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Abstract

Peptide spectrum matching is the process of linking mass spectrometry data
with peptide sequences. An experimental spectrum can match thousands of
candidate peptides with variable modifications leading to an exponential
increase in candidates. Completing the search within a limited time is a key
challenge. Traditional searches expedite the process by restricting peptide
mass errors and variable modifications, but this limits interpretive capa-
bility. To address this challenge, we propose Dear-PSM, a peptide search
engine that supports full database searching. Dear-PSM does not restrict
peptide mass errors, matching each spectrum to all peptides in the database
and increasing the number of variable modifications per peptide from the
conventional 3-20. Leveraging inverted index technology, Dear-PSM creates
a high-performance index table of experimental spectra and utilizes deep
learning algorithms for peptide validation. Through these techniques, Dear-
PSM achieves a speed breakthrough 7 times faster than mainstream search
engines on a regular desktop computer, with a remarkable 240-fold
reduction in memory consumption. Benchmark test results demonstrate
that Dear-PSM, in full database search mode, can reproduce over 90% of
the results obtained by mainstream search engines when handling complex
mass spectrometry data collected from different species using various in-
struments. Furthermore, it uncovers a substantial number of new peptides
and proteins. Dear-PSM has been publicly released on the GitHub re-
pository https://github.com/jianweishuai/Dear-PSM.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

Smart Med. 2024;€20240014.
https://doi.org/10.1002/SMMD.20240014

onlinelibrary.wiley.com/r/smart-medicine 10f13


https://doi.org/10.1002/SMMD.20240014
https://orcid.org/0000-0002-8712-0544
mailto:shuaijw@wiucas.ac.cn
mailto:jhan@xmu.edu.cn
https://github.com/jianweishuai/Dear-PSM
https://orcid.org/0000-0002-8712-0544
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/smart-medicine
https://doi.org/10.1002/SMMD.20240014
http://crossmark.crossref.org/dialog/?doi=10.1002%2FSMMD.20240014&domain=pdf&date_stamp=2024-08-27

2 1 Smart Medicine

HE ET AL.

KEYWORDS

deep learning, inverted index, mass spectrometry, peptide search, proteomics

1 | INTRODUCTION

Deciphering the amino acid sequence of peptides from
extensive datasets and correlating them with respective
proteins stands as a foundational pursuit in the realm of
proteomics.’ Integral to this pursuit is the pivotal role
played by mass spectrometry data analysis, notably
through the widely adopted bottom-up approach known
as shotgun proteomics.” This methodology involves
enzymatic digestion of proteins into peptides and subse-
quent separation of resulting peptides via liquid
chromatography-tandem mass spectrometry (LC-MS/
MS), thereby generating mass spectrometry data reflec-
tive of peptide fragments.>* Deep learning methods have
also been widely applied in analyzing proteomic mass
spectrometry data and other omics data in the field of
bioinformatics.”*

The prevalent approach in handling data-dependent
acquisition (DDA) proteomics data involves employing
a search engine to sift through protein sequence data-
bases. This search aims to align mass spectrometry data
with potential peptide matches, determining the most
likely candidates based on the search outcomes. Acting as
an intermediary, the search engine operates by in silico
digesting proteins and generates theoretical fragment
spectra for peptides. It then compares these theoretical
spectra with actual experimental data, evaluating the
match and assigning a score to determine the peptide that
best fits the experimental spectrum. This pivotal pro-
cedure, known as peptide-spectrum matching Peptide
spectrum matching (PSM), involves the intricate task of
aligning peptide sequences with the captured mass
spectrometry data.?

A single spectrum can match many potential peptides
because different peptides may share the same fragments
upon breaking apart. In shotgun proteomics, researchers
commonly study post-translational modifications (PTMs)
in proteins, which occur after their creation. Incorpo-
rating PTMs in the database search significantly expands
the pool of potential peptide candidates or matches be-
tween peptides and spectra. Standard search engines
attempt to manage this complexity by setting boundaries
on the allowed mass differences of peptides and the
maximum number of modifications allowed in each
peptide (typically three). However, these limitations can
also hinder the search engine's ability to accurately
interpret mass spectrometry data.

Key points

e Dear-PSM leverages innovative techniques
including inverted index technology and Deep
Learning algorithms to achieve remarkable
results

e Dear-PSM increases the search range by 40-
fold, allowing peptide mass errors from
—6000 to 4500 Da

e Dear-PSM runs 3-7 times faster than main-
stream search engines on regular desktops,
with memory consumption reduced by 100-
240 times

Search engines commonly used in shotgun proteomics
fall into two main categories: narrow-window search
and open search strategies.”> The traditional narrow-
window ones, like Comet,'**> X! Tandem,'® MS-GF+,”
Andromeda’® (part of MaxQuant'?), MyriMatch,* and
OMSSA,* set a range within which they hunt for candi-
date peptides based on the mass error tolerance for pre-
cursor ions. This range typically spans from 10 to 50 parts
per million (ppm), tailored to the precision of various
mass spectrometers.

However, a newer approach called open search has
emerged, in which the mass error tolerance for precursor
ions expands to hundreds of Daltons (Da), significantly
broadening the scope for interpreting spectral data. This
expansion has been instrumental in unveiling previously
unidentified aspects of “dark matter” in shotgun prote-
omics. These advancements have led to the widespread
adoption of open search across various proteomic appli-
cations. Some of the search engines supporting this
approach include MSFragger,”>** Sage,”* pFind3,”” Tag-
Graph,*® MetaMorpheus,”’ and several others.

MSFragger stands out as the mainstream search engine
in shotgun proteomics. It seamlessly integrates into the
user-friendly FragPipe workflow.** By default, MSFragger
operates within a mass error tolerance range of —150-
500 Da for peptide precursor ions in open search mode. It
also accommodates up to three variable modifications and
allows for 5000 modification combinations per peptide.

However, as the number of variable modification in-
creases, so does the exponential growth in candidate
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peptides and their corresponding fragment ions. This
expansion makes constructing the MSFragger index time-
consuming and resource-intensive, especially when
considering modifications such as phosphorylation. In
such cases, MSFragger's memory usage can skyrocket to
hundreds of gigabytes, and the speed in open search
mode notably decreases.

In this study, we propose a novel strategy called full-
database search. This strategy removes limitations on the
mass tolerance of peptide precursor ions, broadening the
search scope of each spectrum to encompass all peptides
generated from the protein database through in silico
digestion. We designed an experimental spectrum
indexing algorithm to query the intersection of experi-
mental spectra and theoretical spectra, and applied deep
learning algorithms to score and verify the search results,
which enabled the creation of a high-performance pep-
tide searching engine named Dear-PSM. Unlike
MSFragger, which necessitates a large theoretical
fragment-ion index, Dear-PSM generates an experimental
spectra index that usually requires only several hundred
megabytes of memory, rendering it far more memory-
efficient than MSFragger. Within Dear-PSM, we have
implemented two matching scores, Hyper-score and
XCorrelation-score (Xcorr score), and employed deep
learning techniques to produce the final discriminated
score. In contrast to MSFragger, which relies solely on
hyper-score, the dual-score approach offers a more
comprehensive means of identifying the best matching
results. In addition, Dear-PSM supports up to 20 variable
modification sites per peptide, providing over a million
potential modification combinations per peptide,
covering most peptides with known modification sites.
Dear-PSM represents the first peptide search engine
capable of full database searching, offering exceptional
speed and minimal memory usage.

2 | RESULTS

2.1 | The principle of Dear-PSM
Peptide spectral matching fundamentally involves the
computation of intersections between experimental
spectra and theoretical fragment ions derived from a
peptide sequence. Subsequently, a scoring algorithm is
applied to ions within this intersection to identify the
most confidently matched results. In practice, peptide
searches entail computing intersections between tens and
hundreds of thousands of spectra and potential millions
or even billions of theoretical peptide sequences.
MSFragger and Sage address this challenge by
leveraging inverted indices of theoretical fragment ions,

bypassing pairwise comparisons between peptides and
experimental spectra, thereby significantly expediting the
search process. Nevertheless, due to the large number of
potential peptide sequences compared to experimental
spectra, creating indices of theoretical fragment ions in-
curs considerable memory overhead, surpassing the ca-
pacity of regular computational platforms. To address
this, we introduce a similar inverted index technology,
establishing a fragment-ion inverted index table tailored
for DDA experimental spectra. This approach markedly
reduces memory requirements while simultaneously
enhancing search speed.

In conventional DDA experiments, the top-n peptide
ions (MS1) are fragmented to generate a series of frag-
ment ion spectra (MS2). Dear-PSM assigns a unique
identifier to each MS2 spectrum, allowing retrieval of the
corresponding fragment ion mass-to-charge ratios (m/z)
via the spectrum ID. Subsequently, Dear-PSM selects the
K most intense fragment ions from the MS2 spectrum
and discretizes the fragment ion m/z values into integers
using an optimal binning algorithm (Supporting
Information S1: Text S1). Then, Dear-PSM constructs an
inverted index table, enabling fast queries for experi-
mental spectra containing specific fragment ions based
on their binned m/z values (Figure 1A). Due to the
significantly smaller number of experimental spectra
compared to candidate peptides, the inverted index table
typically requires only a few hundred megabytes of
memory. The memory usage of the inverted index table is
determined solely by the number of experimental spectra
and is unaffected by the number of candidate peptide
ions.

Next, Dear-PSM traverses the protein database (FASTA
database) to generate a series of peptide sequences based
on theoretical enzymatic digestion. Subsequently, specific
modifications set by the user are applied to these peptides,
and theoretical b and y ions are generated in real-time for
these peptides during program execution (Supporting
Information S1: Text S2). Finally, the optimal binning al-
gorithm is employed to discretize the mass-to-charge ratios
of each peptides b and y ions into integers, which serve as
queries to the inverted index table to obtain the corre-
sponding spectrum IDs (Figure 1B). Throughout this pro-
cess, Dear-PSM does not need to store all the b and y ions
for each peptide, only retaining the matching results. This
runtime generation of theoretical spectra significantly re-
duces memory usage.

The inverted index table expedites the retrieval of
experimental spectrum IDs associated with each theo-
retical fragment-ion, enabling matching peptide se-
quences with all spectra (Figure 1C). Importantly, this
process obviates the necessity for precursor-ion m/z
values, enabling full-database searches by computing
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FIGURE 1 The principle of Dear-PSM. (A) Creation of an inverted index for experimental spectra. Data-dependent acquisition (DDA)

experiments break the top n ranked MS1 precursor ions, generating MS2 spectra containing fragment m/z and intensities. Circled numbers

denote unique identifiers (spectrum IDs) for MS2 spectra. The process of querying MS2 m/z to obtain spectrum IDs is termed inverted
indexing. (B) Generation of theoretical fragment ions. Peptide sequences are enzymatically cleaved from the FASTA protein database and
fragmented based on theoretical cleavage sites, producing all potential theoretical b and y ion m/z values. (C) Peptide spectrum matching

process. Querying theoretical fragment m/z against the inverted index reveals matched b and y ions for each spectrum, and computing

hyper-score and xcorr-score to generate the highest-scoring match. (D) Peptide validation process. Employing a deep learning model to

compute the final PSM score. The deep neural network uses information from the peptide spectrum matching results as input features,

producing a discriminated score where higher scores indicate greater match confidence. Sorting by discriminant scores calculates g-values

for False Discovery Rate (FDR) filtering.

intersections between individual peptides and all experi-
mental spectra. Subsequently, leveraging the count and
intensity of matched fragment ions, Dear-PSM concur-
rently computes both hyper score and xcorr score as the
PSM scoring metrics (Figure 1C). Obviously, each peptide
matches numerous experimental spectra. For subsequent
peptide validation, MSFragger retains and processes
search results with over 4 matched fragment ions to
compute the expected value, significantly increasing the
computational time required. Dear-PSM employs deep
learning models for peptide validation, requiring solely
the highest-scoring PSM result and markedly reducing
search time.

The output provided by Dear-PSM encompasses
peptide sequences, hyper-scores, xcorr-scores, retention
times, and other pertinent feature data (Figure 1D).
During the peptide validation phase, we first use 1%

precursor-level False Discovery Rate (FDR) threshold to
filter out the target peptides as positive samples, and
then we use all decoy peptides as negative samples to
generate training samples for deep learning.** In
proteomics, data collected from different mass spec-
trometers often follow different distributions. Therefore,
we built a training set from each experimental dataset
and trained the neural network from scratch to ensure
consistent performance between the training and test
sets. The training sets constructed from different
experimental data and the trained neural networks are
used exclusively within their respective datasets,
ensuring no impact on other experimental data. The
ultimate discriminant score was then computed via a
deep neural network, serving as the conclusive metric
for peptide-spectrum matching (Figure 1D). Following
the sorting of scores in descending order, Dear-PSM
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outputs search results adhering to a 1% protein-
level FDR threshold (Figure 1D and Supporting
Information S1: Text S3).

2.2 | Benchmark testing datasets

To evaluate the performance of Dear-PSM, we compared
it with mainstream peptide search engines MSFragger
and the latest open search engine, Sage. Performance
benchmarking of Dear-PSM was conducted using protein
mass spectrometry datasets from various instruments and
species, including the mixed-species dataset™
PXD028735, the human species dataset’®> PXD001468,
and the human phosphorylation modification dataset®
PXD041271 (Supporting Information S1: Table S1). The
protein sequence databases used in this study were ob-
tained from UniProtKB/Swiss-Prot and downloaded as
per the required species.

Dear-PSM conducts individual searches on DDA files,
writing the search results into a single output file. Sub-
sequently, deep learning was employed to score the
search results, yielding filtered results at a 1% protein-
level FDR (Supporting Information S1: Table S2).
MSFragger searches all DDA files and outputs search
results individually. Then, Philosopher, included in
FragPipe, validates peptides, and the search results are
filtered using a 1% protein-level FDR (Supporting
Information S1: Table S3). Additionally, Sage's search
results are similar to Dear-PSM's, with all search results
output into a single file. Sage utilizes its built-in machine
learning algorithm for peptide validation, resulting in
filtered results at a 1% protein-level FDR (Supporting
Information S1: Table S4).

2.3 | Deep learning models of Dear-PSM

Dear-PSM employs two deep learning models for pre-
dicting the peptide retention time and computing the
discrimination score of PSMs. Since peptides exhibit
relatively stable occurrence times, predicting peptide
retention time can enhance peptide validation accu-
racy.”” During the retention time prediction process,
Dear-PSM first counts all the amino acids in the
sequence, converting the peptide into a 20-dimensional
integer vector. Then, it counts the first two and last two
amino acids of the sequence separately, generating two
additional 20-dimensional vectors. These three integer
vectors are concatenated into a 60-dimensional peptide
vector. Additional features, such as the identity of the
C-terminal residue, peptide length, and mass, are

appended, resulting in a 63-dimensional feature vector
that serves as the input for the deep neural network.

This method for converting peptide sequences into
vectors can also be applied to mass spectrometry data
with modifications. To enhance the predictive capability
of the neural network, we referenced the Inception
module in GoogleNet*® and designed a four-branch
neural network as the retention time prediction model
(Figure 2A and Supporting Information S1: Figure S1).
Subsequently, peptides filtered at 1% FDR were used as
the training set to train the neural network. Furthermore,
we optimized the model's structure, optimizer, and
parameter quantity to achieve optimal performance
(Supporting Information S1: Text S4).

The retention time predicted by the deep learning
model is utilized as a feature for computing the PSM
score. The PSM score is determined by various features
reported in the search results. These features are com-
bined into a vector and fed into a three-layer fully con-
nected network, which then produces the final PSM score
(Figure 2B). To ensure accuracy, we calculated the
threshold for 1% FDR by analyzing the distribution of
discrimination scores between target and decoy peptides.
Through comparative testing, we fine-tuned the param-
eters of the fully connected network to achieve optimal
performance (Supporting Information S1: Text S5).

2.4 | The limitation of variable
modifications

Protein modifications involve alterations in the mass of
an amino acid within a protein, either an increase or
decrease. During peptide searches, accounting for the
mass changes due to modifications becomes crucial.
Observations reveal an average amino acid count of 20 in
theoretical peptides generated through in silico enzy-
matic cleavage. When exploring human samples for
phosphorylation modifications, over 99% of peptides
contained 20 or fewer variable modification sites
(Figure 2C). For these peptides, Dear-PSM supports up to
20 variable modifications, considering the complete
combination of these modification sites. For peptides
with n variable modifications less than 20, we consider 2"
possible modification combinations. For peptides with n
greater than 20, we consider the number of possible
modified peptides as N =>_>  C!, where C!, represents
the number of combinations when randomly selecting i
modifications from n sites. This decision was reached
after conducting tests and balancing the number of
candidate peptides with search time (Supporting
Information S1: Text S2).
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FIGURE 2 Deep learning model and key parameters of Dear-PSM. (A) Deep learning model for predicting peptide retention time. It
comprises a deep neural network with four branches, taking peptide sequences as input and converting them into peptide vectors by
counting amino acids. The network output is the predicted retention time. The yellow, blue, and red boxes represent the ReLU activation
function, Dropout layer, and Fully Connected layer, respectively. (B) Deep learning model for computing discriminant scores.

(C) Distribution of the number of peptides in the human protein database with phosphorylation modification. (D) Impact of selecting

fragment ion numbers on search results. (E) Sum of errors produced by different bin widths.

2.5 | Data preprocessing of Dear-PSM
During the data preprocessing step, Dear-PSM first se-
lects the top K ranked fragment ions in the experimental
spectra, and then applies a data binning algorithm to
convert the m/z of these K ions into integers for calcu-
lating the peptide-spectrum intersections. Therefore,
optimization is required for both the selection of the ion
count K and the data binning algorithm. We chose a file
from the PXD028735 dataset as our experimental test
data.

Beyond 150 ions, the peptide count increased by only
about 0.8% compared to selecting 150 ions (Figure 2D).
Therefore, we set the default value for the selected ion
count to 150. To validate the relationship between the
error introduced by the binning algorithm and the
actual instrument error, we computed the variance of
errors for the test data at different bin widths (Sup-
porting Information S1: Text S1). As the bin width
increased, the variance initially decreased rapidly before
slowly increasing, with the curve exhibiting only one

minimum point (Figure 2E). This indicates the existence
of a global optimal bin width that minimizes the
binning error and closely approximates the actual in-
strument error.

2.6 | Benchmark testing results

We first benchmarked the full-database search mode using
the Thermo Orbitrap data from the PXD028735 dataset. To
compare the peptide search scopes of full-database and
open searches, we calculated the difference between the
theoretical mass of peptides and their experimental mass,
resulting in a distribution plot of mass differences. The
MSFragger and Sage search engines were set to open
search mode, with the default peptide mass search range
from —150 to 500 Da. The search range of Dear-PSM was
extended from —6000 to 4500 Da, achieving comprehen-
sive coverage of peptide sequences across the entire data-
base. Sage reports PSM quality differences within the range
of —150-500 Da, consistent with the default settings of
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strategies. (D) Prediction of peptide retention time by Dear-PSM using a deep learning model under full-database search mode. (E) False
discovery rate control curves. The red curve represents Dear-PSM's false discovery rate curve under full-database search mode, while the
blue curve represents Sage's False Discovery Rate (FDR) curve under open search mode. (F) Upset* plot of peptides discovered in

TripleTOF 6600+ data under the narrow search strategy. (G) Upset plot of peptides discovered in TripleTOF 6600+ data under the narrow

search strategy.

open search (Figure 3A). We also examined Dear-PSM's
search scope, calculated Hyperscores, and Xcorr scores on
data from other instruments (Supporting Information S1:
Figure S2 and S3).

Next, we compared the numbers of peptides and
proteins discovered through full-database and open
searches. For the data from TripleTOF 6600+, Dear-PSM,
MSFragger, and Sage reported 25,015, 20,789, and 22,070
peptides, respectively. Dear-PSM discovered 20% more
peptides than MSFragger and 13% more peptides than
Sage (Figure 3B). Dear-PSM, MSFragger, and Sage

reported 4788, 3215, and 4764 proteins, respectively. The
coverage of Dear-PSM compared to MSFragger and Sage
was 92% and 87%, respectively (Figure 3C). The full-
database search strategy of Dear-PSM outperformed
other search engines in the data collected from the Tri-
pleTOF 6600+ instrument. We also compared the num-
ber of peptides and proteins discovered by these three
search engines on data from other instruments (Sup-
porting Information S1: Figure S4 and S5).

Dear-PSM improves validation accuracy by using a
deep learning model to predict peptide retention times.
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Under the full-database search mode, the predicted
retention times exhibit a strong linear correlation with
experimental times. Notably, for data from TripleTOF
5600 and TripleTOF 6600+, predicted values closely
match the y = x curve, indicating the effectiveness of
deep learning models in predicting peptide retention
times (Figure 3D and Supporting Information SI1:
Figure S6). In addition, when examining the discrimi-
nant scores produced by Dear-PSM on various instru-
ment data, we observed a clear pattern: the scores
assigned to target peptides formed two distinct peaks,
while the scores for decoy peptides were predominantly
clustered in the negative range. This clear separation
suggests that the deep learning approach employed by
Dear-PSM is effective in distinguishing between genuine
target peptides and decoys (Supporting Information S1:
Figure S7).

Across different instrument data, Dear-PSM's FDR
curve trend mirrors Sage's, rapidly rising before stabiliz-
ing. This similarity suggests the reliability of Dear-PSM's
full-database search strategy post-peptide validation.
Furthermore, Dear-PSM discovers more peptides than
Sage under various Q-value conditions, indicating its
ability to uncover a greater number of peptides
(Figure 3E and Supporting Information S1: Figure S8).
Dear-PSM not only supports a full-database search but
also a conventional narrow window search. To further
validate its peptide validation accuracy, we compared the
peptide and protein counts discovered under the narrow
window search mode among the three search engines.
Specifically, for data from TripleTOF 6600+, Dear-PSM,
MSFragger, and Sage reported 26,371, 24,565, and 25,911
peptides, respectively (Figure 3F). The corresponding
protein counts were 5602, 3684, and 5143. Dear-PSM
covered 94% and 89% of the results reported by
MSFragger and Sage, respectively (Figure 3G). Dear-
PSM's peptide coverage exceeded 90% for both MSFragger
and Sage, indicating its ability to replicate a substantial
portion of the results from the other two search engines
(Supporting Information S1: Figure S9).

We benchmarked the full-database search strategy
using the larger dataset PXD001468. Under the open
search strategy, Dear-PSM, MSFragger, and Sage discov-
ered 156,754, 154,210, and 131,065 peptides, respectively.
Dear-PSM achieved coverage rates of 78% and 85%
compared to MSFragger and Sage, respectively. Addi-
tionally, Dear-PSM uniquely identified 33,826 peptides,
while MSFragger and Sage individually identified 18,953
and 5740 peptides, respectively (Figure 4A). Dear-PSM,
MSFragger, and Sage reported 14,183, 9270, and 12,151
proteins, respectively. Dear-PSM achieved coverage rates
of 99% and 95% compared to MSFragger and Sage,
respectively. Furthermore, Dear-PSM uniquely identified

2528 proteins (Figure 4B). The full-database search
strategy can uncover a significant number of peptides and
proteins overlooked by traditional open searches.

We also evaluated Dear-PSM's performance during
the peptide validation phase under the full-database
search strategy. In the distribution plot of peptide
discriminant scores, target peptides and decoy peptides
are distinctly separated, with decoy peptide scores
concentrated in the lower range (Figure 4C). Addition-
ally, the predicted retention time also exhibited a linear
correlation with the experimental retention time (Sup-
porting Information S1: Figure S10). This illustrates the
deep learning model's ability to differentiate between
target and decoy peptides even with large datasets.

Typically, peptides identified by two or more spectra
at the same time are more reliable. We checked how
many spectra each peptide found by Dear-PSM matched
in the full database search mode. Among these peptides,
31.3% matched only one spectrum, 40% matched 2 to 4
spectra, and the rest matched 5 or more spectra
(Figure 4D). This matches closely with what MSFragger
reported, showing that Dear-PSM's findings are trust-
worthy. We also looked at the length distribution of
peptides reported by Dear-PSM and MSFragger. Inter-
estingly, Dear-PSM found more peptides with over 20
amino acids compared to MSFragger (Figure 4E). This
suggests that a full database search can uncover longer
peptide sequences.

The peptide and protein FDR curves further demon-
strate that the discriminant scores output by deep
learning can effectively control FDR below 1% when
dealing with large peptide volumes (Figure 4F). To
further validate the FDR assessment accuracy of Dear-
PSM during peptide validation, we combined proteins
from Arabidopsis thaliana and humans and searched the
PXD001468 dataset using the merged FASTA database.
We treated Arabidopsis proteins’ corresponding peptides
as decoys to calculate the Empirical FDR (Empirical
FDR). Comparing Dear-PSM's full-database search mode
with MSFragger's open search mode, we sorted Hyper-
scores in descending order to compute Q-values. The
FDR curves of Dear-PSM and MSFragger exhibit consis-
tent trends, with Dear-PSM detecting more peptides than
MSFragger at a 1% g-value threshold under the full-
database search mode (Figure 4G).

The full-database search strategy expands the peptide
mass error by 10-fold, greatly increasing the pool of
candidate peptides. Additionally, Dear-PSM allows up to
20 variable modifications per peptide, resulting in a total
of 2%° possible modification combinations. To assess the
performance with the increased variable modification
count, we conducted benchmark testing on the
PXD041271 dataset, which includes phosphorylation
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FIGURE 4 Benchmarked results of PXD001468 dataset. (A) nVenn*” plot shows the number of peptides found through full database
search and open search strategies. (B) The number of proteins discovered through full database search and open search strategies.

(C) Distribution of discriminant scores for PSMs output by Dear-PSM using a deep learning model. Red and blue denote the discriminant
scores for target and decoy peptides, respectively. (D) The proportion of spectra identified per peptide. The left subplot shows the results
reported by Dear-PSM in the full database search mode. The right subplot shows the results reported by MSFragger in the open search
mode. (E) Histogram of peptide length distribution. The red and blue colors represent the distributions of Dear-PSM and MSFragger,
respectively. The curve represents the fitting distribution curve. (F) False Discovery Rate (FDR) control curve for Dear-PSM. The red and
blue curves represent the FDR curves for peptides and proteins, respectively. (G) Empirical FDR curve. The red and blue curves represent
the number of identified peptides by Dear-PSM and MSFragger respectively at different g-values.

peptide sequences (Figure 5A). Furthermore, Dear-PSM
covered 80% and 86% of the peptides discovered by
MSFragger and Sage, respectively. When comparing

modifications. Under the open search mode, Dear-PSM,
MSFragger, and Sage identified 7377, 7182, and 6222
peptides, respectively, when comparing unmodified
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phosphorylated peptides, Dear-PSM detected 12,320 respectively (Figure 5B). Dear-PSM reported 5% more
phosphorylated peptides, while MSFragger and Sage phosphorylated peptides than MSFragger. However,
identified 11,686 and 9666 phosphorylated peptides, Dear-PSM also uniquely discovered 3246 phosphorylated
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peptides, attributable to the increased count of variable
modifications.

Next, we compared the number of variable modifi-
cations in peptides reported by three search engines.
Dear-PSM, after increasing the upper limit of variable
modifications, could identify peptides with up to 8 vari-
able modifications in the PXD041271 dataset, whereas
MSFragger and Sage could only detect peptides with a
maximum of 3 variable modifications (Figure 5C). When
comparing peptides with less than 3 variable modifica-
tions, the number of peptides reported by all three en-
gines was similar. For instance, the number of peptides
with 1 variable modification reported by Dear-PSM,
MSFragger, and Sage were 7544, 7015, and 6492,
respectively (Figure 5C). Furthermore, we calculated the
proportion of phosphorylation sites, defined as the ratio
of peptides containing only one type of phosphorylation
site to the total number of phosphorylated peptides. The
proportion reported by Dear-PSM was consistent with
that reported by MSFragger and Sage, indicating that
Dear-PSM can be used to search for and validate phos-
phorylated peptides (Figure 5D).

Phosphorylation modification searches yielded pep-
tide sequences differing significantly from standard
datasets. Thus, we examined the peptide validation of

Dear-PSM on phosphorylation modification data. The
retention time prediction remains linearly correlated
with the experimental time, indicating its applicability to
phosphorylation-modified peptides (Figure 5E). The dis-
tribution of discrimination scores shows Dear-PSM's
ability to distinguish target and decoy peptides in the
phosphorylation modification data (Figure 5F). Addi-
tionally, the FDR curve trend mirrors non-
phosphorylation data, demonstrating Dear-PSM's suit-
ability for FDR calculations in phosphorylation modifi-
cation data (Figure 5G).

We tested the running performance of Dear-PSM and
MSFragger on a desktop computer. The test platform was
equipped with an Intel Core i7-7700K CPU (4 cores, 8
threads, 4.2 GHz), 64 GB of DDR4 2666 MHz memory,
and a 2 TB solid-state drive. We conducted tests using the
PXD028735 dataset for Dear-PSM's full database search
and MSFragger's open search strategy. The results
showed that Dear-PSM identified 11,103,192 peptide se-
quences, whereas MSFragger identified 10,626,494 pep-
tide sequences.

Despite Dear-PSM searching a peptide mass range 10
times larger than MSFragger, Dear-PSM achieved a speed
3-6 times faster than MSFragger (Figure 6A). In terms of
memory consumption, MSFragger used 30-136 times
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FIGURE 6 Benchmark test results of the running performance. (A) Comparison of search time on the PXD028735 dataset.
(B) Comparison of memory usage during software runtime on PXD028735 dataset. (C) Comparison of search time and memory usage on
PXD041271 dataset. Red, light blue and dark blue boxes in both (A), (B) and (C) represent Dear-PSM MSFragger, and Sage, respectively.
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more memory than Dear-PSM, while Dear-PSM used an
experimental spectral index table to greatly reduce mem-
ory consumption (Figure 6B). Additionally, Dear-PSM
searches are 3-11 times faster than Sage (Figure 6A).
Although Sage saves approximately five times more
memory compared to MSFragger, Dear-PSM still con-
sumes 6-25 times less memory than Sage (Figure 6B).

To further compare Dear-PSM's performance in
handling complex modification data, we tested it on the
PXD041271 dataset containing phosphorylation modifi-
cations. After increasing the maximum number of vari-
able modifications per peptide to 20, Dear-PSM's search
space expanded to 3 billion peptide sequences, while
MSFragger's search space was 140 million peptide se-
quences (Figure 6C). Dear-PSM's search space was
approximately 21 times larger than that of MSFragger,
reaching the order of 1 billion. Despite the immense
search space, Dear-PSM achieved a search speed 7 times
faster than MSFragger and used 241 times less memory
than MSFragger (Figure 6C). In addition, Dear-PSM's
search covers 24 times more candidate peptides than
Sage, with a search speed that is twice as fast and
memory savings of 319 times (Figure 6C). These results
clearly indicate that Dear-PSM outperforms existing
mainstream search engines in terms of search space,
speed, and memory efficiency.

3 | CONCLUSIONS

This study introduces Dear-PSM, a peptide search engine
supporting full database searching for peptide identifi-
cation in DDA data. Our full database search strategy
extends the search scope to include all peptides in the
FASTA database, with peptide mass errors expanded to
several thousand Daltons. Dear-PSM employs an inverted
index algorithm for fast searching of experimental spectra
and utilizes deep learning algorithms for peptide valida-
tion. Additionally, Dear-PSM supports up to 20 variable
modifications per peptide, significantly expanding the
peptide search space.

Benchmarking results demonstrate that Dear-PSM's
full database search strategy enhances peptide identifi-
cation and spectral interpretation capabilities. Dear-PSM
can reproduce results from MSFragger and Sage search
engines in over 90% of cases in full database search mode,
while also discovering more peptides and proteins. The
use of deep learning for peptide validation in Dear-PSM
outperforms traditional machine learning algorithms
and handles large datasets effectively. Moreover, deep
learning algorithms can also handle phosphorylation
modification data, expanding the applicability of Dear-

PSM. In performance comparisons, Dear-PSM's search
speed is 3-7 times faster than MSFragger, with memory
consumption reduced by 100-200 times.

4 | EXPERIMENTAL SECTION

Experimental details are provided in the Supporting
Information.
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