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Abstract: In the realm of quantitative proteomics, data-independent acquisition (DIA) has emerged 
as a promising approach, offering enhanced reproducibility and quantitative accuracy compared to 
traditional data-dependent acquisition (DDA) methods. However, the analysis of DIA data is cur-
rently hindered by its reliance on project-specific spectral libraries derived from DDA analyses, 
which not only limits proteome coverage but also proves to be a time-intensive process. To over-
come these challenges, we propose ProPept-MT, a novel deep learning-based multi-task prediction 
model designed to accurately forecast key features such as retention time (RT), ion intensity, and 
ion mobility (IM). Leveraging advanced techniques such as multi-head attention and BiLSTM for 
feature extraction, coupled with Nash-MTL for gradient coordination, ProPept-MT demonstrates 
superior prediction performance. Integrating ion mobility alongside RT, mass-to-charge ratio (m/z), 
and ion intensity forms 4D proteomics. Then, we outline a comprehensive workflow tailored for 4D 
DIA proteomics research, integrating the use of 4D in silico libraries predicted by ProPept-MT. Eval-
uation on a benchmark dataset showcases ProPept-MT’s exceptional predictive capabilities, with 
impressive results including a 99.9% Pearson correlation coefficient (PCC) for RT prediction, a me-
dian dot product (DP) of 96.0% for fragment ion intensity prediction, and a 99.3% PCC for IM pre-
diction on the test set. Notably, ProPept-MT manifests efficacy in predicting both unmodified and 
phosphorylated peptides, underscoring its potential as a valuable tool for constructing high-quality 
4D DIA in silico libraries. 

Keywords: proteomics; retention time; ion intensity; ion mobility; multi-task learning; deep  
learning 
 

1. Introduction 
Mass spectrometry (MS) technology finds extensive application in proteomics re-

search. The amalgamation of liquid chromatography (LC) and MS stands as a potent ap-
proach for the separation of complex compounds. However, the traditional proteomics 
methodologies that rely on DDA often encounter challenges stemming from the pace of 
MS sequencing and the semi-stochastic sampling of precursor ions, resulting in restricted 
throughput and diminished reproducibility [1]. DIA represents a progression and en-
hancement of the DDA mode, operating independently of prior MS scan outcomes to fa-
cilitate a relatively unbiased MS/MS analysis of all precursor ions within the defined iso-
lation windows, thereby circumventing data imbalances stemming from randomness 
[2,3]. Nevertheless, a significant constraint remains in the current DIA proteomics ap-
proach, requiring the prior establishment of project-specific, high-quality spectral 
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libraries through DDA analysis of extensively pre-fractionated or repetitively injected 
samples, leading to substantial time consumption and sample wastage [4,5]. 

In recent years, artificial intelligence has made considerable strides and found wide-
spread application in the biomedical field, spanning medical image analysis [6–8], bioin-
formatics [9,10], disease diagnosis and treatment [11,12], and proteomics [13–17]. In pro-
teomics research, we have reported several deep learning methods applicable to DIA data 
analysis, such as Dear-DIAXMBD [13], an untargeted analysis method for directly analyzing 
DIA data; AttnPep [14], used for rescoring peptide-spectra match scores; and SeFilter-
DIA[15], designed to automatically identify high-confidence peptides. Deep learning ap-
proaches can also be leveraged to generate in silico libraries by predicting the fragment 
ion intensity, RT, and IM of given peptide sequences [18]. Noteworthy examples include 
DeepMass:Prism [19], Prosit [20], DeepDIA [21], pDeep [22], DeepPhospho [23], Guan et 
al. [24], MS2CNN [25], Predfull [26], and Deep4D [27]. Among these, DeepDIA employs a 
model based on bidirectional long short-term memory networks (BiLSTM) [28], encoding 
each amino acid into a 20-dimensional one-hot vector representing the 20 amino acids. 
Deep4D utilizes a deep learning model based on the self-attention [29] module, encoding 
each amino acid into a 23-dimensional one-hot vector, with an initial 20 dimensions rep-
resenting the 20 amino acids and the subsequent three dimensions representing acetyla-
tion, oxidation, and phosphorylation modifications. Another example, DeepPhospho, also 
harnesses a model based on the self-attention module and exhibits outstanding perfor-
mance in predicting phosphorylated peptide RT. 

The combination of ion mobility spectrometry with mass spectrometry holds prom-
ise for enhancing sensitivity and simplifying spectra [30–32], particularly demonstrating 
unique advantages in the analysis of proteins, peptides, and complex compound isomers, 
thus propelling proteomics into a new era of 4D analysis. Calculating the inherent colli-
sional cross-section (CCS) values of peptides based on experimentally derived ion mobil-
ity can significantly enhance the reliability of their identification [33]. Additionally, 4D 
DIA-based proteomics has shown higher precursor ion sampling rates and increased spec-
ificity in precursor identification [34]. Despite the notable progress achieved by deep 
learning methods in constructing in silico libraries, the construction of high-quality in sil-
ico libraries for 4D DIA proteomics and phosphoproteomics remains a challenge. 

Here, we propose ProPept-MT, a new deep learning-based multi-task learning 
model, designed for the precise prediction of RT, ion intensity, and IM of both unmodified 
and phosphorylated peptides to construct 4D DIA in silico libraries. Through ProPept-
MT, a workflow for 4D DIA proteomics analysis has been developed, based on the pre-
dicted multidimensional in silico libraries. ProPept-MT features a hybrid network archi-
tecture that merges self-attention modules and BiLSTM modules, bolstered by Nash-MTL 
[35] for gradient aggregation, thereby ensuring coordinated parameter updates across all 
tasks. Prominently, ProPept-MT indicates superior prediction performance with fewer 
training parameters compared to existing deep learning-based single-task prediction 
models. 

2. Results 
2.1. Development of Model Structure 

ProPept-MT is a cutting-edge multi-task deep learning architecture designed to pre-
dict multiple peptide features simultaneously. We concatenated the multi-head attention 
module with the BiLSTM module to fully leverage their advantages in capturing global 
sequence information. The multi-head attention module serves as the core structure, es-
tablishing direct associations between different positions, and focusing on the interactions 
among individual amino acids within the sequence to enhance feature extraction capabil-
ities. Its robust sequence modeling ability allows it to synchronously process information 
from various parts of the sequence, capture long-range dependencies, and improve com-
putational efficiency through parallel processing across multiple attention heads, thereby 
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reducing the likelihood of information loss. The BiLSTM, as an auxiliary structure, further 
augments the model’s performance by capturing longer-term temporal features. It learns 
from potential information overlooked by preceding subnetworks, generating rich and 
comprehensive context-aware representations through bidirectional sequence processing. 
This enhances the accuracy of predictions and robustness to different types of protein se-
quences. 

The hybrid design demonstrates superior performance in deep learning methodolo-
gies. Compared to traditional approaches, this innovative combination can analyze the 
proteomics mass spectrometry data more comprehensively and in detail, which provides 
more reliable and precise data support for scientific research. Additionally, a series of sin-
gle-task (ST) assessments were performed on a designated dataset using identical model 
specifications and hyperparameters, denoted as ProPept-ST, to enable comparative anal-
ysis with the multi-task model. The conclusive experimental findings manifest the excep-
tional performance of ProPept-MT over ProPept-ST. 

2.2. Performance of ProPept-ST in Predicting Retention Time 
Liquid chromatography is integral to mass spectrometry analysis in bottom-up pro-

teomics [36], with RT playing a crucial role in DIA proteomics. To assess ProPept-MT’s 
performance, we initially validated ProPept-ST’s capacity for predicting RT. We compared 
ProPept-ST with existing single-task models for RT prediction, which can be applied to 
unmodified or phosphorylated peptides, thereby illustrating the sturdiness of its model 
architecture. 

The study commenced with an examination of the predictive efficacy of RT for un-
modified peptides, juxtaposing the performance of ProPept-ST against three contempo-
rary deep learning models: Deep4D, DeepDIA, and DeepLC. DeepLC incorporates a deep 
convolutional neural network (CNN) architecture with an encoding approach grounded 
in atom composition. The evaluation hinged on 15 unmodified peptide datasets as delin-
eated in the DeepLC study, where peptides were characterized by experimental RT or 
indexed RT (iRT)[37]. These datasets spanned three distinct LC modalities: reversed-
phase LC (RPLC), hydrophilic interaction LC (HILIC), and strong cation exchange chro-
matography (SCX). ProPept-ST underwent preliminary pre-training on the SWATH li-
brary dataset, followed by fine-tuning on the remaining 14 datasets. 

Across all 15 datasets, ProPept-ST consistently outperformed extant models in terms 
of mean absolute error (MAE) (Figure 1A,B) and Δ 95%t  (Supplementary Figure S1). Im-
portantly, the HeLa HF dataset, constructed using 15-min short gradients, posed a poten-
tial challenge due to reduced resolution and peak capacity, potentially affecting the pre-
dictive accuracy of apex peptide RT [38]. Despite these challenges, ProPept-ST exhibited 
superior performance compared to the leading DeepLC model on the HeLa HF dataset, 
achieving MAE values of 0.27 vs. 0.31 and Δ 95%t  values of 1.46 vs. 1.62. In the case of the 
SWATH library test set, the predicted iRT values demonstrated high precision, with a PCC 
of 0.997 (Figure 1C). 

Furthermore, we subjected ProPept-ST to retraining on the 14 datasets excluding the 
SWATH library. Figures 1D and S2 indicate that, among the 14 test datasets, the propor-
tion of cases where the fine-tuned median absolute error (MedAE) exceeds that of the non-
fine-tuned results is 71.4%, with only 0.07% of cases showing a decrease in performance. 
This highlights the utility of fine-tuning in enhancing model adaptability to diverse LC 
types and gradients, thereby underscoring its considerable benefits in RT prediction. Col-
lectively, these findings showcase the superior predictive performance of ProPept-ST over 
other established models for unmodified peptide RT prediction. 
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Figure 1. ProPept-ST evaluates the prediction performance of unmodified peptide retention time. 
(A,B) The prediction accuracy of different models for peptide RT (A) and iRT (B) is compared based 
on the mean absolute error on various datasets. (C) Scatter plot comparing ProPept-ST predicted RT 
values with experimentally observed RT values for the SWATH library dataset. (D) Distribution of 
absolute errors in peptide RT prediction by the ProPept-ST model, both fine-tuned and retrained. 

To evaluate ProPept-ST’s performance in predicting RT for phosphopeptides, we 
conducted a comparative analysis against DeepPhospho and Deep4D, utilizing three dis-
tinct phosphopeptide RT datasets: RPE1 DDA, RPE1 DIA, and U2OS DDA, following the 
methodology described in the DeepPhospho study. ProPept-ST undergoes pre-training 
on the RPE1 DDA dataset, followed by fine-tuning on the RPE1 DIA and U2OS DIA da-
tasets. ProPept-ST exhibited superior performance in terms of MedAE across all three da-
tasets, as depicted in Figure 2A. Specifically, on the RPE1 DDA test set, ProPept-ST 
achieved a MedAE of 1.57, surpassing Deep4D and DeepPhospho, which scored 1.62 and 
1.74, respectively. Moreover, on the U2OS_DDA test set, the predicted iRT values closely 
matched the experimentally observed iRT values, presenting high precision with a PCC 
of 0.997 (Figure 2B). These findings highlight ProPept-ST’s remarkable capability in accu-
rately predicting phosphopeptide RT. 
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Figure 2. ProPept-ST assesses the performance of predicting phosphorylated peptide RT and the 
ablation experiment on the ProPept-ST model. (A) Comparison of the prediction accuracy of various 
models for phosphorylated peptide RT based on the median absolute error on different datasets. (B) 
Scatter plot comparing ProPept-ST-predicted iRT values with experimentally observed iRT values 
for the U2OS_DDA dataset. (C) Median absolute error of RT prediction by ProPept-ST and six other 
models on the benchmark dataset H4 DDAp. (D) Parameter count comparison between ProPept-ST 
and six other models. 

2.3. Ablation Studies 
To elucidate the excellent design of our model, we executed a comparative analysis 

contrasting ProPept-ST with six alternative models (Figure 2C,D). These models predom-
inantly feature combinations of self-attention modules, LSTM networks, and CNN mod-
ules. We meticulously designed and tested various parameter combinations, with Table 1 
showcasing the main combinations. Each module’s layer count was carefully adjusted to 
ensure optimal performance. In the final stages of the model, we integrated either atten-
tion modules or multi-layer perceptron (MLP) layers to further enhance performance. 
Through this detailed tuning and optimization, we aimed to achieve the highest possible 
effectiveness in all aspects. Performance evaluation was carried out on the H4 DDAp’s RT 
dataset, with reported MedAE values. The finding reveals that in our model architecture, 
integrating attention modules at the end supersedes the direct use of fully connected lay-
ers, yielding MedAE values of 0.715 and 0.727 (Figure 2C), respectively. Interestingly, de-
spite possessing the largest parameter count among these models, the model utilizing 
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solely the self-attention modules exhibited the poorest performance. Noticeably, ProPept-
ST showed outstanding performance with the fewest parameters (Figure 2D). 

Table 1. Performance of ProPept-ST under different parameters. “d_model” is the dimension of the 
embedded vector. “n_head” is the number of attention heads calculated in parallel in the multi-head 
self-attention module. “d_ff_lstm” is a hidden layer dimension in the lstm layer. “n_lstm” is the 
number of layers of lstm. 

d_model n_head d_ff_lstm n_lstm MedAE 
256 8 512 1 0.715 
256 8 512 2 0.732 
500 10 512 1 0.723 
500 10 512 2 0.720 
256 8 256 1 0.724 
256 8 256 2 0.768 
500 10 256 1 0.722 
500 10 256 2 0.755 

2.4. Performance of ProPept-MT on Benchmark Datasets 
Based on our research, it is argued that fine-tuning a pre-trained model generally 

yields superior performance compared to retraining from scratch. As such, we initially 
pre-trained on the H5 DDAp dataset and subsequently fine-tuned on eight other specific 
datasets. Simultaneously, ProPept-ST trained individually for each task on the benchmark 
datasets is regarded as the evaluation baseline. 

For the RT prediction task, ProPept-MT surpasses previously reported models on five 
datasets in terms of MedAE (Figure 3A). Specifically, on the H1 DDA test set, ProPept-MT 
achieves a MedAE of 0.598, surpassing the performance of both ProPept-ST and Deep-
Phospho, which achieve MedAEs of 0.643 and 1.157, respectively. In all benchmark da-
tasets, all values are presented in minutes within the original RT dimension. Additionally, 
the PCC value on the H2 DIA test set is exceptionally high, reaching 0.999 (Figures 3B and 
S3). Furthermore, in accordance with the primary indicator highlighted in the DeepPhos-
pho study for RT prediction, we compared Δ 95%t   values (Supplementary Figure S4A). 
ProPept-MT outperforms both ProPept-ST and DeepPhospho on nine datasets, demon-
strating performance on the H1 DDA test set of 4.97 compared to 5.20 and 6.59, respec-
tively. Strikingly, for DeepPhospho, five Transformer encoder layers (4–8) of varying sizes 
were trained and integrated for testing. 

For the IM prediction task, Table 2 showcases that across five datasets, ProPept-MT’s 
PCC values exceed those of ProPept-ST, achieving a performance of 0.992 compared to 
0.981 on the M1 DDAp test set. Moreover, Figure 3C portrays the distribution of IM abso-
lute errors between ProPept-MT and ProPept-ST. The high accuracy of IM prediction, with 
a PCC value of 0.993, is further revealed on the H2 DIA test set (Figures 3D and S5). 

For the fragment ion intensity prediction task, ProPept-MT outperforms ProPept-ST 
and DeepPhospho on nine datasets in terms of median PCC, as shown in Table 2, achiev-
ing a performance of 0.941 vs. 0.927 vs. 0.918 on the M2 DDAp test set. Of note is ProPept-
MT’s performance on the H1 DDA and H5 DDAp test sets, where it achieves PCC values 
exceeding 0.75 for 93.54% and 86.32% of peptides, respectively, with median PCC values 
of 0.97 and 0.94 (Figure 4A). Mirror representations for specific peptides evidenced robust 
concordance between our prognostication and authentic measurement, with PCC values 
of 0.985 and 0.979, respectively (Figure 4B). In comparison to existing models, our multi-
task model also exhibits improved overall consistency between experimental and pre-
dicted fragment ion intensities for the test set (Figure 4C). For the H4 DDAp dataset, Pro-
Pept-MT achieves a median PCC of 0.945, median spectral angle (SA) of 0.835, and median 
dot product (DP) of 0.967. Similarly, for the H6 DDAp dataset, ProPept-MT achieves a 
median PCC of 0.940, median SA of 0.824, and median DP of 0.962. Additionally, ProPept-
MT outperforms DeepPhospho with respect to median SA on six datasets (Supplementary 
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Figure S4B), which serves as the primary indicator for fragment ion intensity prediction 
in the DeepPhospho study. 

 
Figure 3. ProPept-MT’s performance in predicting RT and IM, as well as the loss curves for training 
three tasks on specific datasets. (A) Distribution of absolute errors for predicting RT on benchmark 
datasets for each model. (B,D) Scatter plots showing ProPept-MT’s predictions of RT (B) and IM (D) 
on the H2 DIA test set. (C) Distribution of absolute errors for predicting IM on benchmark datasets 
for ProPept-MT and ProPept-ST. (E) Loss curves for training and validation of the three tasks on 
dataset H5 DDAp for ProPept-MT. (F) On the H7 DDAp training set, the loss curves of ProPept-ST 
retrained on three tasks and the fine-tuned loss curves of ProPept-MT. 
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Figure 4. Performance of ProPept-MT in predicting fragment ion intensity. (A) Histogram distribu-
tion of PCC for each peptide on the H1 DDA and H5 DDAp test sets. (B) Mirror plot showing the 
experimental and predicted values of fragment ion intensities for two specific peptides (unmodified 
peptide and phosphopeptide). (C) Box plots showing the distribution of PCC, DP, and SA for Pro-
Pept-MT on the H1 DDA and H6 DDAp test sets. 

Figure 3E presents the loss of ProPept-MT on both the training and validation sets of 
the H5 DDAp dataset, elucidating the model’s robust training and lack of overfitting. In 
Figure 3F, we display the fine-tuning loss of ProPept-MT on the H7 DDAp training set, 
comparing it with the loss of the ProPept-ST model trained separately for each of the three 
tasks. These results indicate that the loss for each task can be rapidly minimized by Pro-
Pept-MT during a brief training period. Detailed performance metrics are available in Ta-
ble 2. Our findings disclose that, compared to the reported models, ProPept-MT can 
achieve optimal performance with the fewest parameters, underscoring its superior abil-
ity to predict peptide features. 
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Table 2. Performance metrics of ProPept-MT on benchmark datasets. 

Data Name Metrics/Model 
Retention Time Ion Intensity Ion Mobility 

2R  Δ 95%t  MedAE IQR PCC SA PCC DP 2R  PCC Δ 95%t  

H1_DDA 
DeepPhospho 0.975 6.588 1.157 2.315 0.990 0.852 0.958 0.973 - - - 

ProPept-ST 0.9805 5.200 0.643 1.323 0.990 0.870 0.9657 0.979 0.977 0.9887 0.0961 
ProPept-MT 0.9810 4.974 0.598 1.264 0.991 0.872 0.9663 0.980 0.978 0.9892 0.0963 

H2_DIA 
DeepPhospho 0.989 5.481 1.019 2.046 0.997 0.805 0.889 0.953 - - - 

ProPept-ST 0.998 2.333 0.319 0.638 0.999 0.817 0.900 0.959 0.986 0.9931 0.062 
ProPept-MT 0.997 2.807 0.395 0.772 0.9986 0.820 0.901 0.960 0.984 0.9928 0.063 

H3_DIAP 
DeepPhospho 0.986 11.428 2.103 4.111 0.997 0.786 0.872 0.944 - - - 

ProPept-ST 0.9952 7.045 0.753 1.508 0.99764 0.797 0.882 0.9497 0.985 0.9924 0.0614 
ProPept-MT 0.9951 6.973 0.870 1.713 0.99763 0.798 0.889 0.9502 0.984 0.9922 0.0617 

H4_DDAp 
DeepPhospho 0.976 10.524 1.915 3.678 0.990 0.809 0.928 0.955 - - - 

ProPept-ST 0.9835 6.447 0.715 1.424 0.9918 0.831 0.941 0.965 0.971 0.9856 0.102 
ProPept-MT 0.9839 6.203 0.730 1.422 0.9919 0.835 0.945 0.967 0.972 0.9862 0.099 

H5_DDAp 
DeepPhospho 0.980 12.658 2.408 4.822 0.993 0.819 0.935 0.960 - - - 

ProPept-ST 0.987 9.249 0.945 1.886 0.9935 0.8324 0.940 0.966 0.961 0.981 0.100 
ProPept-MT 0.988 8.699 1.077 2.142 0.9939 0.8317 0.941 0.965 0.959 0.980 0.102 

H6_DDAp 
DeepPhospho 0.980 12.883 2.600 4.231 0.993 0.804 0.928 0.953 - - - 

ProPept-ST 0.991 6.519 0.820 1.660 0.996 0.814 0.934 0.958 0.963 0.9815 0.117 
ProPept-MT 0.990 6.187 0.802 1.588 0.995 0.824 0.940 0.962 0.960 0.9809 0.113 

H7_DDAp 
DeepPhospho 0.958 5.352 0.831 1.598 0.983 0.807 0.932 0.954 - - - 

ProPept-ST 0.977 2.853 0.318 0.650 0.988 0.823 0.941 0.961 0.982 0.991 0.080 
ProPept-MT 0.980 2.255 0.294 0.587 0.990 0.838 0.950 0.968 0.986 0.994 0.067 

M1_DDAp 
DeepPhospho 0.976 11.716 1.809 3.535 0.991 0.815 0.938 0.958 - - - 

ProPept-ST 0.991 6.519 0.820 1.660 0.996 0.814 0.934 0.958 0.963 0.981 0.117 
ProPept-MT 0.989 5.498 0.702 1.423 0.995 0.834 0.949 0.966 0.982 0.992 0.077 

M2_DDAp 
DeepPhospho 0.966 4.944 0.812 1.518 0.986 0.792 0.918 0.947 - - - 

ProPept-ST 0.980 3.050 0.367 0.755 0.990 0.807 0.927 0.955 0.941 0.973 0.112 
ProPept-MT 0.982 1.668 0.243 0.483 0.991 0.827 0.941 0.963 0.955 0.978 0.090 

2.5. Performance Comparison between ProPept-MT and Other Models. 
To assess the accuracy and fairness of the ProPept-MT model, the identical datasets 

employed for training, validation, and testing in the comparative models are utilized. Two 
deep learning models, DeepDIA and DeepPhospho, which are proficient in predicting 
features of unmodified peptides and phosphorylated peptides, will be compared. Alt-
hough both models employ similar or slightly enhanced network structures for predicting 
two or more peptide features, their training methodologies involve training each task sep-
arately. 

The data processing approach of comparative models is being followed, with the cor-
responding datasets being obtained for each model and the results being reported accord-
ing to the evaluation metrics of the respective tasks. For instance, the capability of 
DeepDIA to predict RT and fragment ion intensity will be utilized. Peptides with lengths 
less than seven or greater than fifty, or those containing variable modifications, are filtered 
out. For the task of predicting fragment ion intensity, the selection is further refined to 
include only sub-ions with intensity values greater than zero and charge states of 1+ or 2+. 
Additionally, peptides where the number of sub-ions contained in each parent ion is 
greater than or equal to six are selected. Subsequently, peptides with precursor charges of 
2+ and 3+ are segregated for DeepDIA training. In contrast, they will be treated as two 
separate tasks for joint training by ProPept-MT. One-third of the dataset is allocated for 
testing, while the remaining two-thirds are further divided into two-thirds for training 
and one-third for validation. 

Similarly, DeepPhospho, like DeepDIA, can predict RT and fragment ion intensity 
but extends its support to phosphopeptides. The dataset used by DeepPhospho mirrors 
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benchmark datasets, divided into training, validation, and testing sets in an 8:1:1 ratio. 
Consequently, the comparison results between ProPept-MT and DeepPhospho can be 
found in Section 2.4. Notably, in comparison with DeepDIA, we continue to fine-tune the 
filtered dataset using the parameters pre-trained by ProPept-MT on the benchmark da-
taset H5 DDAp. Conversely, DeepPhospho and DeepDIA undergo retraining on each da-
taset using their default parameters. 

For the fragment ion intensity prediction task, a nuanced comparison with the 
DeepDIA model reveals 12 distinctive combinations of fragment ion types. These combi-
nations are characterized by varying factors, including the charge states of sub-ions (1+ or 
2+), the presence or absence of b/y ions, and the potential for two neutral losses (NH3 or 
H2O). Similarly, for the DeepPhospho model, eight unique combinations of fragment ion 
types are unveiled by our analysis. These combinations stem from key factors such as the 
charge states of sub-ions (1+ or 2+), the presence or absence of b/y ions, and the potential 
for the loss of H3PO4. Furthermore, our methodology involves the deliberate exclusion of 
loss items from the phosphate salt component that are deemed implausible. This rigorous 
approach includes a filtering mechanism to exclude the intensity predictions of these ions, 
ensuring the robustness and accuracy of our findings. 

To ensure consistent comparisons, datasets were initially filtered to exclude those 
with insufficient data volume, which could potentially affect the performance of single-
task training in DeepDIA. For result evaluation, the primary metrics outlined in the 
DeepDIA study are followed, with PCC and median DP being utilized as key evaluation 
metrics for RT and ion intensity, respectively. Concerning RT prediction, ProPept-MT out-
performs both ProPept-ST and DeepDIA in PCC on five datasets, achieving 0.987 com-
pared to 0.971 and 0.958 on the H6 DDA test set (Table 3). Figure 5A visualizes the distri-
bution of absolute errors for RT prediction across six datasets, showing that ProPept-MT’s 
MedAE consistently exceeds that of DeepDIA and ProPept-ST on five datasets. 

Table 3. Comparison of performance metrics between ProPept-MT and DeepDIA. 

Data 
Name Metrics/Model 

Retention Time Ion Intensity(2+) Ion Intensity(3+) Ion Mobility 

2R  Δ 95%t  MedA
E 

IQR PCC SA PCC DP SA PCC DP 2R  PCC Δ 95%t  

H1_DDA 
DeepDIA 0.975 7.132 0.974 1.962 0.987 0.802 0.950 0.952 0.721 0.900 0.905 - - - 

ProPept-ST 0.980 5.422 0.670 1.399 0.9902 0.847 0.959 0.971 0.791 0.925 0.947 0.974 0.987 0.106 
ProPept-MT 0.981 4.823 0.662 1.340 0.9905 0.866 0.968 0.978 0.817 0.943 0.959 0.976 0.988 0.100 

H2_DIA 
DeepDIA 0.994 4.214 0.590 1.178 0.997 0.738 0.913 0.917 0.708 0.893 0.897 - - - 

ProPept-ST 0.9973 2.817 0.381 0.770 0.999 0.812 0.894 0.957 0.792 0.865 0.947 0.984 0.9921 0.066 
ProPept-MT 0.9970 2.993 0.426 0.852 0.998 0.821 0.907 0.961 0.794 0.875 0.948 0.983 0.9918 0.069 

H3_DIAp 
DeepDIA 0.979 15.410 1.964 3.909 0.990 0.692 0.880 0.885 0.673 0.867 0.871 - - - 

ProPept-ST 0.992 9.413 1.134 2.282 0.996 0.788 0.8507 0.945 0.7660 0.837 0.9332 0.979 0.990 0.073 
ProPept-MT 0.993 8.301 0.939 1.873 0.997 0.783 0.8513 0.942 0.7664 0.852 0.9335 0.982 0.991 0.068 

H4_DDAp 
DeepDIA 0.973 14.720 1.930 3.910 0.986 0.746 0.916 0.921 0.668 0.861 0.867 - - - 

ProPept-ST 0.984 8.243 0.992 1.972 0.992 0.805 0.928 0.954 0.750 0.891 0.924 0.960 0.980 0.126 
ProPept-MT 0.986 6.685 0.865 1.729 0.993 0.819 0.938 0.960 0.774 0.913 0.937 0.967 0.984 0.l13 

H5_DDAp 
DeepDIA 0.983 12.850 2.372 3.419 0.992 0.771 0.933 0.936 0.692 0.880 0.885 - - - 

ProPept-ST 0.989 8.484 0.942 1.888 0.9948 0.819 0.940 0.960 0.765 0.897 0.933 0.960 0.981 0.104 
ProPept-MT 0.991 7.225 0.850 1.705 0.9954 0.839 0.952 0.968 0.798 0.928 0.950 0.969 0.984 0.086 

H6_DDAp 
DeepDIA 0.918 21.389 2.456 4.928 0.958 0.670 0.861 0.869 0.657 0.853 0.859 - - - 

ProPept-ST 0.942 16.991 1.924 3.857 0.971 0.754 0.873 0.926 0.765 0.905 0.933 0.923 0.963 0.159 
ProPept-MT 0.973 6.491 0.705 1.397 0.987 0.780 0.928 0.947 0.791 0.928 0.947 0.940 0.971 0.145 
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Figure 5. Comparing the performance of ProPept-MT and DeepDIA in predicting RT, IM, and frag-
ment ion intensity. (A) Distribution of absolute errors for predicting RT on different datasets for 
each model. (B) Distribution of absolute errors for predicting IM on different datasets for ProPept-
MT and ProPept-ST. (C) Assessing ProPept-MT’s performance in predicting fragment ion intensity 
for different precursor charges on benchmark datasets. (D) Distribution of dot product (DP) for pre-
dicting fragment ion intensity of 2+ and 3+ precursor charges on the H1 DDA test set for each model. 

Furthermore, ProPept-MT showcases exceptional predictive performance in IM pre-
diction, exhibiting a superior PCC compared to ProPept-ST across five datasets, achieving 
0.971 versus 0.963 on the H6 DDAp test set (Table 3). In addition, ProPept-MT consistently 
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outperforms various alternative baselines in IM prediction (Figure 5B). Moreover, in terms 
of median DP, ProPept-MT consistently surpasses the models reported in previous studies 
(Figure 5C). During fine-tuning, ProPept-MT takes advantage of fragment ions with 
H3PO4 loss from the pre-training set and fragment ions with two types of neutral losses 
(NH3 or H2O) in the fine-tuning set, achieving better performance than single-task ap-
proaches and highlighting the model’s generalization capability. Figure 5D portrays the 
distribution of DP values for each peptide in the test sets of the H1 DDA dataset, stratified 
by precursor charges of 2+ and 3+. For peptides with a precursor charge of 2+, the percent-
age surpassing a DP value of 0.75 is 98.53%, with a median DP of 0.978. Subsequently, for 
peptides with a precursor charge of 3+, the percentage is 96.35%, with a median DP of 
0.959. For a detailed analysis of performance metrics, please refer to Table 3, where Pro-
Pept-MT’s performance across six datasets exceeds that of the reported models, under-
scoring its superior capability in predicting unmodified peptide features. 

3. Materials and Methods 
3.1. Dataset Collection and Pre-Processing 

Constructing an effective benchmark dataset stands as a critical endeavor for training 
and assessing deep learning models. Curating multiple recently released raw mass spec-
trometry datasets from esteemed repositories, including ProteomeXchange [39], PRIDE 
[40], iProX [41], and jPOST [42], was initially undertaken. These MS data, acquired using 
timsTOF Pro or timsTOF Pro 2 mass spectrometers, provided crucial ion mobility infor-
mation. Following that, two software packages, MaxQuant (version 2.4.8.0) [43] and DIA-
NN (version 1.8.1) [44], were deployed to analyze MS data, thereby resulting in the final 
peptide identification outcomes. This meticulous process led to the compilation and as-
sembly of nine benchmark datasets, comprising a total of 353,052 entries (Table 4). These 
datasets encompass samples from both humans and mice, featuring a range of variable 
modifications, such as phosphorylation at serine, threonine, and tyrosine sites, oxidation 
of methionine, and N-terminal acetyl modification. Moreover, carbamidomethylation of 
cysteine served as a fixed modification. 

Benchmark datasets exclusively comprise the 20 common amino acids. In the identi-
fication results of MaxQuant and DIA-NN, peptide data with q values exceeding 0.01 were 
filtered out. For the output files of MaxQuant, msms.txt and evidence.txt were specifically 
selected, and peptides with phosphorylation modification site probabilities below 0.75 
were excluded to ensure dataset quality. Furthermore, given that these data originate from 
multiple Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) runs, the 
highest-scoring data point from the same peptide was selected for the fragment ion inten-
sity prediction task, while fragment ions with intensities less than or equal to zero were 
excluded. The median of the corresponding target values was utilized for the RT and IM 
prediction tasks. 

Table 4. Dataset Structure. 

Data Name Species Instrument Peptides Identifier 
H1_DDA Human timsTOF Pro 64,358 PXD041421 [45] 
H2_DIA Human timsTOF Pro 125,360 PXD041391 [45] 

H3_DIAp Human timsTOF Pro 42,351 PXD034709 [46] 
H4_DDAp Human timsTOF Pro 31,599 PXD034709 
H5_DDAp Human timsTOF Pro 42,677 PXD027834 [47] 
H6_DDAp Human timsTOF Pro 16,784 PXD042842 [48] 
H7_DDAp Human timsTOF Pro 2 9495 PXD043026 [49] 
M1_DDAp Mouse timsTOF Pro 12,132 PXD028051 [50] 
M2_DDAp Mouse timsTOF Pro 2 8296 PXD043026 
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3.2. The Model Architecture of ProPept-MT 
Figure 6A depicts the workflow of ProPept-MT. ProPept-MT is a blended network 

structure that adopts multi-task deep learning to map peptide sequences into high-dimen-
sional vectors. This intricate process involves self-attention modules, nonlinear transfor-
mations, and BiLSTM networks integrated into four main modules: an input layer, an em-
bedding layer, a sequence modeling layer, and an output layer (Figure 6B). The embed-
ding layer encodes both the input amino acid sequence and the precursor charge into fea-
ture vectors. Subsequently, the sequence modeling layer learns representations of peptide 
features, culminating in the generation of prediction values by the output layer. This inte-
gration enables the model to focus on inter-amino-acid correlations, capture long-term 
temporal features and latent information, and generate richer contextual information rep-
resentations. 

Each submodule is described as follows: 
Input layer. A peptide consists of an amino acid sequence, with the precursor charge 

represented as a scalar. The 20 common amino acids are denoted in uppercase letters, such 
as “G” for glycine and “A” for alanine. If the N-terminal of the peptide contains an acety-
lation modification, “a” is prepended to the sequence; otherwise, “_” is prepended. Vari-
able modifications in the sequence are indicated by “s,” “t,” and “y” for phosphorylation 
modifications at serine, threonine, and tyrosine sites, respectively, and “m” for methionine 
oxidation. “$” is appended at the end of the sequence to aid the model in determining 
when to cease processing the sequence. The maximum peptide length is set to 52, with 
any portion of the sequence shorter than 52 padded with “#”. 

Embedding layer. For the RT prediction task, each amino acid is directly embedded 
into a 256-dimensional tensor. Conversely, for the IM and fragment ion intensity predic-
tion tasks, each amino acid is first embedded into a 192-dimensional tensor and each pre-
cursor charge into a 64-dimensional tensor, which are then concatenated into a 256-di-
mensional tensor. To incorporate the positional information of amino acids, standard sine 
and cosine functions are used as positional encoding [29], resulting in a 54 × 256 tensor. 

Sequence modeling layer. Serving as the backbone of ProPept-MT, this layer com-
prises a series of Transformer encoders and BiLSTM subnetworks. The Transformer en-
coder subnetwork enlists more efficient self-attention modules to capture correlations be-
tween amino acids at different positions in the peptide sequence. It consists of six stacked 
encoder layers, each containing a multi-head attention module and a fully connected feed-
forward network, with residual connections and layer normalization. The number of at-
tention heads and hidden layer dimensions of the feed-forward network are eight and 
1024, respectively. The goal of this subnetwork is to extract the initial representation of 
the peptide and feed it to the next subnetwork. The BiLSTM subnetwork consists of a 
single bidirectional LSTM layer with 512 hidden dimensions and its goal is to capture 
longer distance dependencies more effectively. Furthermore, as a shared layer, the se-
quence modeling layer shares its learning parameters across tasks. The attention module 
is described as: 

( )
T 

 = ⋅
 
 

QKQ,K,V V
k

Attention Softmax
d

 (1) 

where Q,K,V  is derived from the dot product between the input matrix and three pa-
rameter matrices. The operation TQK generates a similarity matrix between each amino 
acid’s position and other amino acids’ positions. Subsequently, each element in the matrix 
is divided by a scalar kd , followed by the application of the softmax function to generate 
probabilities. Finally, the result is multiplied by V  to obtain the context vector represen-
tation for each amino acid. kd  represents the size of the hidden layer. 
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Output layer. A linear layer is used to project the features of each amino acid position 
into an n-dimensional vector, which acts as the output for predicting fragment ion inten-
sities. Here, n represents the number of fragment ion types to be predicted. For the RT and 
IM prediction tasks, the hidden layer outputs of BiLSTM are used for generating instance-
specific weights for sequence features, and a weighted averaging approach is exercised to 
produce the final RT and IM predictions. 

 
Figure 6. The workflow and model architecture of ProPept-MT. (A) ProPept-MT employs a multi-
task deep learning model to generate in silico prediction libraries from protein or peptide sequence 
databases. (B) ProPept-MT is used for predicting RT, IM, and fragment ion intensity for any given 
unmodified peptide or phosphopeptide. Given the peptide sequence and precursor charge as input, 
our model uses Transformer encoder modules and a BiLSTM network to calculate context represen-
tations for all amino acids, which it finally outputs through separately designed output layers for 
each task. 

3.3. Loss Function 
Two distinct loss functions were exploited to minimize training errors, the mean 

squared error (MSE) loss function for predicting fragment ion intensity and the L1 norm 
for predicting RT and IM. These functions are expressed as follows: 

( )
=

= −
2

1

1MSE
n

i i
i

y y
n

 (2) 


=

= −
1

1L1 Loss
n

i i
i

y y
n

 (3) 

where n  represents the number of training samples, iy  is the experimental value, and 


iy  is the predicted value. 

3.4. Model Training 
The experiment was conducted using Python 3.9 and implemented within the Torch 

deep learning framework (version 1.10.0) [51] (https://pytorch.org/). Applying multi-task 
learning during model training offers a potential avenue for reducing computational 
costs, albeit accompanied by the challenge of potential conflicts arising in the gradients of 
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distinct tasks. To tackle this issue, Nash-MTL, as delineated in Algorithm 1, approaches 
the gradient aggregation step as a bargaining game [35]. This methodology facilitates task 
negotiation, aiming to achieve consensus on the direction of updating shared parameters, 
thus effectively alleviating this challenge. 

Algorithm 1. Nash-MTL 

Input: θ0 - initial parameter vector, { } =1

K

i i
l – differentiable loss functions, μ –learning rate 

Output: θ T  
for = …1, ,t T  do 

Compute task gradients θ −= ∇ ( 1)
t
i t ig l  

Set ( )tG  the matrix with columns ( )t
ig  

Solve for α α α=: ( ) ( ) 1 /t T tG G  to obtain α t  

Update the parameters θ θ μ α= − ∗( ) ( ) ( ) ( )t t t tG  
end for 
return θ T  

For the multi-task learning paradigm involving parameters θ  , this methodology 
postulates the existence of a sphere ∈B  centered at the origin with a radius ∈ . The objec-
tive is to locate the update vector θΔ  within this defined sphere. This scenario is framed 
as a bargaining problem, where the center of the sphere represents the point of disagree-
ment, while ∈B  signifies the set of agreements. The utility function for each participant is 

defined as θ θΔ = Δ( ) T
i iu g , where ig  signifies the gradient vector of task i  loss at θ . 

A unified training approach was implemented, wherein each training iteration se-
quentially addresses distinct tasks: fragment ion intensity, RT, and IM. For the fragment 
ion intensity prediction task, should the need arise to train peptides of varying precursor 
charges separately, the sequence follows 3+, 2+, RT, and IM. The Adam gradient descent 
algorithm was applied uniformly across all tasks, characterized by a batch size of 128, 
beta1 of 0.9, beta2 of 0.999, epsilon of 1e-8, and a learning rate of 1e-4. Moreover, extensive 
exploration of hyperparameters was conducted, accompanied by model simplification. 
This endeavor facilitated ProPept-MT in capturing intricate features among amino acid 
sequences, thereby enhancing prediction precision. 

3.5. Evaluation Metrics 
For the fragment ion intensity prediction task, the median PCC was selected as the 

ultimate evaluation metric. In addition, to promote comparisons with other established 
models, we adhered to their evaluation criteria, incorporating normalized SA and DP as 
two supplementary metrics, and reported their respective medians. The definition of SA 
is as follows: 

∗
=

Π
⋅

−
ˆ2 arccos( )

1
y y

SA  (4) 

where ŷ  and y  are the predicted and experimental vectors, respectively, with L2 norm 
equal to 1. 

For the RT prediction task, the MedAE served as the primary evaluation metric, com-
plemented by the coefficient of determination ( 2R ), inter quartile range (IQR), PCC, and 
Δ 95%t  for comparative analysis across models. Here, Δ 95%t  denotes the minimum time 
window accommodating 95% of peptides, reflecting the disparity between experimentally 
observed and predicted RT. Regarding IM prediction, we focused on 2R , PCC, and Δ 95%t  
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as key metrics, with PCC assuming the role of the principal evaluation criterion. The def-
initions of MedAE and Δ 95%t  are outlined as follows: 

 −= −1 1(| |,...,| |)i iMedAE ym d ye i yn ya  (5) 

Δ = ∗ −95% 95%2 ˆ| |y yt  (6) 

where n  represents the number of training samples, iy  is the actual value, and iy  is 
the predicted value. The subscript 95% indicates that the deviation covers 95%. 

In the context of ProPept-MT training, where multiple evaluation metrics are relevant 
to each task, a specific formula is used to gauge model performance, quantifying the extent 
of performance enhancement between successive training epochs. The formula is as fol-
lows: 

= =

− −
Δ = ×  

,
, ,

p
1 1 ,

( 1) ( )1 1100%
t mt

wMT
t m t m

t mt t m

B N
T M N

 (7) 

where T   represents the number of tasks; W   represents the number of metrics; ,t mw  
represents the optimization direction of the m  metric of the t  task, with a binary value 
where 0 indicates that the smaller the metric, the better, and 1 indicates that the larger the 
metric, the better; B  represents the list of metrics for the first training epoch; N  repre-
sents the list of metrics for the current training epoch. 

4. Discussion 
In this study, we introduced ProPept-MT, a new multi-task deep learning model de-

signed to enhance the accurate prediction of peptide features and expedite 4D DIA prote-
omics by precisely predicting the RT, fragment ion intensity, and IM of unmodified pep-
tides or phosphopeptides. First, the evaluation of ProPept-ST’s RT prediction performance 
was conducted using 15 unmodified RT datasets and three phosphopeptide RT datasets, 
comparing its performance with the existing advanced RT prediction models. Subse-
quently, the multi-task prediction performance of ProPept-MT on nine benchmark da-
tasets was assessed and compared with ProPept-ST and the existing advanced models. 
Evidently, ProPept-MT demonstrates superior prediction performance across all datasets 
and can predict peptide features such as ion mobility, which other models cannot predict. 

In evaluating ProPept-ST, we assessed the ability of single-task models to predict re-
tention time for both unmodified and phosphorylated peptide data. ProPept-ST was com-
pared with Deep4D, DeepDIA, and DeepLC for unmodified peptides, and with Deep4D 
and DeepPhospho for phosphorylated peptides. To ensure fairness, we used datasets from 
the respective studies: unmodified peptide data from DeepLC and phosphorylated pep-
tide data from DeepPhospho. This approach was necessary due to the varying nature of 
the input data supported by these models. Notably, Deep4D, DeepPhospho, and DeepLC 
support modifications such as methionine oxidation, phosphorylation at STY sites, and 
N-terminal acetylation, whereas DeepDIA does not. 

In comparing ProPept-MT, we evaluated the multi-task model’s ability to predict re-
tention time, ion intensity, and ion mobility for both unmodified and phosphorylated pep-
tides. ProPept-MT was compared with ProPept-ST and DeepPhospho for phosphorylated 
peptides, and with ProPept-ST and DeepDIA for unmodified peptides. Unlike DeepPhos-
pho and DeepDIA, which train and predict each task separately, ProPept-MT employs a 
multi-task approach. Due to the lack of ion mobility information in the datasets from com-
parative model studies, we used our curated datasets for this comparison. Overall, the use 
of different datasets and comparison modes ensures a fair and comprehensive assessment, 
meeting the requirements of each model. 
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Critical to peptide analysis are features such as fragment ion intensity, IM, and RT, 
which are effectively captured by our model through a nuanced training strategy that uti-
lizes input data and noise from various tasks. This combined training approach helps mit-
igate the divergent noise inherent in different tasks, thereby improving learning outcomes 
and enhancing model robustness. In other words, by leveraging the inherent information 
contained within peptide sequences and precursor charge states, ProPept-MT was effec-
tively trained on fragment ion intensity, RT, and IM within a multi-task learning frame-
work. This advanced approach achieved a form of data augmentation, enabling each task 
to learn from a richer set of information rather than being confined to the specific data 
each task individually possessed, while also preventing overfitting. Additionally, Pro-
Pept-MT engages a hard parameter-sharing mechanism to embed the data representations 
of each task into a unified semantic space, followed by the application of a task-specific 
layer to extract task-specific representations for each task [52,53]. This approach signifi-
cantly reduces memory consumption and eliminates redundant learning of information 
in shared layers, ultimately leading to higher inference speed and shorter training times. 

Experimental results indicated that ProPept-MT outperformed single-task training, 
demonstrating robust enhancements in prediction accuracy. This suggested a certain de-
gree of task interrelatedness among the three predicted peptide attributes, allowing each 
task to update parameters in a similar direction. By simultaneously optimizing multiple 
related tasks, ProPept-MT leveraged the interdependencies among them, ensuring that 
the intrinsic correlations within the data were effectively preserved and utilized. Further-
more, the fine-tuning process showcased the model’s flexibility, enabling ProPept-MT to 
seamlessly adapt to various types of LC and gradient lengths. This adaptability ensured 
that ProPept-MT could be applied to different experimental setups, enhancing its utility 
and performance across diverse proteomics research scenarios. 

ProPept-MT manifested extensive potential applications. It accurately predicted the 
ion intensity, RT, and IM of peptides, facilitating the construction of 4D DIA spectral li-
braries. This capability aided in protein identification and quantitative analysis, enhanc-
ing the reliability of data and experimental efficiency. Moreover, we believe that ProPept-
MT, through its precise analysis of proteomic mass spectrometry data, can uncover addi-
tional peptides and proteins, thereby providing valuable tools for fundamental scientific 
research, drug development, and disease treatment. We will continue to expand upon this 
research in the future. 

Despite ProPept-MT’s improved prediction performance, negative transfer occurs 
during training. Analysis of the training loss curve reveals a step-like distribution of the 
losses for each task, with fragment ion intensity showing the smallest loss and IM the 
largest. This bias causes the model to prioritize reducing the loss of fragment ion intensity 
over RT and IM, potentially leading to sustained outstanding performance with regard to 
fragment ion intensity but the gradual deterioration of RT and IM performance. Further-
more, evaluating the performance improvement of each training epoch reveals challenges 
in selecting an optimal set of model parameters that perform best on each task. This issue 
underscores the need for further refinement. As a result, ongoing research focuses on al-
ternative deep learning approaches to address these challenges and improve the predic-
tion of additional peptide features. Future work also involves integrating spatial protein 
structures into training data to predict specific modification sites. 
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