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ABSTRACT: In shotgun proteomics, the proteome search engine
analyzes mass spectra obtained by experiments, and then a peptide-
spectra match (PSM) is reported for each spectrum. However,
most of the PSMs identified are incorrect, and therefore various
postprocessing software have been developed for reranking the
peptide identifications. Yet these methods suffer from issues such
as dependency on distribution, reliance on shallow models, and
limited effectiveness. In this work, we propose AttnPep, a deep
learning model for rescoring PSM scores that utilizes the Self-
Attention module. This module helps the neural network focus on
features relevant to the classification of PSMs and ignore irrelevant features. This allows AttnPep to analyze the output of different
search engines and improve PSM discrimination accuracy. We considered a PSM to be correct if it achieves a q-value <0.01 and
compared AttnPep with existing mainstream software PeptideProphet, Percolator, and proteoTorch. The results indicated that
AttnPep found an average increase in correct PSMs of 9.29% relative to the other methods. Additionally, AttnPep was able to better
distinguish between correct and incorrect PSMs and found more synthetic peptides in the complex SWATH data set.
KEYWORDS: shotgun proteomics, mass spectrometry, peptide identification, deep learning, self-attention

■ INTRODUCTION
Tandem mass spectrometry (MS/MS) has become the most
widely utilized choice for the characterization of proteins in
complex biological samples, as it can acquire millions of spectra
in a single experiment.1 Technological advances in mass
spectrometry have promoted the development of database
search engines such as Sequest,2 Mascot,3 Comet,4,5 MS-GF+,6

and MSFragger.7 Database search algorithms assign a score for
each peptide-spectrum match (PSM) by measuring the
similarity between the theoretically predicted spectrum and
the experimentally acquired spectrum.8 The scored PSMs are
ranked, and only the top 1match for each spectrum will typically
be reported by the database search engine. However, the PSM
scores resulting from database searches are often uncali-
brated,9,10 which leads to challenges in qualitative comparisons
and may result in incorrect interpretations and conclusions.
The target-decoy strategy11 is developed to estimate the

number of false-positive protein identifications in a more
systematic way. Data is not only searched against the standard
sequence database (target) but also against a reversed protein
database (decoy).12 PSMs obtained from the decoy database can
be used to estimate the number of incorrect target PSMs and
estimate the PSM-level false discovery rate (FDR). Here, the
PSM-level FDR is represented by the q-value, which is defined as
the minimal FDR at which a PSM is identified as correct.
A variety of approaches have been developed to validate PSMs

reported by search engines.13 In particular, there are two kinds of

software widely used in current proteomics analysis pipelines.
The first one is PeptideProphet,14,15 which uses a linear
discriminant analysis (LDA) to assess the validity of peptide
identifications. The second one, Percolator,16−19 trains a
machine learning model called support vector machine
(SVM)20 to discriminate between target and decoy PSMs.
Compared to machine learning models, deep learning models
have yielded better results for proteomics data analysis.21−27 In
addition, a deep learning-based algorithm called proteoTorch
using deep neural networks (DNNs) further improves the
classification of correct target PSMs.28

However, while these algorithms have demonstrated state-of-
the-art performance in peptide identification, there still remains
substantial room for improvement. For example, PeptidePro-
phet incorporates all discrimination properties to model the
distributions of correct and incorrect identification scores, but
the deviations of real and observed distributions can lead to
substantial underestimation or overestimation of computed
probabilities;15 Percolator’s adaptive algorithm can postprocess
arbitrary sets of MS/MS features,29−31 but the use of shallow
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machine learning models is potentially suboptimal given the
cutting-edge performance of deep models in large-scale data
analysis; proteoTorch uses the DNNs to improve MS/MS
postprocessing accuracy but it has a marginal improvement in
efficacy.28

In this study, we describe a solution to these problems that
uses a Self-Attention-based deep learning model that can be
appended to any database search algorithm without adjustment.
The algorithm, called AttnPep, is inspired by the Transformer
model32 in the field of Natural Language Processing (NLP).33

The Self-Attention module34 in Transformer is used to learn the
relationships of sequence elements with one another and how
their interaction should be interpreted. AttnPep takes advantage
of the Self-Attention module by directly computing the
interaction among features. This helps AttnPep enhance the
model’s understanding of complex relationships in the data,
improve representation capability, and handle nonlinear
problems. These benefits can improve the accuracy and
performance of classification tasks. Meanwhile, we offer an
optional algorithm, called AttnProt, which combines a bipartite
graph35 and statistical model to compute probabilities that
proteins are presented in a parsimonious protein list.
We measured AttnPep’s ability to identify correct PSMs using

13 high-res MS1/MS2 data sets collected from two different
protein databases and compared the number of peptide
identifications at q-values less than 0.01 with existing
postprocessing software PeptideProphet, Percolator, and
proteoTorch. We show that AttnPep significantly improves
the classification of correct and incorrect PSMs despite the
different acquisition methods, species, or different search engine
outputs of these data sets. For example, in the output of
MSFragger software for four different sets of species samples and
in the output of different search engines for the same species
samples, at 1% PSM-level FDR, AttnPep improved results by
9.29% on an average compared to other softwares. In addition,
for the SWATH-MS gold standard (SGS) data set, which is a
data set consisting of 422 chemically synthesized, stable isotope-
labeled standard peptides from samples,36 AttnPep was able to
better distinguish the distribution of correct and incorrect PSMs
compared to Percolator and identified more synthetic peptides
at a q-value threshold of 0.01. Moreover, we demonstrate that
AttnPep amplifies the weights of hyperscore and log10 evalue
through self-attention weights, which are the most relevant
features for input during training onMSFragger output features.

■ METHODS

Data Sets and Processing

We used two different high-resolution publicly available data
sets. One is a comprehensive DDA/DIA data set that utilizes
several of the most commonly used current mass spectrometers
to obtain protein mass spectrometry data containing human,
yeast, E. coli, and mixed samples, which is available through
ProteomeXchange (PXD028735).37 Another is the SGS data set
consisting of 422 chemically synthesized, stable isotope-labeled
standard peptides from samples that were subjected to the
acquisition of protein mass spectrometry data in DIA mode on
the AD SCIEX TripleTOF 5600 system. This data set is
obtained from the PeptideAtlas raw data repository
(PASS00289).36 The data sets used for testing is shown in
Table 1.

For the conversion of the raw data, we used msconvert to
convert the DDA data to mzML format and qtofpeakpicker to
convert the SWATH data to mzXML format.
We used MSFragger to perform database searches for all data

sets using the corresponding fasta libraries. The DDA data were
analyzed using the default schema and the SWATH data were
analyzed using the DIA_DIA-Umpire_SpecLib_Quant schema.
All searches were fully tryptic, the mass Modifications of data
5600_SWATH_Human is also K+8.014199 and R+10.008269,
and the rest of the data all use the default parameters. We
specifically used multiple search engines for 6600_DDA_QC
data in addition to MSFragger, Comet, and MS-GF+ for the
database search, of which the search parameters are the same as
MSFragger. The major database search parameters are listed in
Supporting Information Table S2. All search results were output
as pepXML and PIN format for subsequent downstream
analysis.
AttnPep Model
Model Structure. AttnPep takes the PSM score result

output by the search engine as input and ultimately returns a
probability representing the correctness of each PSM. AttnPep
consists of three main modules: Input Embedding, Self-
Attention, and a decoder consisting of resNet and fully
connected (FC) strata.
The Input Embedding module transforms each normalized

input feature into a 64-dimensional feature vector. This process
converts the input features of each set of PSMs into a feature
matrix that can be used for self-attention calculation. The Self-
Attention module (see Figure 1b) contains four FC layers and a
Scaled Dot-Production Attention. The feature matrix output by
the Input Embedding module is transformed by the first three
FC layers and returnsQ, K, and Vmatrices separately. TheQ, K,
andV are used to calculate a new feature matrix Z by Scaled Dot-
Production Attention (further details of Scaled Dot-Production
Attention are described in the next section), and then the matrix
Z is transformed into an output feature matrix by the last FC
layer. The feature matrix output by Self-Attention passes
through the residual layer of dimension 512, the FC layer, and
the residual layer. Then, the final sigmoid function normalizes it
to the interval [0,1].

Table 1. Dataset Structure

species instrument vendor
acquisition
method

E. coli Orbitrap Thermo
Fisher

DDA
QE HF-X
TripleTOF
5600

AB Sciex DDA
SWATH

human Orbitrap Thermo
Fisher

DDA
QE HF-X
TripleTOF
5600

AB Sciex DDA
SWATH

TripleTOF
6600+

AB Sciex SWATH

yeast Orbitrap Thermo
Fisher

DDA
QE HF-X
TripleTOF
5600

AB Sciex DDA
SWATH

QC (12.5% E. coli +22.5% yeast
+65% human)

Orbitrap Thermo
Fisher

DDA
QE HF-X
TripleTOF
5600

AB Sciex DDA
SWATH
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Training. AttnPep uses an iterative, semisupervised training
procedure to recalibrate input targets and decoy PSMs. Positive
training examples are estimated as the set of target PSMs with
scores achieving a stringent, user-specified q-value, while all
decoy PSMs were labeled as negative samples. In each training
iteration, all PSMs will be rescored and the positive label
assignments will be updated. This overall process repeats either
for a user-specified number of iterations or until convergence.
We use the Adam optimizer with an initial learning rate of 0.001,
32 samples per batch, a training step of 15, and a loss function of
Binary Cross Entropy with Logits Loss. The benefit of the
iterative semisupervised learning paradigm is that the classifier is
free to exploit a variety of specific features of the data, without
overfitting to a particular type of spectrum.
Moreover, in order to mitigate the risk of overfitting and

enhance the generalizability of the model, a 3-fold cross-
validation technique is employed within the procedure.
Subsequently, three separate models are trained using each of
these test and train splits. This approach effectively safeguards
against overfitting issues that may arise from the over-reliance on
learned parameters. Consequently, the resulting three models
are utilized to reassess all the PSMs. The final aggregate score is
computed by weighting and summing the scores generated by
the three models, then continues the q-value calculation for
PSMs and considers PSMs with q-value <0.01 to be the correct
PSMs.

Self-Attention Calculation

The feature matrix that is output by the Input Embedding
module serves as the input for the Self-Attentionmodule, and we
denote the feature matrix as X. When X is input into the Self-
Attention module, it will be transferred to three different
matrices (Q (Query),K (Key), andV (Value)) by three different
FC layers, which defines three different weighted matrices (WQ,
WK, and WV). Among them, WQ, WK, and WV are the trainable
parameter matrices of X linearly mapped to Q, K, and V.
The Q, K, and V are used to calculate the Scaled Dot-Product

Attention by eq 1:

=Q K V
QK

d
VAttention( , , ) softmax

T

k

i
k
jjjjjj

y
{
zzzzzz (1)

where dk is the spatial latitude where the eigenvectors are
located. In Scaled Dot-Product Attention, we first dot-product
the matrix Q with the matrix K. The purpose of doing so is to
calculate the inner product between different feature vectors as a
way to reflect the association between feature vectors. In order
to prevent the oversized correlation matrix QKT from affecting
the subsequent calculation, we divide it by dk to reduce the
variance of the correlation matrix. Next, we calculate softmax for
each column of the correlation matrix, which makes the
correlation of each feature vector with the other feature vectors

Figure 1. AttnValid workflow. (a) First, raw data are searched for the Target/Decoy database by the search engine, and the PSM results are subjected
to feature extraction for AttnPep training. (b) Second, Target/Decoy features are fed into AttnPep to train a classifier for recalculating the confidence
level for each PSM reported. (c) Third, the PSMs reported by AttnPep are sent to AttnProt to compute the probability of each protein. (d) Details for
Scaled Dot-Product Attention.
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sum up to 1. Finally, we multiply the correlation matrix

softmax QK
d

T

k

i
k
jjj y

{
zzzwith thematrixV to obtainmatrixZ. The outputZ

of Scaled Dot-Product Attention represents the dependencies
between each feature and other features, where the feature
vectors of each feature have been taken into account for their
correlations and weights with others (see Figure 1d).

■ RESULTS

Workflow of AttnValid
AttnValid is a workflow for validating PSMs' output from
database search engines, which first validates PSMs for peptides
using the deep learning model AttnPep, followed by the protein
reranking model AttnProt using a bipartite graph-based
probabilistic (see Figure 1).
The workflow starts with raw data processing (see Figure 1a),

where a search engine (MSFragger, Comet, and MS-GF+ were
used in this study) performs a search of the theoretical database
for raw spectra using the Target/Decoy strategy. We divided the

reported PSMs into Target and Decoy PSMs according to
whether the database matched by the experimental spectra was
Target or Decoy. Then the score information were packaged as
the input features for subsequent deep learning models.
To obtain the training data of AttnPep, the scores most

relevant to the Target/Decoy Features (e.g., evalues) are filtered
as the initial scores of the data. A user-specified PSM-level FDR
filter is then applied to the Target Features using Decoy
Features, so that the Target Features with higher confidence are
selected as positive samples for training the AttnPep. These
positive and negative samples are then input into AttnPep for
training (see Figure 1b). These feature matrices are fed to the
Self-Attention module (Figure 1d and Methods section) for
attention computation, where the resulting feature matrices
“notice” the features that are more useful for the classification
task and “ignore” the features that are less important.
Subsequently, we decode these Feature matrices by using a
multilayer residual network and normalization layer, and output
an AttnPep score, the size of which can be used to characterize

Figure 2. Performance of AttnPep on different data sets. The graph plots the number of identified PSMs as a function of q-value. (a) shows the data
results of Yeast samples under DDA acquisition mode of Thermo instrument; (b) shows the data results of mixed samples QC under DDA acquisition
mode of 6600 instrument; (c) shows the data results of SGS Human samples under 5600 instrument SWATH acquisition mode; (d) shows the data
results of E. coli samples in 6600 instrument SWATH mode; (e) shows the data results under Comet; and (f) shows the data results under MS-GF+.
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the confidence of the input PSMs. Finally, we normalize the
AttnPep score to obtain the probability of being correct in
characterizing the PSMs. The output of AttnPep is the same as
the output of Percolator.
The peptide−protein match output by AttnPep were

packaged as input to AttnProt (Figure 1c). AttnProt combines
the benefits of existing protein-identifying software ProteinPro-
phet38 and IDPicker.39,40 These complex peptide−protein
correspondences can be viewed as an undirected bipartite
graph model. After initialization, merging, segmentation,
filtering, and probability calculation, we get a minimal set of
proteins that can cover all peptides reported by the search
engine.

AttnPep Improves Peptide Identification

We first analyzed the database search results of MSFragger using
AttnPep and three existing software with different strategies and
drew the curve of the number of peptides identified with the q-
value strictly less than 0.01 as a function (Figures 2, S1, and S2)
and calculated the average increase rate of the q-value from 0 to
0.01. In both data sets where the acquisition mode was the DDA
strategy (Figure 2a,b), AttnPep showed a significant improve-
ment compared to the existing software. In the data set
MSFragger_Thermo_DDA_Yeast, AttnPep increased the
number of identified peptides by 6.01% compared to
proteoTorch, by 7.00% compared to percolator, and by
10.68% compared to PeptideProphet. In the mixed data set
MSFragger_6600_DDA_QC, AttnPep identified 3.71% more
peptides than proteoTorch, 4.08% more than percolator, and

Figure 3. AttnPep shows better performance on the SGS data set. (a) Distribution of Target and Decoy PSMs in AttnPep scores. (b) Confidence
probabilities reported at the end of AttnPep versus Percolator. (c) Venn diagram of PSM filtering results with the FDR of 1%. (d) Venn diagram of
peptide filtering results for the FDR of 1%. (e) Annotated PSMs output by MSFragger.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00729
J. Proteome Res. 2024, 23, 834−843

838

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00729/suppl_file/pr3c00729_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00729?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00729?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00729?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00729?fig=fig3&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00729?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


8.18%more than PeptideProphet. As for the two data sets where
the acquisition mode was SWATH strategy (Figure 2c,d): in the
data set MSFragger_5600_SWATH_Human, AttnPep in-
creased the identified peptides by 8.01% over percolator and
by 14.44% over PeptideProphet, in the data set MSFrag-
ger_6600_SWATH_Ecoli, AttnPep increased the identified
peptides by 4.58% over percolator, and 10.61% over
PeptideProphet. We also present the results of rescored peptide

identifications of AttnPep with the output of Comet andMS-GF
+ (Figure 2e,f). In Comet_6600_DDA_QC, AttnPep increased
the identified peptides by 6.46% over proteoTorch, by 18.28%
over PeptideProphet, and by 18.05% over percolator. In MS-GF
+_6600_DDA_QC, AttnPep identified 7.15% more peptides
than proteoTorch, 4.87% more peptides than PeptideProphet,
and 16.59% more peptides than percolator.

Figure 4. Schematic representation of the weights of Features in the Self-Attention module. (a) Attention is weighted by the original features (line
labels) to obtain a new set of features*. (b) Feature*9 is calculated by weighing the original features. (c) The average contribution of input features to
the weights of features*. (d) The distribution of positive (log10 evalue) and negative (Peptide Length) samples of input features. (e) Histogram of the
weight distribution of input features (hyperscore, log10 evalue, peptide length, and rank) on features*.
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We can see that the growth slope of AttnPep in the interval of
q-values less than 0.001 is significantly larger than other methods
in all data sets, indicating that AttnPep can learn the difference
between Target and Decoy PSMs more accurately and thus
achieve better classification performance.
Performance of AttnPep on the SGS Data Set

To validate the accuracy of the PSMs reported by AttnPep, we
tested the results using the SGS data set. If the method of
reranking the peptide identifications can better distinguish the
distribution of Target and Decoy, and can find more synthetic
peptides in the peptide output results, the more accurate the
method is proven to be.
In Figure 3a, we can see that the distribution of Decoy is in

[−10,−3], while the distribution of Target is distinctly split into
two. One part of the Target score distribution is in [0,10], and
the other part is similar to Decoy’s distribution. Figure 3b shows
the confidence probability distribution of the AttnPep output
and the percolator output. We can see that a clear part of the
percolator distribution is distributed in [0.1,0.8], which
indicates that AttnPep is able to produce a stricter confidence
probability calculation for PSMs.
Figure 3c shows the Venn diagram of the PSMs reported by

AttnPep and percolator under the filtering of 1% PSM-level
FDR. There are 18,781 PSMs in common between AttnPep and
percolator, 1347 independent PSMs in AttnPep, and 1070
independent PSMs in percolator. AttnPep reported 277 more
independent PSMs than percolator. Figure 3d shows a Venn
diagram of the number of peptides at 1% FDR with the number
of synthetic peptides. AttnPep and Percolator together found
366 synthetic peptides on SGS, and AttnPep identified 1080
independent peptides, of which 8 were independent synthetic
peptides. Percolator identified 376 independent peptides, of
which 1 was an independent synthetic peptide.
Furthermore, we utilized pyteomics to annotate and visualize

three randomly selected PSMs reported by MSFragger. As
shown in Figure 3e, in addition to annotating the theoretical
peptide and protein, we also reported three scores (hyperscore,
nextscore, and expect) generated during the matching process,
as well as the probabilities obtained from PSM reranking
software AttnPep, Percolator, and PeptideProphet.
We conclude that AttnPep has improved the number of

reports at the PSM level and especially at the peptides level,
where more synthetic peptides could be identified.
Self-Attention Allows AttnPep to Focus More on Useful
Features

AttnPep’s core is the Self-Attention module, which was first
proposed in the field of NLP to compute the degree of
association between different words in a sentence. In NLP, the
Self-Attention mechanism emerged to compute the connections
between complex inputs by adding a Self-Attention layer after
the input layer of the network, so that the input vector of each
element in turn extracts useful information from each other
before being input to the subsequent network for computation.
The score output by the search engines are not completely

independent of each other, and some of the scores are not
helpful for PSM classification. To address this, Self-Attention
was introduced into AttnPep. This helps to simultaneously
achieve correlation between extracted features and reduce the
effect of invalid scores. Self-Attention can also accommodate
scores from different search engines since the composition of
scores from each search engine is different.

To explore how the Self-Attention module processes the
inputs to the model, the weight matrix was extracted from
AttnPep. The weight matrix is the transformation matrix learned
by the Self-Attentionmodule when converting the input features
to Feature*. Feature* represents the new features learned by the
network using Self-Attention. Figure 4a shows the ten-tine
average weight matrix heatmap for the data MSFrag-
ger_6600_DDA_QC. In Figure 4a, there are several input
features that contribute particularly well to the computation of
Feature*. In Figure 4b, the computation of Feature*9 is a
weighted summation of the input features, with log10 evalue and
hyperscore making the highest contribution.
Figure 4c shows the average contribution of input features to

Feature* pairs in the weight matrix, thus reflecting the
correlation between input features and Feature*. Among
them, hyperscore contributes the highest weight pairs on
average, followed by log10_evalue, weighted abs ppm, nmc, and
abs ppm in that order. The total weight contribution of these five
input features accounts for a total of 62.3%. This is under-
standable because these five features are the key features to
distinguish positive and negative samples when performing the
classification of PSM (Figure 4d, large panel). Meanwhile
features like peptide length, rank, etc. (Figure 4d, small panel)
only reflect the basic information on the spectra or theoretical
peptides and are not helpful for the classification of PSM. Figure
4e plots the distribution of the weights of the two highest and
two lowest input features on average contributing to Feature*.
Therefore, we believe that the Self-Attention module can

focus attention on the input features that contribute to the
classification task and reduce the influence of useless features,
which allows us to avoid the need to filter features when using
scores from different search software.
AttnProt Combines Bipartite Graphs to Calculate Protein
Probabilities

AttnPep is able to recalibrate the PSMs at the peptide level but is
unable to score PSMs at the protein level. There are two major
challenges in protein-level quality control. The first challenge is
that the same peptide will correspond to multiple proteins, and
large-scale data sets often contain homologous sequences from
multiple species, thus generating many false-positive proteins.
The second challenge is that the false-positive rate at the protein
level is not equivalent to the false-positive rate at the peptide
level, and therefore the proteins cannot be effectively filtered
using only the peptide-level PSM scores.
IDPicker addresses the first challenge by using the principle of

parsimony to filter out the smallest set of proteins that explain
the spectra generated by the experiment through an undirected
bipartite graph approach that can significantly reduce the
number of homologous proteins. For the second challenge,
ProteinProphet uses a probabilistic model to assemble candidate
peptides with high-scoring values into candidate proteins and
gives each candidate protein a scoring value characterizing its
confidence level. There are many strategies to deal with those
challenges.41 For example, one straightforward strategy makes
use of decoy protein groups (PGs), i.e., PGs consisting entirely
of decoy PSMs. A score is constructed for each target and decoy
PG, allowing the protein-level FDR to be controlled in a similar
way as the PSM FDR is controlled.42−44 Another less common
category of approaches uses the PSM probabilities to calculate a
probability for each protein; these probabilistic approaches
perhaps more accurately represent the nonbinary evidence for
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the proteins and do not necessarily require protein group-
ing.45−47

We therefore propose a protein quality control tool, AttnProt,
that combines the functions of IDPicker and ProteinProphet to
calculate the probability of a protein by combining an undirected
bipartite graph and probability statistics. We first use themethod
of an undirected bipartite graph to cluster proteins by shared
peptides and derive the minimum list of proteins. Then we use
the statistical method to estimate the probability of protein
presence in a sample by the probability of peptide presence. The
whole process is divided into 5 steps: generation of bipartite
graph, merging of shared peptides/proteins, partitioning of
subgraphs, protein filtering, and calculation of protein
probabilities. An example of a protein list output by AttnProt
is shown in Table S3. Further details of AttnProt are described in
Supporting Information.

■ DISCUSSION
In this work, we present AttnPep, a deep learning model for the
postprocessing of proteomics mass spectrometry identification
results, for improving the accuracy of peptide identification from
tandem mass spectrometry. In total, six independent data sets
from two data sets, ranging from the output of different database
search software to the results of different acquisition methods,
were evaluated in this study, which also contains the gold
standard data set containing synthetic peptides. In all data sets,
AttnPep showed better discrimination performance, was able to
more clearly distinguish the distribution of correct and incorrect
PSMs in the results of the database search software, and
identified more peptides when compared to existing mainstream
software.
Furthermore, the study reveals the capability of the Self-

Attention module to focus the network’s attention on input
features that are conducive to the classification effect during the
classification process, leading to improved classification out-
comes. The Self-Attention module enables AttnPep to process
the output of different search software without introducing
excessive irrelevant features that might degrade the network’s
performance.
Despite AttnPep’s success in distinguishing correct from

incorrect PSMs and identifying more peptides than existing
mainstream software, it was unable to fully identify all synthetic
peptides from the gold standard identification data. Thus, we
postulate that there exist significant features in the experimental
data that may further enhance the identification rate of the
correct peptides, and we aim to explore these features in future
research.
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