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ABSTRACT Cell migration, which is primarily characterized by directional persistence, is essential for the development of
normal tissues and organs, as well as for numerous pathological processes. However, there is a lack of simple and efficient tools
to analyze the systematic properties of persistence based on cellular trajectory data. Here, we present a novel approach, the
entropy of angular distribution , which combines cellular turning dynamics and Shannon entropy to explore the statistical and
time-varying properties of persistence that strongly correlate with cellular migration modes. Our results reveal the changes in
the persistence of multiple cell lines that are tightly regulated by both intra- and extracellular cues, including Arpin protein,
collagen gel/substrate, and physical constraints. Significantly, some previously unreported distinctive details of persistence
have also been captured, helping to elucidate how directional persistence is distributed and evolves in different cell populations.
The analysis suggests that the entropy of angular distribution-based approach provides a powerful metric for evaluating direc-
tional persistence and enables us to better understand the relationships between cellular behaviors and multiscale cues, which
also provides some insights into the migration dynamics of cell populations, such as collective cell invasion.
SIGNIFICANCE We present a novel approach that combines cellular turning dynamics with Shannon entropy to explore
the directional persistence of cell migration, which helps to accurately analyze the statistical and time-varying
characteristics of persistence and elucidate the importance of intra/extracellular cues in regulating migration dynamics. We
also further validate the superior utility of the approach in revealing the migration modes of multiple cell lines.
INTRODUCTION

Cell migration is an essential function that affects numerous
physiological processes (1–3), including wound healing
(4,5), morphogenesis (6,7), immunological responses (8),
and organ formation (9). However, the onset of dysregulated
migration is commonly associated with human diseases,
such as cancer invasion and metastasis (10,11).

In general, cell migration in complex microenvironments
is mainly governed by intracellular molecular pathways
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(12–14) and extracellular environmental cues (15–17) and
thus exhibits unique migration behaviors (18,19) and collec-
tive phenomena (20,21); for example, chemotaxis regulated
by gradients of diffusible factors (22,23) and durotaxis in
response to gradients of mechanical stiffness (24,25).
More specifically, increased random migration is observed
in the zebrafish mib1ta52b mutant, suggesting that at least
Mib1 helps to enhance persistent cell migration by regu-
lating the Ctnnd1-Rac1 pathway (26). Similarly, persistent
migration is primarily controlled by the microtubule motor
Kif1C through the stabilization of an extended cell rear
(27), and olfactory neural stem cells with a complex
persistence phenotype may lead to an altered brain in
schizophrenia (28). In addition, collagen fibers, as major
components of the extracellular matrix (ECM), could be
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An approach for directional persistence
remodeled by external mechanical stimuli (29-31) and
further facilitate cell aggregation and invasion into rigid
Matrigel, providing further insight into cancer intravasation
(32). Due to the nonlinear mechanical properties of collagen
fiber, it can also transmit signals from one cell to another
and directly serve as a communication medium (33). As re-
ported in our previous work (30,34), MCF-10A cells can
migrate toward each other when the distance between
them is less than 120 mm on top of a three-dimensional
(3D) collagen gel and show a strongly correlated movement.
Significantly, aligned collagen fibers contribute to directed
cell migration (29,35,36) and could predict recurrence after
ductal carcinoma in situ (37–39). Similarly, physical con-
straints in the ECM can also force cells to remodel and adopt
specialized migration modes (40). For example, invasive
MDA-MB-231 cells exhibit a limit cycle in a two-state mi-
cropattern, whereas MCF-10A cells exhibit excitable bista-
ble dynamics (41). Cells reversing, following, and sliding
past each other have also been observed in this micropattern
(42), manifesting the existence of individual differences and
helping to explain the diverse roles of cells in collective
motility.

To accurately describe the directional persistence (43) of
cell migration in complex environments, some novel
models have been developed. For example, amoebae
perform a random zigzag motion to increase the chances
of finding a target (44). Similarly, CD8þ T cell motility
in the brain follows a generalized L�evy walk, allowing
cells to find rare targets more efficiently (45,46). In addi-
tion, a two-state model is constructed that contains persis-
tent and random components and possesses superiority in
fitting the cell speed distribution (47,48). Among these
models, the persistent random walk (PRW) model is one
of the most representative, which incorporates cellular
memory of past velocities and could be derived from the
Langevin equation (49,50). Subsequently, various models
have been proposed based on the PRW model, such as an
anisotropic one to explain the effects of anisotropic ECM
(51,52) and a time-varying one to describe the local fea-
tures of the ECM (34,53).

Along with quantitative models, some methods are
applied to characterize the features of cell migration.
For example, mean squared displacement (MSD) is
introduced to quantify the ability of cells to migrate,
which is habitually characterized by two motility param-
eters: persistence time P and migration speed S (48).
Moreover, the slope of the MSD on the log-log axis could
be used to determine how similar the migration is to bal-
listic/Brownian motion or how strong the persistence is
(52,54). In addition to the MSD, some measures, such
as the velocity autocovariance function (VAC) (55), the
Fourier power spectrum (FPS) (53,56), and the ratio of
displacement to trajectory length (48), can be used to
estimate the ensemble-averaged characteristics of the
parameters, whereas other measures, such as the DiPer
program (48), Bayesian inference (57), and wavelet-based
approach (53), allow us to uncover the time-dependent
characteristics. However, these measures have three
main shortcomings: 1) the estimation of motility parame-
ters is usually performed in an ad hoc manner, assuming
that the associated dynamical model is adequate to
analyze the cellular behavior. However, this approach
will fail and result in inaccurate outcomes in instances
where novel cell behaviors are not accounted for by the
established models (51,58). 2) The derivation of motility
parameters primarily involves complicated computations,
including the inference and fitting (R2 analysis) based
on experimental data with inherent noise, which inevi-
tably leads to numerical uncertainties that are typically
challenging to quantify (52,53,57,59). 3) most of the mea-
sures are easily biased, especially by cell speed and the
correlation with time (48,56,60). Therefore, measuring
directional persistence during migration in real time in a
simple and effective manner becomes a significant
problem.

Here, we develop a novel approach based on cellular
turning dynamics and Shannon entropy to accurately char-
acterize the directional persistence of cell migration, which
is rigorously regulated by intra/extracellular cues. The en-
tropy here has a physical interpretation similar to that of
Gibbs entropy for thermal systems. It reflects the degree
of randomness or order in cell migration dynamics, with a
value of 1 representing the most random dynamics (e.g.,
purely diffusive migration) and 0 representing the most
ordered dynamics (e.g., purely ballistic dynamics). Subse-
quently, we analyzed three types of experimental cell data
regarding Arpin protein, collagen gel/substrate, and phys-
ical constraints and found that the approach is capable of
quantifying the changes in persistence caused by these
multiscale cues, especially the nuanced but significant
differences that other methods have failed to capture. By
analyzing the statistical and time-varying properties of
directional persistence, we gain an understanding of how
cellular migration modes correlate with these multiscale
cues and how directional persistence is distributed and
evolves across different cell populations. Therefore, this
approach allows us to systematically study the characteris-
tics of directional persistence and further elucidate the
dynamic mechanisms underlying cell motility, such as can-
cer metastasis.
MATERIALS AND METHODS

In vitro cell migration data

In this article, we analyzed three types of cell migration trajectory data

affected by the cues at different scales, i.e., Dictyostelium discoideum

migration regulated by the Arpin protein (�10�2 mm (61)), MCF-10A cells

migrating on top of a 3D collagen gel (�10 mm (62)) and a two-dimensional

(2D) substrate, and MDA-MB-231 cells migrating through a microstruc-

tured array (�5 � 102 mm (63)). The D. discoideum data were taken with
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permission from published work (64), and the MDA-MB-231 cell data were

courtesy of Claus Metzner (57,63). Finally, the MCF-10A cell data were

generated in our laboratory. See work (30,34) for more details on the

experiments.
Cell migration simulated by biophysical model

PRW model

To systematically study the characteristics of cell migration, we introduce

a classical biophysical model, the PRW. With this model, the position of a

cell at each time step can be easily calculated using the following

equations:

xðt þ DtÞ ¼ xðtÞ þ Dxðt;DtÞ; (1)

yðt þ DtÞ ¼ yðtÞ þ Dyðt;DtÞ; (2)
where Dt is the time step, x and y are the coordinates of the cell in the 2D

plane, and Dx and Dy are the cell displacements in the time step of Dt. Here,
the displacements are further written as

Dxðt;DtÞ ¼ a ,Dxðt � Dt;DtÞ þ F ,W; (3)

Dyðt;DtÞ ¼ a ,Dyðt � Dt;DtÞ þ F ,W; (4)
where the displacements on the left side are the consequences of those on

the right side in time step of Dt, a ¼ 1 � Dt=P indicates the memory offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

the cell to past velocities, and F ¼ S2,Dt3=P quantifies the amplitude

of the white noiseW � N ð0;1Þ. In particular, the case where a approaches

1 and F approaches 0 when P[Dt corresponds to ballistic motion,

whereas the case where a approaches 0 and F approaches S,Dt when

P � Dt corresponds to Brownian motion.

To account for the effects of experimental measures, we also further add

positioning errors to the simulated trajectory data, as given bybxðtÞ ¼ xðtÞ þ spos ,W; (5)

byðtÞ ¼ yðtÞ þ spos ,W; (6)
where spos is set to 0.01 mm (60). In all computer simulations, we set

Dt ¼ 0.2 min, S ¼ 0.3 mm/min, and total time T ¼ 960 min.
Time-varying PRW

Since cell migration is generally regulated by intra/extracellular cues,

including Arpin protein, biochemical factors, and geometric structures,

the trajectory data always possess time-dependent characteristics, such

as the transition from Brownian to ballistic motion. Inspired by the

time-dependent characteristics, we modify the PRW model and obtain

a time-varying PRW (TPRW) model. The details of the simulations

are as follows: 1) determining the functions, i.e., PðtÞ and SðtÞ, of the
motility parameters versus time based on the time-varying characteris-

tics of the experimental migration trajectories, such as continuously

increasing, decreasing, or first increasing and then decreasing, etc.; 2)

calculating the time-varying factors, i.e., aðtÞ and FðtÞ, based on the

equations aðtÞ ¼ 1 � Dt=PðtÞ and FðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðtÞ2,Dt3=PðtÞ

q
, respec-

tively; 3) performing the simulations according to the same procedures

as those for the PRW model, especially updating the values of the

motility parameters according to their functions at each time step. In

this work, we designed four classes of persistence changes based on

the different changing features of the migration trajectories in the Sup-

porting Material, i.e., the constant, the linear, the abrupt, and the

nonlinear persistence changes in Fig. 4, to explore the effects of direc-

tional persistence on migration dynamics.
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Conventional evaluations of cell migration
dynamics

Statistical analysis of cell migration velocity

For experimental or simulated trajectory data~ri, the migration velocity~vi
can be computed from the displacement at each time step, namely ~vi ¼
ð~ri � ~ri� 1Þ=Dt. Subsequently, we analyze two aspects of these velocities:

1) velocity vs. time for estimating the stationarity, and 2) the distribution of

squared velocities for learning the statistical features.

Correlation of angular displacement with velocity

Based on the migration velocities, we first calculate the angular displace-

ment (angle) between any two consecutive velocity vectors using the

following equation:

q ¼ cos� 1

0@ ~vi ,~viþ1���~vi��� , ���~viþ1

���
1A: (7)

Second, we map the q into the close interval of ½�p;p� by referring to the

deflection (left or right) of the second vector relative to the first vector.
Finally, we record the second vector and plot the velocity vs. angle profile

to reveal the correlation between angular displacement and velocity.

MSD evaluation

In addition to the statistical analysis of the migration velocities, we also

calculate the MSD based on the trajectory data ~ri using the following

equation:

MSDðtÞ ¼ 1
N� tþ1

PN� t

i ¼ 0

�
~riþt � ~ri

�2
; (8)

where N is the total number of cell positions for individual trajectories, and

t is the lag for time. By averaging the MSDs for all trajectories, we obtain
an ensemble-averaged MSD profile that quantifies the ability of cells to

migrate. Notably, one could extract the slope a of the MSD profile on the

log-log axis and compare it to a ¼ 1 (or 2) to estimate how similar the

migration behavior is to Brownian (or ballistic) motion.

VAC evaluation

Similarly, according to the migration velocities above, the VAC is also

computed by

VACðtÞ ¼ C~vi ,~viþtD ¼ 1
N� � t� 1

XN� � t

k ¼ 1

 
~vk � 1

N� � t

PN� � t

l ¼ 1

~vl

! 
~vkþt � 1

N� � t

PN� � t

l ¼ tþ1

~vl

!
; (9)

where N� ¼ N � 1 is the total number of the migration velocities. With

the VAC evaluation, one could not only directly estimate the degree of cor-
relation (or persistence) but also determine the migration modes encoded by

the linearity of the VAC profile. If the VAC profile on the log-lin axis could

be well fitted by a linear line, it illustrates that it follows a single-exponen-

tial decay, and the migration behavior satisfies the PRW model to some

extent; otherwise, a double-exponential decay may be at least superior,

and the migration behavior may not be isotropic but anisotropic or hetero-

geneous (65).

FPS evaluation

It has been reported that the above two evaluations are strongly correlated

with time, so they may not provide more accurate results. Therefore,

another evaluation, FPS, is proposed to transform the VAC from the time

domain to the frequency domain by Fourier transform according to the
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Wiener-Khinchin theorem (66), which states that the power spectrum of any

generalized stationary random process is the Fourier transform of its auto-

covariance function. The theorem requires that the time series (i.e., veloc-

ities) are stable with time, and thus the stable migration velocities generated

by the PRWmodel can be computed directly via this theorem. However, for

the unstable velocity series generated by the TPRWmodel, wewill compute

the FPS profile according to the definition of the power spectrum, i.e., the

squared magnitude of a given Fourier series coefficient.
3D distribution of angular displacements

Based on the migration velocity generated by the biophysical models above,

we first calculate the angle between any two consecutive velocity vectors

(i.e., t ¼ 1) and further map it to the interval of � p � p. Second, we

divide the above interval into n bins and count the number of angles in

each bin for a frequency diagram. Then, we normalize the diagram and sub-

sequently obtain a 2D probability density function (PDF). Finally, we

further compute PDFs when t ¼ 2; 3;/ and get a 3D PDF regarding

angular displacements and time lag (i.e., t � Dt).
Entropy of angular distribution

According to the definition of directional persistence, it is evident that the

correlation between any two velocities will decrease as the t increases;

therefore, the shape of the PDF will transition from an uneven ‘‘peak’’ to

a uniform ‘‘plain.’’ To characterize this change in shape quantitatively, we

further introduce the Shannon entropy with the following form:

H ¼ �
Xn
i ¼ 1

pi , log2 ðpiÞ; (10)

where n is the total number of events (equivalent to the bins) and pi are the

probabilities of the random events occurring. Note that the H is maximal
log 2ðnÞ when pi are equal to each other, i.e., pi ¼ 1=n, meaning that

we are not completely sure of the result. Furthermore, we substitute the

pi with a single PDF for a given t and thus obtain a value of H. After per-

forming the same calculations for all t, we obtain the relationship between

H and t. Since theH is strongly correlated with the bin size n, we normalize

all H by dividing the maximum H to eliminate this correlation. As a conse-

quence, allH are rescaled to the close interval of [0, 1], among whichH ¼ 1

corresponds to an absolutely uniform PDF (i.e., the most random state, or

purely random dynamics) and H ¼ 0 corresponds to an absolutely uneven

PDF (i.e., the most ordered state, or purely ballistic dynamics). We use the

term entropy of angular distribution (EAD) to refer to the normalized H in

this paper to avoid confusion.
Correlation between EAD, time lag, and
persistence

To better illustrate the correlation between EAD, time lag, and persistence,

we further simulate cell migration trajectories using the PRW model with

different prescribed persistence, then compute the EAD at each time lag

following the above procedures, and finally obtain EAD profiles with

respect to time lag and the prescribed persistence. Based on these profiles,

we mainly perform two types of analyses: the effects of time lag and persis-

tence on the evolution of EAD profiles.
Joint parameter distribution

Although we can clarify the correlation between EAD, time lag, and persis-

tence based on the datasets generated by the PRW/TPRWmodels, it is actu-

ally infeasible because we have no prior knowledge of the persistence

encoded in the experimental data. With this consideration, we propose a
joint parameter with two components to more accurately characterize the

properties of persistence. The first parameter is the time lag (i.e., TL1)

when EAD ¼ 1, which indicates the time it takes for an uneven PDF to

become uniform. In contrast, the second parameter is defined as the EAD

(i.e., EAD1) when t ¼ 1, which indicates the degree of the unevenness

of the PDF at the first time lag. Thus, we can combine these two parameters

(TL1, EAD1) to jointly quantify the directional persistence of cell migra-

tion. With the joint parameter’s distribution (JPD), we can analyze the

distribution of directional persistence for a cell population and reveal

the differences between multiple cell populations. Note that the value of

TL1 is determined when the EAD is theoretically equal to 1, but most

likely the EAD could be less than 1 due to the effects of errors, noise,

and so on. That is, the EAD is still less than 1 when it becomes stable.

Thus, we will use the stable EAD to replace the theoretical 1 above when

determining the value of TL1. See the experimental sections below for

real examples.
Time-varying EAD

In addition to the statistical profiles of the directional persistence, it is also

essential to reveal the time-dependent features of the directional persistence

due to the local effects of the ECM. Next, we compute the time-varying

EAD by drawing on the sliding-window algorithm employed in the

windowed Fourier transform. First, we determine the window length Lw
for a given angle series obtained from velocity series and compute the first

EAD based on the first window (1 � Lw). Second, we slide the window one

step forward and calculate the second EAD based on the second window (2

� Lw þ1). Then, we iteratively perform the sliding and computation.

Finally, we obtain an EAD profile with time changes. Note that the perfor-

mance of the windowed Fourier transform is significantly correlated with

the length of the window; i.e., a short window leads to inaccurate results,

whereas a long window leads to poor temporal resolution. In this study,

we determine the window length according to the condition that the angles

contained in a window can form a distribution with an obvious peak.

Although the shortcomings still exist, the approach allows us to explore

the main time-dependent features of directional persistence, especially

the significant transition. Therefore, the algorithm for the time-varying

EAD makes sense when utilized to analyze the time-varying features of

migration data.
Correlation analysis

The correlation coefficient reflects the degree of correlation between two

variables. If the data are continuous numerical variables, and both satisfy

normality (or have obvious single peaks), the Pearson coefficient is

preferred, and, if the data do not satisfy the normality after bijective trans-

formation, the Spearman or Kendall coefficients are optional.
RESULTS

Conventional evaluations of cell migration
simulated by the TPRW model

After performing simulations using the TPRW model, we
obtain trajectory data of cell migration that are mainly
dominated by the prescribed persistence time. Fig. 1 A ex-
hibits a representative trajectory of individual cells, and it
seems that the trajectory has different directionality (or
straightness) by referring to the compactness (or density)
of the points, i.e., high tortuosity (dense) on the lower-left
and low tortuosity (sparse) on the upper-right. The compact-
ness may denote the changing trend of persistence from
Biophysical Journal 123, 730–744, March 19, 2024 733



FIGURE 1 Conventional evaluations of cell migration simulated by the TPRWmodel. (A) A representative migration trajectory with a time-varying persis-

tence linearly ranging from 0.5 to 10 min. (B) Distribution of the squared velocities. The inset shows the same results on the log-lin axis. (C) Velocity as a

function of angular displacement. The results in (B and C) are derived from the data in (A). (D) MSD profiles for the four classes of prescribed persistence.

They increase linearly from 0.5 to 0.5, 1.0, 2.0, and 5.0 min. (E) VAC profiles. (F) FPS profiles. The sample size (i.e., the number of simulated trajectories) is

n ¼ 100 for each ensemble-averaged profile in (D)–(F). The three straight lines in (B), (D), and (E) are auxiliary for enabling us to better understand the

changes. To see this figure in color, go online.
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weak to strong, which is also consistent with the gradually
increasing persistence prescribed in the model (i.e.,
0.5–10 min). Subsequently, the squared velocities are calcu-
lated, and the corresponding histogram is plotted in Fig. 1 B.
Evidently, the counts gradually decrease from�2�103 to 0,
and this progress follows an exponential decay as presented
by the red line in the inset. Moreover, the migration veloc-
ities are also correlated with the angular displacements, as
exhibited in Fig. 1 C. The large velocities are mainly
concentrated around 0 rad, indicating that the faster
migrating cells prefer to migrate in the same direction as
before, whereas the slower migrating cells prefer to turn.
Thus, large velocities are coupled with stronger persistence
to some extent, consistent with the previous report (67).

In the following, we first calculate MSDs for trajectory
data governed by four classes of persistence parameters
that increase linearly from start to end, i.e., [start, end] ¼
[0.5, 0.5], [0.5, 1.0], [0.5, 2.0], and [0.5, 5.0]. These param-
eter designs are mainly inspired by real situations (see Sup-
porting Material), e.g., a cell migrating toward a nutrient
source or through a structure with gradually increasing con-
straints. The results indicate that all MSDs grow with time,
and the differences between them become more and more
pronounced (Fig. 1 D). Specifically, the MSD for the first
class grows with a slope greater than 1 (i.e., a > 1) when
time is less than�2 min and the a decreases to a value close
to 1 (i.e., a � 1) when time is greater than �2 min. As the
end of persistence increases to 5.0, both types of a increase
and gradually approach 2.
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Similarly, the VACs also behave differently as the end of
persistence increases (Fig. 1 E). For example, the VAC for
the first class decreases as time gradually increases, and
this trend could be well fitted by a straight line on the log-
lin axis, indicating that the VAC follows a single-exponential
decay. In contrast, the VAC for the fourth class is nonlinear,
meaning that it cannot be well fitted by a single-exponential
decay but at least by a double-exponential function.

Finally, we further calculate all FPS profiles for the clas-
ses (Fig. 1 F), which essentially shows the distribution of the
migration modes concerning frequency. Among them, the
FPSs in the low-frequency interval (less than �0.08/min)
correspond to correlation (or behavioral mode) on the long
timescale, whereas the counterparts of high frequency corre-
spond to randomness (or white noise) on the short timescale.
Thus, the migration behavior has a higher correlation when
the FPSs in the low-frequency interval are much larger than
those in the high-frequency interval. As shown in Fig. 1 F,
the differences gradually become more apparent as the
end of persistence increases.
EAD as an indicator of directional persistence

To vividly display the 3D PDFs of angular displacements,
especially the changes in the shape of the PDF, we randomly
select a migration trajectory from the data simulated by the
PRW model with a persistence of 10 min, and we further
compute the PDF at each time lag ranging from 0.2 to
40 min. Then, all the PDFs are stacked along the time-lag



FIGURE 2 The EAD approach quantifies the directional persistence of cell migration. (A) 3D PDF of angular displacements based on individual trajec-

tories simulated by the PRW model with a persistence of 10 min. (B) Ensemble-averaged 3D PDF of angular displacements. (C) EAD as a function of time

lag. The result corresponds to the PDF in (B) and is presented as mean 5 SD. (D) The effect of the prescribed persistence on the EAD profiles. The persis-

tence parameter increases from 0.5 to 10 min, as indicated by the red arrow. (E) Relationship between time lag (TL1) and prescribed persistence when EAD

R 0.995. (F) Relationship between EAD (EAD1) and prescribed persistence when time lag¼ 0.2 min (i.e., t ¼ 1). The bin size is 36 for the calculation of the

PDF, and the sample size is n ¼ 100 for the ensemble-averaged PDF. To see this figure in color, go online.
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axis to form the final 3D distribution, as shown in Fig. 2 A. It
is clear that, when the time lag is small (<� 12 min), the
PDF possesses larger probabilities around 0 rad and smaller
around 5p rad, forming a trend of higher in the middle
(peak) and lower at both ends (valley). As the time lag in-
creases, the peaks become lower and the valleys become
higher. Eventually, this change causes the peaks and valleys
to be basically equal in height, forming a plain as a whole.
To further study the ensemble characteristics of the 3D PDF
for a cell population, we average the 3D PDFs for all trajec-
tories in that population and obtain the ensemble-averaged
3D PDF (Fig. 2 B). In general, the ensemble-averaged
PDF is highly similar to the PDF in Fig. 2 A, preliminarily
indicating that the cells in this population follow similar
migration dynamics.

Next, we compute the EAD along the time-lag axis of each
PDF (e.g., Fig. 2 A) and obtain EAD profiles for all trajec-
tories as well as the ensemble-averaged EAD profile (Fig. 2
C). The results indicate that the averaged EAD has the small-
est value (0.680) when the time lag ¼ 0.2 min (i.e., EAD1 ¼
0.680) and gradually increases until the EAD reaches 0.995
(i.e., TL1 ¼ 24 min). Note that the value of 0.995 is artifi-
cially determined, which does not mean that the EAD will
stop increasing when EADR 0.995, just that it will increase
slowly. According to our previous understanding of the
correlations encoded in VAC and combined with the 3D
PDF, it is easy to deduce that the small EAD means strong
correlation (i.e., persistence), whereas the large EAD means
weak correlation (i.e., randomness). Thus, the averaged EAD
in Fig. 2 C shows the transition from the state with strong
persistence to the state with random property. Moreover,
the error bars also gradually decrease, which we believe is
caused by the high sensitivity of the persistence state and
the low sensitivity of the random state to noise.

To further validate the above conclusion, we again simu-
late cell migration using the PRW model with different
persistence parameters and obtain the corresponding EAD
profiles, as shown in Fig. 2 D. As the persistence parameter
increases from 0.5 to 10 min, the EAD profiles gradually
move to the lower-right region of the panel (see the red ar-
row), and cause the joint parameter (TL1, EAD1) to behave
differently; e.g., the TL1 increases linearly (Fig. 2 E) and the
EAD1 decreases nonlinearly (Fig. 2 F).
Statistical characteristics of directional
persistence for cell populations

Besides the application of the joint parameter in character-
izing the directional persistence of individual trajectories,
it also allows us to reveal the statistical characteristics of
the directional persistence for cell populations, as shown
in Fig. 3. It is evident that there are three clusters (or peaks)
in Fig. 3 A, and their characteristics are as follows: 1) the
first cluster is mainly located at (1.860, 0.856), i.e., the joint
parameter (TL1, EAD1) of the center of the peak, and pos-
sesses a smaller region; 2) the second cluster is located at
(3.698, 0.780) and possesses a region similar in size to
that of the first cluster; and 3) the third cluster is located
Biophysical Journal 123, 730–744, March 19, 2024 735



FIGURE 3 Normalized 3D JPDs of TL1 and

EAD1. The two distributions show the discrete (A)

and continuous (B) changes in persistence for two

cell populations simulated by the TPRW model.

The former corresponds to the prescribed three clus-

ters of persistence, i.e., N 1 � (1.0, 0.002), N 2 �
(2.0, 0.002), andN 3 � (10.0, 0.002), and their sam-

ple sizes are 5�100, 5�100, and 90�100 for better

visualization.However, the latter is calculated based

on 100 distributions (i.e., N n, n ¼ 1–100) with the

means ranging from 1.0 to 10.0min, and each distri-

bution corresponds to a sample size of 100. To see

this figure in color, go online.
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at (17.483, 0.685) and possesses a larger region. Here, the
TL1 of the three clusters gradually increases from 1.860 to
17.483, and the EAD1 gradually decreases from 0.856 to
0.685, illustrating that the third cluster corresponds to stron-
ger persistence, followed by the second and the first. The
above results are also consistent with the three types of
Gaussian distributions of persistence prescribed in the
PRW model, which are N 1 � (1.0, 0.002), N 2 � (2.0,
0.002), and N 3 � (10.0, 0.002), respectively.

Unlike the three discrete clusters in Fig. 3 A, JPD can also
reveal continuous changes in persistence, as shown in Fig. 3
B. The distribution covers a large region, which starts with
the state with random property around (1.855, 0.869) and
ends up with the state with strong persistence around
(24.592, 0.677). The results also conform to the prescribed
persistence; i.e., the mean of the distributions ranges from
1.0 to 10.0with an increment of 0.2, and thevariance is 0.002.
Time-varying persistence of compliance with
multiple trends

To test the performance of the approach used to compute
time-varying persistence, we design four cases of persis-
tence changes in this section. These cases are, respectively,
1) the constant persistence change, i.e., P ¼ 0.5 min; 2) the
linear persistence change, i.e., P increases from 0.5 to
1.0 min; 3) the abrupt persistence change, i.e., P ¼ 0.5 in
the first half of the simulation time and 1.0 min in the second
half; and 4) the nonlinear persistence change, i.e., P first in-
creases and then decreases according to a sine function.

Subsequently, the time-varying EAD is calculated for
each case, as exhibited in Fig. 4. For the first case, the
EAD is basically stable at around 0.890, indicating that
the encoded persistence is generally unchanged and weak
(Fig. 4 A). However, for the second case, the EAD gradually
decreases from 0.887 to 0.797, implying that the persistence
becomes stronger (Fig. 4 B). Different from the above linear
changes in persistence, the sliding-window algorithm also
exhibits good performance in processing nonlinear changes.
For example, the EAD for the third case first starts at a high
level and remains stable at around 0.890 and then drops to a
low level and stabilizes at around 0.790, which to some
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extent reflects the transition of persistence (Fig. 4 C). This
transition is also very similar to that of a single MDA-
MB-231 cell migrating through a microstructured array
(see Fig. 7 for more details). Moreover, the EAD for the
last case first decreases from 0.880 to 0.779 and then in-
creases in the opposite direction, indicating a nonmonotonic
trend of persistence change (Fig. 4 D). Although the above
four cases cannot represent all complex situations in natural
conditions, they represent the main changes in persistence,
including linearity, continuity, and monotonicity. Therefore,
it is reasonable to assume that the approach is practical and
robust. In the Supporting Material, we also explore the ad-
vantages of this EAD approach over some existing classical
models, including the PRW, APRW, and TPRWmodels (see
Fig. S1 and Table S1 for further analysis).
The EAD approach uncovers the critical role of
the Arpin protein in governing the directional
persistence of D. discoideum migration

With the biophysical insights encoded in EAD having been
understood from the study of trajectory data simulated by
the PRW/TPRW models in the previous sections, we now
employ this EAD-based approach to investigatemigration dy-
namics in terms of directional persistence regulated by intra-
cellular proteins. In this section, all trajectory data are taken
from thework ofDang et al. (64), which identifies a novel pro-
tein,Arpin.TheArpin inhibits theArp2/3 complex invitro and
antagonizes an intrinsic positive feedback loop that sustains
lamellipodial protrusion. In this work, we analyze the motility
of D. discoideum amoebae, which contain three groups for
experiment and control, i.e., wild-type (WT) amoebae, Ar-
pin-knockout (KO) amoebae, and rescued by green fluores-
cent protein (GFP)-Arpin expression in knockout amoebae
(rescue)

Fig. 5 shows comparisons of the results based on the EAD
analysis for the three groups. On the one hand, the PDF of
the WTamoeba (Fig. 5 A) has not only the intermediate-large
values (�0.17) marked in red but also the intermediate-small
values (�0.07) marked in blue when the time lag is less than
�5/6 min. In contrast, both the number of large and small
values in the PDF of the WT amoeba are smaller than those



FIGURE 4 Time-varying EAD profiles reveal

multiple changing trends of persistence prescribed

in the TPRW model. The EAD profiles show the

constant persistence changes (A), the linear persis-

tence changes (B), the abrupt persistence changes

(C), and the nonlinear persistence changes (D),

respectively. The data are presented as mean 5

5�SE and indicated by the black lines and blue re-

gions; the sample size is n ¼ 100 for the ensemble-

averaged EAD in each case. To see this figure in co-

lor, go online.
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of the KO amoeba (Fig. 5D), which has themost large (�0.23
marked in crimson) and small values (�0.05 marked in pur-
ple), and larger than those of the rescue amoeba (Fig. 5 G),
which has the fewest large(�0.13marked inyellow) and small
values (�0.09 marked in light blue). On the other hand, the
number of valuesmarked in green (�0.10) for the KO amoeba
is significantly larger than those for the WT amoeba and the
rescue amoeba, respectively, when the time lag is greater
than �5/3 min. Overall, the PDF of the KO amoeba is more
concentrated at around 0 rad, followed by the WT amoeba
and the rescue amoeba. These characteristics qualitatively
illustrate that the correlation encoded in the 3D PDF of the
KO amoeba is stronger compared to the other two groups.

In terms of quantitative analysis, all EAD profiles of the
three groups gradually increase and then remain stable. Never-
theless, there are still obvious differences that can be used to
preliminarily estimate the degree of persistence. For example,
when the time lag is 5/60min (i.e., t¼ 1), the EAD is 0.9425
0.007 (mean 5 SE) for the WT amoeba (Fig. 5 B), and it is
significantly greater than 0.883 5 0.009 for the KO amoeba
(p < 0.001, t-test; Fig. 5 E) and less than 0.964 5 0.004 for
the rescue amoeba (p < 0.01, t-test; Fig. 5 H). Moreover, the
time lag required for stabilization is about 30/60 min (i.e.,
t ¼ 6) for the WT amoeba, whereas it is about 40/60 min
(i.e., t ¼ 8) for the KO amoeba and 25/60 min (i.e., t ¼ 5)
for the rescue amoeba. The results highlight the differences
in directional persistence from an ensemble averaging
perspective. In the Supporting Material, we also analyze the
time-varying dynamics of individual trajectories and further
illustrate the heterogeneity of cell population dynamics (see
Fig. S2 for more details).
To further explore the details of directional persistence,
we compare the normalized JPDs of these three groups.
First, the JPDs mainly contain single clusters with the cen-
ters located at (0.354, 0.967) for the WT amoeba (Fig. 5 C)
and (0.395, 0.977) for the rescue amoeba (Fig. 5 I), respec-
tively. However, the JPD of the KO amoeba (Fig. 5 F) con-
sists mainly of three clusters: 1) the first cluster is located
at (0.838, 0.907) and has a large region (279,129, pixel2);
2) the second cluster is located at (2.222, 0.882) and covers
a relatively small area (150,268, pixel2); and 3) the third
cluster is shaped like a long strip (141,415, pixel2) covering
from �0.70 to �0.95 along the EAD1 axis. In addition, the
cluster for the WT amoeba has a larger region size than
that for the rescue amoeba, i.e., 190,187 (pixel2) for the
former and 139,691 (pixel2) for the latter, but both of them
are smaller than 279,129 (pixel2) of the first cluster for the
KO amoeba. Here, the region areas are measured using
the ‘‘Analyze>Measure’’ function in ImageJ. Note that the
points at TL1 ¼ 4.0 min are the consequence of the issue
that the actual TL1 of some cells cannot be determined in
the prescribed interval because all values in individual
EAD profiles are smaller than the value used to determine
the TL1.
The EAD approach assesses the directional
persistence of MCF-10A cell migration across
varying conditions

In this section, we continue to investigate the characteristics
of directional persistence of MCF-10A cells migrating on
top of a 3D collagen gel (collagen) and a 2D Petri dish
Biophysical Journal 123, 730–744, March 19, 2024 737



FIGURE 5 Arpin protein weakens the directional persistence of D. discoideum migration. (A) 3D PDF of angular displacements for the WT amoeba. (B)

EAD as a function of time lag. (C) Normalized 2D JPD of TL1 and EAD1. Note that the results in (B) and (C) are derived from the data in (A). The other

captions are the same as those in (A)–(C), but for the KO amoeba (D–F) and the rescue amoeba (G–I). The bin size is 10 for calculating the PDF; the data in

(B), (E), and (H) are presented as mean5 SE; the sample sizes are n¼ 43, 38, and 45 for the WT, KO, and rescue amoeba, respectively; and the EADR 0.99

for determining the TL1. Trajectory data were taken with permission from the work (64). To see this figure in color, go online.
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(substrate). See our previous work (30,34) for more details
on the in vitro experiments.

Following the above procedures, we analyze the direc-
tional persistence of MCF-10A cell migration under
different conditions, and the results are shown in Fig. 6.
The 3D PDF of the collagen condition (Fig. 6 A) has
more small values (�0.01) marked in purple when the
time lag is less than �40 min, in contrast to the less small
values for the substrate condition (Fig. 6 D). Moreover,
the large values (�0.03) marked in light blue for the
collagen condition are more than those for the substrate
condition when the time lag is greater than �40 min.
These features show that the PDF of the collagen condi-
tion is more concentrated at around 0 rad, meaning that
738 Biophysical Journal 123, 730–744, March 19, 2024
the corresponding correlation is stronger when compared
to the substrate condition.

Furthermore, the EAD profile of the collagen condition
(Fig. 6 B) is integrally smaller than that of the substrate con-
dition (Fig. 6 E), which is well quantified by the mean
(0.892 5 0.009) of the former and that (0.906 5 0.008)
of the latter, except for the values at time lag ¼ 2 and
4 min (i.e., t ¼ 1 and 2). More specifically for the exception,
the EADs of the former are 0.793 5 0.008 and 0.859 5
0.008, both of which are greater than 0.781 5 0.013 and
0.851 5 0.012 of the latter. Although the term ‘‘greater’’
is not entirely infallible because of the error bars (p > 0.5,
Wilcoxon rank sum test), it at least shows that some cells
in the substrate condition possess the strongest persistence



FIGURE 6 Collagen enhances the directional persistence of MCF-10A cell migration. The captions are the same as those in Fig. 5A–5C, but the results

correspond to the migration on 3D collagen gel (A–C) and 2D Petri dish (D–F). The bin size is 36 for calculating the PDF; the data in (B) and (E) are presented

as mean5 SE; the sample sizes are n¼ 107 and 105 for the collagen and the substrate conditions, respectively; and the EADR 0.9 for determining the TL1.

To see this figure in color, go online.

An approach for directional persistence
at the small scale of time lag. Interestingly, as the time lag
gradually increases, the EAD of the collagen condition in-
creases slowly and takes a total of 30 min (i.e., t ¼ 15) to
reach 0.90, whereas the EAD of the substrate condition in-
creases rapidly and takes 10 min (i.e., t ¼ 5). The above re-
sults illustrate 1) the directional persistence for the collagen
condition is slightly weaker than that for the substrate con-
dition at the small scale of time lag (%4 min), but 2) the
persistence for the former decays more slowly (or lasts
longer) when compared to that for the latter. This phenom-
enon may be explained by previous studies (29,36,68) that
collagen fibers can limit protrusions and facilitate directed
cell migration.

Finally, the JPDs of the two conditions also exhibit the
statistical features of directional persistence and the signif-
icant differences between them. The JPD of the collagen
condition is mainly composed of two clusters (marked by
the small stars) in the interval of 0–70 min, and their centers
are located at (5.126, 0.910) and (5.178, 0.824), respec-
tively. However, it is noticeable that the JPD of the substrate
condition contains three clusters with the centers located at
(5.125, 0.918), (5.152, 0.832), and (7.429, 0.729). In
contrast, the two clusters for the collagen condition corre-
spond to the first and second clusters for the substrate con-
dition, respectively, due to the similar joint parameters.
Furthermore, these clusters have different cell proportions
due to the different areas of the black regions, e.g., the sec-
ond cluster at (5.178, 0.824) for the collagen condition and
the first cluster at (5.125, 0.918) for the substrate condition
represent higher proportions, whereas the clusters at (5.126,
0.910) and (5.152, 0.832) represent lower proportions. Thus,
if we do not consider the third cluster at (7.429, 0.729) for
the substrate condition and the more points at TL1 ¼
100 min for the collagen condition, we could judge that
the proportion of cells with stronger persistence is higher
in the collagen condition than that in the substrate
condition. Of course, the focus of JPD is not to estimate
the proportions of cells with different persistence but to
reveal how the persistence is distributed for a given cell pop-
ulation. Here, the analysis in terms of statistical features is
also enhanced by the time-varying properties shown in
Figs. S3 and S4.

The above results indicate that the directional persistence
of cell migration is strictly regulated by intra/extracellular
cues and validate the utility of the EAD-based approach in
revealing the statistical properties of directional persistence.
The EAD metric captures transitions in the
migration dynamics of individual MDA-MB-231
cells in a confined environment

In the previous sections, we have thoroughly analyzed the
directional persistence of cell migration from the perspec-
tive of statistical features that are affected by different
conditions. Now, let us shift our thinking to study the
time-varying characteristics of directional persistence using
the EAD-based approach. Here, the experimental trajectory
data represent the positions of a single MDA-MB-231 cell
Biophysical Journal 123, 730–744, March 19, 2024 739



FIGURE 7 The EAD approach captures the transition of migration modes of a single MDA-MB-231 breast cancer cell in a channel array. (A) Invasive

breast cancer cells migrate through a microstructured array of channels and chambers. Cell nuclei are stained with Hoechst and shown in red. Scale bar,

50 mm. (B) 3D PDF of angular displacements for the cell labeled 5. (C) EAD as a function of time lag. (D) Time-varying EAD. The red arrow indicates

the transition point. (E) The migration trajectory is divided into two parts based on the transition point. The inset is an enlarged image of the second

part. (F) The migration velocity is divided into two parts. The two parts are marked in red and blue, respectively; the bin size is 18 for calculating the

PDF and the window length is 51. Data in (A) and (E) courtesy of Claus Metzner (57,63). To see this figure in color, go online.
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nucleus stained in red with Hoechst as it squeezes through a
one-dimensional (1D) array of sequential channels and
chambers (see Fig. 7 A).

Fig. 7 B shows the 3D PDF of the cell labeled ‘‘5’’; on the
whole, it differs significantly from the other PDFs associ-
ated with the Arpin and collagen experiments because this
PDF is the result of a single cell instead of an ensemble
average. Although the PDF presents some irregular fluctua-
tions or small peaks, it still has a noticeable trend; i.e., as the
time lag increases, the sharp peak (with fewer red regions)
centered at 0 rad gradually extends to two sides and forms
a flatter peak (with more red regions). This change gradually
transforms the uneven PDF at the small scale of time lag into
the more uniform PDF at the large scale, implying that the
correlation becomes progressively weaker. Subsequently,
this result is further confirmed by the EAD profile (Fig. 7
C), which increases from �0.55 to �0.65 in a manner of
fluctuation, meaning that the directional persistence decays
with the increase of time lag.

More importantly, the time-varying EAD (Fig. 7 D) for
this cell shows a noticeable transition from a low level
(�0.2) to a high level (�0.7), indicating that this cell mainly
performs two migration modes (i.e., modes with strong and
weak persistence). Furthermore, this trend is highly similar
to that shown in Fig. 4 C, which further verifies the reason-
ability of the abrupt persistence change. Next, we artificially
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determine the position of the transition point (820, 0.41) ac-
cording to the trend of the EAD profile in Fig. 7 D and use it
to divide the migration trajectory into two parts (Fig. 7 E).
The first part (red line) describes the normal motility of
this cell, including squeezing through narrow channels as
well as migrating through wide chambers. However, the
second part (blue line) shows that this cell persistently
‘‘wanders’’ in a tiny region without significant displace-
ments. Similarly, the velocity profile (Fig. 7 F) also vividly
manifests that the velocities are significantly larger (�3.0
mm/min) with gradually decreasing amplitudes in the first
part, whereas they are smaller (<0.1 mm/min) but basically
stable in the second part. See Fig. S5 for further analysis of
the cell labeled ‘‘4.’’ Therefore, the EAD-based approach
could be used to analyze the time-varying characteristics
of individual migration trajectories, especially the transition
of directional persistence.
DISCUSSION

In this paper, we have proposed the EAD-based approach,
which mainly involves the analysis of cell angular displace-
ment and the calculation of Shannon entropy. It can
enable us to investigate cellular turning dynamics, espe-
cially the directional persistence of cell migration, including
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statistical and time-varying characteristics, and further
reveal the effects of the local ECM on behavioral modes.

With the EAD-based approach, we first analyze the
role of the intracellular crucial protein Arpin in regulating
the directional persistence of D. discoideum migration
(Fig. 5). On the whole, the results show that the EAD of
the KO amoeba is smaller than that of the WTand the rescue
amoeba, which directly illustrates that the directional persis-
tence of the KO amoeba is stronger compared to the other
two cases. In detail, we can qualitatively estimate the degree
of EAD according to the shape of the 3D PDF of angular
displacement. It provides a way to quickly understand the
directional persistence when there is a lack of appropriate
tools. Furthermore, the EAD profile derived from the 3D
PDF can quantitatively show how the EAD changes with
time lag. Significantly, one can easily compare the values
of EAD1 and TL1 with other cases. On the one hand, it
can be seen that the EAD1 of the KO amoeba is significantly
smaller than that of the WT and the rescue amoeba, indi-
cating that the KO amoeba has a stronger short-term persis-
tence; on the other hand, the TL1 of the KO amoeba is more
remarkable, implying that there is a long-term persistence.

Apart from the significant differences between the KO
amoeba and the other two groups, there are also slight dif-
ferences between the WT and the rescue amoeba that have
not been reported in previous studies; i.e., the EAD1

(0.942 5 0.007) of the WT amoeba is significantly smaller
than that (0.9645 0.004) of the rescue amoeba, whereas the
TL1 (30/60 min) of the former is larger than that (25/60 min)
of the latter. The above relationships manifest that the
WT amoeba possesses a stronger directional persistence
compared to the rescue amoeba, which we believe may be
mainly caused by two factors, namely more Arpin proteins
expressed in the KO amoeba and/or the effects of the rele-
vant operation.

Besides the characteristics encoded in the EAD profile,
the JPD also vividly exhibits the statistical aspect of direc-
tional persistence. As shown in Fig. 5, the three clusters of
the KO amoeba cover larger regions compared to the other
two groups, illustrating that there are large heterogeneities
in the directional persistence of the KO amoeba, in partic-
ular containing more cells with stronger persistence (see
also Fig. S2). Here, the discrete clusters also represent a hi-
erarchy in the dynamics for a given population, which may
provide some insights into the formation of collective cell
migration, e.g., the coexistence and role exchange of leading
and following cells (69).

Except for the intracellular proteins, we also further study
the effects of extracellular environments, i.e., 3D collagen
and 2D substrate, on MCF-10A cell migration (Fig. 6). In
general, the EAD of the collagen condition is smaller than
that of the substrate condition, meaning that the collagen
gel contributes to the enhancement of directional persis-
tence. Interestingly, there are two aspects of the EAD pro-
files that are worth discussing: 1) although the EADs of
the collagen condition are integrally smaller than those of
the substrate condition, the EADs of some cells in the latter
are minimal and correspond to the strongest persistence at
time lag ¼ 2 and 4 min. This feature shows that the persis-
tence of the collagen condition is slightly weaker than that
of the substrate condition at the small scale of time; howev-
er, it can last longer at the large scale of time. We believe
that this difference is mainly due to collagen fibers, which
can transmit mechanical signals (30,33) and further guide
the directed cell migration (see also Fig. S4). 2) Both the
EADs of the two conditions gradually decrease with the
increasing time lag, indicating that the directional persis-
tence becomes stronger. For this phenomenon, we speculate
that there is a long-term factor that coexists with the persis-
tence, which could be chemotaxis, systematic errors, etc. As
the time lag increases, the effect of the persistence gradually
becomes weaker, further causing this factor to become the
main contributor.

To better illustrate the differences between the collagen
and substrate conditions (see also Fig. S3), it is essential
to examine the details of the JPDs. Overall, the first and sec-
ond clusters of the collagen condition are basically consis-
tent with those of the substrate condition due to the
similar coordinates of the centers corresponding to the
main migration modes. However, there is a third cluster of
the substrate condition with the center at (7.429, 0.729),
which means that some cells have stronger persistence. In
contrast to the collagen condition, there is no prominent
cluster, but more points at TL1 ¼ 100 min. These points
result from the fact that all values in individual EAD profiles
are smaller than the value used to determine TL1, causing
the problem that the value of TL1 cannot be determined in
the prescribed interval, indicating that the persistence of
some cells can last longer and corresponds to the third clus-
ter of the substrate condition.

Finally, to verify the performance of the EAD-based
approach in analyzing time-dependent characteristics, we
further study the invasive MDA-MB-231 cell migration in
a microstructured array consisting of sequential channels
and chambers by utilizing the sliding-window algorithm
(Fig. 7). The results indicate that the cell undergoes two
phases, i.e., phases of stronger and weaker persistence,
and here the transition time is 820 min. According to the
transition time, the migration trajectory and velocity profile
are divided into two parts. The first part of the trajectory
covers a larger distance, whereas the second part covers a
tiny distance; likewise, the first part of the velocity profile
differs significantly from the second part (see also Fig. 5).
The above differences further confirm the effectiveness of
the approach in analyzing the time-varying features of direc-
tional persistence. Nevertheless, we have to be aware of the
problem that there are still some shortcomings of the
approach, as follows: 1) it is not able to process the data
in the first half of the first window and the second half
of the last window, due to the presence of the window,
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and this further contributes to the loss of information. There-
fore, it is better to record more trajectory data to compensate
for the loss in obtaining the desired information. 2) It is
challenging to determine the best window length because
the small length will lead to inaccurate results and the ample
length will have a poor temporal resolution.
CONCLUSIONS

In this paper, we propose an approach called EAD, which al-
lows us to investigate cellular turning dynamics based on the
angular displacement obtained from trajectory data, espe-
cially the directional persistence that strongly correlates
with migration modes. Our analysis has verified the effective-
ness and robustness of the EAD-based approach, which could
first be utilized to study the effects of the intracellular protein,
Arpin, on D. discoideum migration, indicating that the Arpin
is negatively correlated with directional persistence. Further-
more, the approach also reveals the critical role of the extra-
cellular local microenvironment, i.e., 3D collagen gel and 2D
substrate, in regulating the directional persistence of MCF-
10A cell migration. The results not only show how the direc-
tional persistence decays with time lag but also show its dis-
tribution to further distinguish the different environments.
Additionally, we analyze the time-varying features of direc-
tional persistence during invasive MDA-MB-231 cell migra-
tion through a microstructured array, and the detected
transition time identifies two prominent migration modes
characterized by persistence. Overall, our approach contrib-
utes to precisely analyzing the directional persistence of
cell migration, including statistical and time-varying charac-
teristics, without any complex calculations, and further eluci-
dates the effects of these multiscale cues on cellular
migration modes in complex microenvironments.
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