from Ilastik contain the binarized representa-
tions of all individual monomer objects. These are
then processed automatically using ImageJ to extract
quantitative information [41]. Within ImageJ, each
localized monomer is labeled accordingly and ana-
lyzed using the ‘Measure’ function in the ROI Man-
ager interface. The extracted information of each
particle comprising themultimers in the STORM ima-
ges include area, position (measured by Feret para-
meters), and centroid of each segment within the
multimers. This extracted data was stored in a .csv file
format. Following the extraction of these comprehen-
sive parameters for each particle, a clustering process is
undertaken to facilitate further biological analysis.

3.2. Image clustering algorithmdesign
After extracting the information of each component of
the multimers in the STORM image, direct utilization
for biological analysis is unfeasible due to the ambi-
guity of particle grouping. Consequently, we have
developed a clustering algorithm that utilizes image-
based information to categorize particles that belong
to the samemultimer.

Firstly, it is necessary to establish the criteria for
determining whether two particles belong to the same
multicluster. The most common approach is to con-
sider the distance between the centers of two particles,
as implemented by numerous clustering algorithms.
However, this method fails to meet our requirements.
Since our particles possess distinct areas of varying
sizes, it is possible for two particles with a large area
and a significant distance between their centers to still
belong to the same multimer. Therefore, determining
whether two particles belong to the same multimer

can not rely solely on the distance between their
centers.

To address this challenge, we have introduced a
dual assessment of both area and distance. When the
centers of two particles are sufficiently close, we can
determine that these two particles belong to the same
multimer. When the centers of two particles are rela-
tively far apart, but at least one of the particles has a
sufficiently large area, the boundaries of the two parti-
cles are still very close to each other, and in such cases,
it can still be determined that these two particles
belong to the same multimer. If either condition is
met, it can be concluded that the two particles belong
to the same multimer. For a large particle, whose cen-
ter is far from other particles but whose boundary is
close to others, one cannot solely rely on the center
distance. Therefore, area is introduced as a metric for
distance, mapping area to distance. The relationship
between area and distance can be considered quad-
ratic, for example, the area of a circle is πr2 (r, radius of
the circle).

Specifically, if the distance between the centers of
two particles is less than a certain threshold value or
the distance between their centers is less than a certain
fraction of the area distance between the two particles,
both conditions indicate that the particles belong to
the samemultimer. Here the area distance refers to the
distance calculated based on the areas of two protein
aggregates. After conducting multiple trials, we have
established the following expression as the criteria for
judgingmultimermembership:

Consider a multimer Q with a constituent particle
denoted as q, that is Îq Q. To ascertain if another
particle p is identical to q and belongs to the same
multimer Q, particle p must satisfy the criteria of

Figure 4.Oligomers andmultimers. The substances in the blue circles are oligomers and those in the yellow circles aremultimers.
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equation (3), indicating Îp Q:

( ) ( ) ( )< <d d d DV 3pq pq pq

In equation (3), the dpq denotes the distance
between the centers of particles p and q, comprising
both the transverse distance dpq x, (defined as
∣ ∣-p qx x ) and the longitudinal distance dpq y, (defined
as ∣ ∣-p qy y ). px and py denote the x-coordinates, and
qx and qy the y-coordinates, of the centers of particles
p and q, respectively. Both distancesmust be less than a
threshold value d. This threshold d is the maximum
allowable center-to-center distance, which would
influence the clustering effectiveness and is adjustable
for different data sets. Dpq represents the area distance
between particles p and q, based on the area encom-
passing them. On account of the quadratic relation-
ship, mapping area to distance involves taking the
square root of the area and then multiplying by a con-
stant coefficient, which leads a definition of Dpq as ⋅c

( )s smax ,p q (c, constant). The terms sp and sq repre-

sent the areas of particles p and q, respectively.
After numerous experiments, the coefficient c has
been determined to be 2, which yields themost accu-
rate clustering results for the datasets of RIP1
and RIP3.

The criteria established in equation (3) could serve
as a universal method. The parameters set here for the

specific datasets of RIP1 and RIP3 within this method

have been adjusted through numerous trials to match

the characteristics of the RIP1 and RIP3 datasets. If

applied to different datasets, adjustments to the para-

meters (such as the threshold value ‘d’ in equation (3)
and the constant coefficient in the definition of Dpq)
can bemade accordingly.

The algorithm for determining whether two parti-
cles belong to the same multimer enables the categor-
ization of all particles within an image. The algorithm
was implemented using the python code available at

Figure 5. Flowchart depicting the clustering of image information. All particles within the image undergo clustering, and all
monomers constituting eachmultimer are identified through iterative cycling.
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the following URL: https://github.com/YongfaYing/
STORMing-the-necrosome/tree/main/STORMing-
the-necrosome-for-2C-STORM-readout. The proce-
dural flow of the algorithm is outlined below and is
illustrated infigure 5:

(1) Read the data file extracted by ImageJ and select
the first particle that is not categorized. Identify all
particles associated with the same multimer,

group them into the same category, and record all

the particles that have been categorized.

(2) Sequentially select remaining particles within the
multimer, locate associated particles, classify

them into the same group, and label them

accordingly. Repeat this process until no addi-

tional particles are found to associate with this

multimer.

Figure 6.Comparison of images pre- and post-Ilastik processing. The left image shows the pre-processed state; the right image
demonstrates the outcome following Ilastik’s binary classification processing.

Figure 7.Visualization of image information clustering. Each blue circle represents amulticluster, and the yellow number in the lower
right corner of each circle is the numbering of the labeledmulticluster.

Table 4.TPR / FPRof the clustering results for various thresholds.

Threshold value 14 16 18 20 22 24

TPR/FPR 82.53%/16.54% 81.78%/16.67% 87.36%/9.96% 91.82%/5.00% 84.39%/11.67% 76.21%/18.97%
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(3) Calculate the total area of all particles within the
multimer. If the combined area is below a
predefined threshold, the collection is considered
a residual oligomer rather than a multimer and is
subsequently excluded.

(4) Continue the cycle of steps (1) to (3) until all
particles have been classified or removed.

3.3. Results and analysis
3.3.1. Homologousmultimers
The STORM images containing homologous multi-
mers were processed using Ilastik, with the outcomes
presented in figure 6. It is evident that post-Ilastik
processing, extraneous oligomers in the STORM
images are substantially reduced, while the morph-
ology of themultimers is predominantly preserved.

Subsequently, ImageJ was utilized to extract quan-
titative details such as the area and centroid of each
segment within the multiclusteral structure from the
STORM images, which were then saved in a csv for-
mat. The data pertaining to each multimer segment
were amalgamated using the clustering algorithm

described in section 3.2, effectively grouping segments
belonging to the same multimer. By comparing the
true positive rate (TPR) and the false positive rate
(FRP) of the clustering result under different threshold
values d in equation (3), the threshold for the data used
in this experiment was set to an optimal value of 20,
which yields the highest accuracy in the clustering out-
come (table 4). The TPR refers to the proportion of
correctly classified clusters in the clustering results,
while FRP refers to the proportion of incorrectly clas-
sified clusters. The visualization of the clustering out-
comes was demonstrated in figure 7. Following the
clustering and integration of image data, statistical
analyses were performed on the multimer attributes.
For instance, the distribution of monomer areas in the
STORM images is illustrated in figure 8 The majority
of RIP1 monomers, constituting the largest fraction,
are less than 25 pixels in size, with approximately 75%
under 100 pixels, suggesting that most RIP1 mono-
mers are relatively small. Similarly, the RIP3 mono-
mers predominantly occupy an area less than
25 pixels, with around 50% under 100 pixels, indicat-
ing that a significant portion of RIP3 monomers also
exhibit small dimensions.

Figure 8.Area statistics ofmonomers in themultimers. (a)The area distribution ofmonomers of all constituentmultimers in protein
RIP1; (b)The area distribution ofmonomers of all constituentmultimers in protein RIP3; (c)The percentage distribution of the area
ofmonomers of constituentmultimers in protein RIP1; (d)The percentage distribution of the area ofmonomers of constituent
multimers in protein RIP3.
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After clustering the image information, the infor-
mation of the various parts of the multimers is inte-
grated, and we can do statistical analysis of the various

information of themultimers. For example, the area of
the monomers in the STORM image is shown in
figure 8, and the largest percentage of the monomers

Figure 9.Quantitative area analysis ofmultimers. (a)The area distribution ofmultimers in protein RIP1; (b)The area distribution of
multimers in protein RIP3; (c)The area percentage composition ofmultimers in protein RIP1; (d)The area percentage composition
ofmultimers in protein RIP3.

Figure 10.Visualization of heterodimers. Each blue circle indicates an identified heterodimer; red signifies the RIP1 proteinwith
correspondingmultimer counts denoted in red; green signifies the RIP3 proteinwith correspondingmultimer counts in green; yellow
highlights the overlap betweenRIP1 andRIP3. The numbers in red and green indicate the label number of the identifiedRIP1 and
RIP3, respectively.
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in the RIP1 image is less than 25 pixels, and about 75%
of the monomers are less than 100 pixels, indicating
that most of the RIP1monomers are small. The largest
proportion of the area of each part of the monomers
that make up the multimers in the protein RIP3 image
is also the part with an area of less than 25 pixels, and
about 50% of the monomers have an area of less than
100 pixels, indicating that the area of the larger part of
the RIP3monomers is also small.

Additional statistical investigations were con-
ducted on the polymerization areas of the multimers
in the images, as shown in figure 9. The data reveal that
the predominant polymerization area for RIP1 multi-
mers ranges from 0 to 100 pixels, whereas for RIP3
multimers, it spans from 100 to 200 pixels, signifying
that RIP3 multimers tend to occupy a relatively larger
polymerization area.

3.3.2. Heterodimers
In the above section, we conducted a detailed exam-
ination of themorphological features of proteinmulti-
mers located at the junction of two overlapping
proteins. This investigation was facilitated by employ-
ing Ilastik for the segmentation and binarization of
multimer objects within images. Following this, Ima-
geJ was utilized to extract pertinent information from
these segmented images. The extracted data then
underwent a clustering process, focusing specifically
on the two proteins that form the heterodimer. This
methodological approach enabled us to precisely
analyze and understand the complex interactions and
structural characteristics of proteinmultimers.

Our clustering algorithm could also identify colo-
calized RIP1 and RIP3 and calculate their area ratios.
By analyzing the clustered data, we determined the
centroid coordinates of the multimers, which facili-
tated the identification of heterodimers within the

images. This identification was achieved by verifying
the overlap of the two protein multimers using
equation (3) and examining their associated data. The
results of this analysis were visualized and annotated
directly on the images of the multimeric proteins, as
illustrated in figure 10. Within these images, the pro-
teins were represented in separate channels, dis-
tinguished by color coding: red for RIP1 protein and
its homomultimers, indicated by red numerals; green
for RIP3 protein and its homomultimers, indicated by
green numerals; and yellow for the regions where RIP1
andRIP3 overlap.

Upon confirmation of heterodimer formation, we
quantified the constituent multimers and extracted
their morphological data. Subsequently, we per-
formed statistical analyses on this data to elucidate the
characteristics of heterodimer aggregation. For
instance, we calculated the area ratios of RIP1 to RIP3
in all heterodimers within STORM images, as demon-
strated in figure 11. This analysis revealed that the area
ratio of RIP1 to RIP3 in heterodimers was greater than
that of RIP3 alone in only 4.9% of instances. More-
over, in over half of the heterodimers, the area ratio of
RIP1 to RIP3 ranged from 0 to 0.5, suggesting that
RIP3 likely plays a dominant role in heterodimer
polymerization.

4. Conclusion

In this work, we initially apply our previously pro-
posed denoising algorithm for fluorescent micro-
scopic image denoising to denoise STORM images,
and then propose a suite of automated image proces-
sing algorithms for information extraction and analy-
sis of image data, incorporating a novel image
information clustering algorithm. We construct the

Figure 11.Ratio of the area of the two proteins of the heterodimer. AR indicates the ratio of RIP1 area to RIP3 area.
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image denoising algorithm UNet-Att and employ
supervised learning training to train the network
model. The trained network model is then used for
denoising prediction, andwe compare its performance
with other mainstream image denoising algorithms in
the field. The results demonstrate the superior effec-
tiveness of our denoising algorithm in the application
of STORM image denoising. Following the denoising
process, we proceed with the information extraction
procedure on the denoised image. Firstly, we utilize
Ilastik for the binary classification operation on the
image. Subsequently, we employ ImageJ to analyze the
particle size in the image, enabling us to extract particle
information. Finally, utilizing the image information
clustering algorithm we devised in this work, we
cluster the fragmented particle information, facilitat-
ing statistical analysis of the information contained in
the STORM images.

The network architecture of the denoising algo-
rithm in this study is more complicated and intricate,
resulting in a trade-off for increased processing time.
Moreover, the image clustering algorithm employed
in the information extraction algorithm prioritizes
clustering accuracy over time cost. Nonetheless, the
complete automation of this image processing work-
flow, from the raw STORM image to the ultimate data
analysis, markedly enhances the efficiency of handling
large-scale datasets on the whole, as well as the accur-
acy of data analysis.
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