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Abstract
Mass spectrometry is crucial in proteomics analysis, particularly using Data Independent Acquisition (DIA) for reliable and 
reproducible mass spectrometry data acquisition, enabling broad mass-to-charge ratio coverage and high throughput. DIA-
NN, a prominent deep learning software in DIA proteome analysis, generates peptide results but may include low-confidence 
peptides. Conventionally, biologists have to manually screen peptide fragment ion chromatogram peaks (XIC) for identifying 
high-confidence peptides, a time-consuming and subjective process prone to variability. In this study, we introduce SeFilter-
DIA, a deep learning algorithm, aiming at automating the identification of high-confidence peptides. Leveraging compressed 
excitation neural network and residual network models, SeFilter-DIA extracts XIC features and effectively discerns between 
high and low-confidence peptides. Evaluation of the benchmark datasets demonstrates SeFilter-DIA achieving 99.6% AUC 
on the test set and 97% for other performance indicators. Furthermore, SeFilter-DIA is applicable for screening peptides with 
phosphorylation modifications. These results demonstrate the potential of SeFilter-DIA to replace manual screening, provid-
ing an efficient and objective approach for high-confidence peptide identification while mitigating associated limitations.
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1  Introduction

Data-dependent acquisition (DDA) and data-independent 
acquisition (DIA) are common strategies in mass spectrom-
etry. In the DDA-based shotgun experiment [1], the mass 
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spectrometer performs a full scan to acquire the spectra of 
peptide precursors (MS1), then selects the precursor ions 
with the top N intensity for fragmentation. While DDA 
establishes a clear correlation between precursors and frag-
ments, its dependency on precursor ion intensity leads to 
stochastic experimental outcomes and limited identification 
capabilities for low-abundance peptides.

The DIA method divides the mass-to-charge ratio (m/z) 
interval of precursor ions into several independent windows, 
and breaks all the precursor ions in each window in turn and 
records the signals of all fragment ions. However, the frag-
ment ions in DIA data are from different precursor ions and 
mixed within MS2 spectra, which makes the analysis of DIA 
data extremely difficult. Accurately quantifying DIA mass 
spectrometry data is fundamental for various biologically 
significant studies in bioinformatics. For instance, scientists 
have leveraged SWATH-MS technology [2], a DIA mass 
spectrometry technique, to achieve quantitative insights into 
the crosstalk between apoptotic and necroptotic pathways 
[3]. Additionally, biokinetic modeling based on SWATH-MS 
mass spectrometry data has enabled valuable investigations 
[4]. Successfully analyzing DIA mass spectrometry data 
is crucial for advancing studies, fostering a highly active 
research field in tool development.

Two primary methods are employed for DIA data analy-
sis. Library-dependent analysis involves creating a library 
from DDA experimental data and matching experimental 
DIA spectra with library spectra for quantitative peptide 
analysis. Common tools include OpenSWATH [5], SWATH-
Prophet [6], and Specter [7]. Conversely, library-free analy-
sis, like DIA-Umpire [8], eliminates DDA experiments. It 
leverages precursor ion fragmentation efficiency to establish 
a pseudo-database. Tools include Group-DIA [9], PIQED 
[10], directDIA (a component of Spectronaut [11]), PECAN 
[12], and MaxDIA [13], providing alternative DIA data anal-
ysis without DDA dependency.

Deep learning algorithms, superior to traditional tech-
niques [14–17], have significantly advanced biological 
image analysis [18–20]. Recent years witnessed the devel-
opment of deep learning-based library-free methods. For 
instance, the Prosit algorithm [21] predicted theoretical 
spectra and retention times using recurrent neural network 
(RNN) models, enhancing mass spectrometry identification. 
The DeepNovo-DIA algorithm [22] enabled direct amino 
acid sequencing of peptides. These advancements have 
rendered DDA experiments unnecessary, as deep learning 
methods predict spectra, establish databases, and perform 
subsequent analysis. Notable tools include DeepMass [23], 
pDeep [24], and DeepDIA [25].

Dear-DIAXMBD used a deep variational autoencoder 
to extract ion signal features for identified and quantified 
peptide and protein analysis [26], and focused on spec-
trogram-centric DIA mass spectrometry data processing. 

It employed autoencoder and triplet loss to learn features 
from fragment ion chromatograms, grouping similar 
fragments using k-means clustering. Additionally, a deep 
learning-based identification software, DreamDIA [27] 
used Long Short-Term Memory (LSTM) and fully con-
nected networks to score input data and improve accuracy 
by normalizing spectral library results’ retention times to 
predict others.

Among these advancements, DIA-NN stands as an inte-
grated software utilizing deep learning for processing DIA 
proteomics data, marking a significant milestone in prot-
eomics [28]. DIA-NN enables high-throughput, reliable, 
and quantitative large-scale experiments, though it might 
produce a fraction of low-confidence peptides even with 
algorithmic control of false positives. Hence, researchers 
manually filter high-confidence peptides by extracting frag-
ment ion chromatographic peak sets (XICs) and filtering 
based on peak shape similarity across six fragment ions. 
Available chromatographic peak visualization tools include 
Skyline [29], TOPPView [30], MSSort-DIAXMBD [31], and 
DrawAlignR [32].

MSSort-DIAXMBD serves as a final step in the Open-
SWATH workflow. This tool specifically focuses on visu-
alizing and categorizing peptide precursor ions using MS/
MS data. Leveraging OpenSWATH’s output, it reconstructs 
and visualizes chromatographic curves for each peptide and 
its matched fragment ion groups. Deep convolutional neu-
ral networks extract valuable information from this data, 
employing a double-threshold segmentation strategy to auto-
matically identify high and low-confidence peptides. Essen-
tially, this method acts as a re-screening of OpenSWATH's 
output, easing the burden of manual inspection.

DIA-NN generates extensive peptide reports, ranging 
from thousands to hundreds of thousands. However, manu-
ally checking these peptides' ion chromatograms can take 
an extensive amount of time, potentially up to 83 h, due to 
the large number of peptides. Manual screening, reliant on 
subjective criteria, can vary among individuals, affecting 
error rates.

The manual filtering process involves two steps: extract-
ing chromatographic curves from reported data and visu-
ally inspecting these images. To streamline this laborious 
process, we introduce SeFilter-DIA, a deep learning-based 
algorithm. SeFilter-DIA automatically reclassifies and filters 
DIA-NN reported peptides, aiming to identify high-confi-
dence peptides and replace manual screening. We assessed 
its performance using the getXIC tool to label 86,443 
peptides and train the SeFilter-DIA model. Results show 
SeFilter-DIA effectively discerns high and low-confidence 
peptides, offering an efficient alternative to manual DIA-NN 
peptide filtering. This highlights SeFilter-DIA's potential as 
a valuable tool in enhancing efficiency and standardization 
in proteomic data analysis.
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2 � Materials and Methods

2.1 � Building of Benchmarked Dataset

High-quality training datasets play a crucial role optimiz-
ing deep learning model parameters. To achieve this, we 
constructed a benchmark dataset specifically designed 
for training and testing our models. This dataset included 
diverse raw DIA mass spectrometry data from various spe-
cies and instruments. Our primary analysis tool was DIA-
NN, supplemented by data from the traditional workflow, 
OpenSWATH-PyProphet-TRIC (OSPT). Integrating these 
varied datasets expanded our model's adaptability, enhanc-
ing its ability to handle diverse data.

In Table 1, we use a naming convention that combines 
sample names with analysis workflows to create more 
descriptive dataset names. This helps provide informative 
details about each dataset.

The Yeast_NN dataset, available at ProteoXChange 
with identifier PXD031160, includes yeast sample data 
obtained using the ABSciex TripleTOF 6600 mass spec-
trometer. This dataset conducted proteomic analysis on 

FACS-sorted and unsorted helper and prototypic subpop-
ulations within a self-established metabolic cooperative 
community (SeMeCo), along with a control wild-type 
yeast community. The SCIEX TripleTOF 6600 instrument 
performed mass spectrometry analysis employing the DIA 
method. MS1 scanning ranged from 400 to 1250 m/z, with 
an accumulation time of 50 ms. MS2 involved 40 variable 
window scans, each with an accumulation time of 35 ms.

The Human_NN dataset [33] was generated from brain 
microvascular endothelial cells (HBMECs) using the 
Thermo Fischer Scientific Orbitrap Fusion Lumos mass 
spectrometer. Trypsin digestion with Promega trypsin was 
applied at a weight ratio of 1:50. The MS1 scan range 
covered 400–1250 m/z at a resolution of 60,000 (FWHM). 
MS2 utilized 30 variable window scans with 30% HCD 
prior to precursor ion fragmentation.

The E.coli_NN dataset [34] was produced from E. coli 
using the TripleTOF 6600 mass spectrometer. Sequencing 
grade Trypsin-Gold (Promega) was used for protein diges-
tion at a 1:100 ratio. MS1 scans spanned 400 to 1250 m/z, 
with 100 variable windows for MS2. The experiment had a 
total duty cycle of 1.7 s for a 15-min gradient and 2.2 s for 
a 90-min gradient. Five replicate samples were collected 
in duplicate.

The L929_NN dataset [26] obtained from mouse sam-
ples utilized the TripleTOF 5600 mass spectrometer in 
SWATH mode. L929 cells treated with Tumor Necrosis 
Factor (TNF) were purified for TNFR1 complexes and sub-
jected to trypsin digestion. MS1 covered 400–1150 m/z 
with 100 variable windows for MS2 scans.

The HYE124_NN and HYE110_NN datasets [35] are 
mixed samples of human, yeast, and E. coli analyzed using 
the TripleTOF 5600 or TripleTOF 6600 mass spectrom-
eters. Samples were proportionally divided into Sam-
ple A (65% human, 30% yeast, 5% E. coli) and Sample 
B (65% human, 15% yeast, 20% E. coli). MS1 scanned 
400–1200 m/z, and MS2 employed 32 or 64 windows with 
the choice of fixed or variable window sizes. The experi-
ment was run over a 2-h gradient.

The combined dataset comprises 42,443 peptides pro-
cessed by DIA-NN and labeled manually, with 22,306 
high-confidence and 20,137 low-confidence peptides.

The Yeast_OSPT dataset, available at ProteoX-
Change with identifier PXD028735, contains yeast sam-
ple data acquired using the TripleTOF 5600 mass spec-
trometer. The experiment used a primary scan range of 
400–1200 m/z and 64 fixed windows for secondary scans 
over a 2-h gradient.

The SGS_OSPT dataset [5] includes human sample data 
obtained from the TripleTOF 5600 mass spectrometer. The 
MS1 scan range for this dataset is 400–1200 m/z, with 32 
fixed windows employed during the MS2 acquisition. The 
gradient length for the experiment is set to 2 h.

Table 1   Dataset Information

The columns display: dataset name, mass spectrometer used (abbre-
viated as TTOF for TripleTOF and Lumos for Orbitrap Fusion 
Lumos Tribrid), manufacturer of the mass spectrometer, and the 
analysis software applied (OSPT workflow stands for OpenSWATH-
PyProphet-TRIC)

Dataset Name Instrument Vender Analytics 
software

Yeast_NN TTOF 6600 ABSciex DIA-NN
Human_NN Fusion Lumos Thermo Fischer DIA-NN
E.coli_NN TTOF 6600 ABSciex DIA-NN
L929_NN TTOF 5600 ABSciex DIA-NN
HYE124_NN TTOF 

5600/6600
ABSciex DIA-NN

HYE110_NN TTOF 
5600/6600

ABSciex DIA-NN

Yeast_OSPT TripleTOF 
5600

ABSciex OSPT workflow

SGS_OSPT TripleTOF 
5600

ABScex OSPT workflow

Hela_OSPT Q Exactive 
HF-X

Thermo Fischer OSPT workflow

E.coli_OSPT TTOF 6600 ABSciex OSPT workflow
L929_OSPT TripleTOF 

5600
ABSciex OSPT workflow

BGS_OSPT Fusion Lumos Thermo Fischer OSPT workflow
HYE124_

OSPT
TTOF 

5600/6600
ABSciex OSPT workflow

HYE110_
OSPT

TTOF 
5600/6600

ABSciex OSPT workflow
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The Hela_OSPT dataset consists of HeLa cell sample 
data acquired using the Q Exactive HF-X mass spectrom-
eter. It employed an MS1 scan range of 350–1650 m/z with 
45 windows during MS2 over a 2-h experiment.

The BGS_OSPT dataset [36] contains data from BGS 
mouse samples obtained using the Orbitrap Fusion Lumos 
mass spectrometer. This dataset used trypsin from Promega 
(Madison, WI), digesting samples at a fixed enzyme-to-pro-
tein ratio of 1:100. The MS1 scan range was 350–1650 m/z 
with 40 windows during MS2 using a nonlinear gradient 
over 2 h.

The settings for the E.coli_OSPT, L929_OSPT, 
HYE110_OSPT, and HYE124_OSPT datasets correspond 
to their respective E.coli_NN, L929_NN, HYE110_NN, and 
HYE124_NN datasets.

Following analysis using the OpenSWATH-PyProphet-
TRIC workflow, a total of 44,316 peptides were labeled 
manually, with 22,744 classified as high-confidence and 
21,572 as low-confidence peptides.

2.2 � Introduction of DIA‑NN Workflow

To use DIA-NN effectively, it is necessary to download and 
install MSConvert [37] (V.3.0.19311) and Thermo MS File 
Reader (3.0 SP3). These tools help convert DIA raw files 
from various mass spectrometers into formats that work with 
DIA-NN. MSConvertconverts.wiff and.raw files to a com-
patible format for DIA-NN, while Thermo MS File Reader 
(3.0 SP3) suits Thermo Fisher Scientific mass spectrometry 
data.

In our study, we employed DIA-NN (version: 1.7.11) with 
DIA data and a FASTA database from Uniprot. DIA-NN 
used a specific setup: MS1 m/z range from 400 to 1200 and 
MS2 from 100 to 1800, maintaining a 1% false discovery 
rate (FDR). Other parameters were kept at their default val-
ues. These settings produced a quantitative report (Fig. 1A) 
detailing peptide identification, quantification, and statistical 
analysis.

2.3 � Introduction of OpenSWATH‑PyProphet‑TRIC 
Workflow

In the OpenSWATH-PyProphet-TRIC workflow [38, 39], 
we used various tools to handle and validate the mass 
spectrometry data. First, MSConvert (V.3.0.19311) con-
verted raw data into mzXML format. DIA-Umpire then 
created pseudo-DDA files in mgf format to replicate DDA 
experiment data. We referred to the UniprotKB/Swiss-Prot 
database and searched the pseudo-DDA files using Comet 
(V2017.01) and X!Tandem (V2013.06.15.1, schema native 
and k-score) [40, 41]. Results were outputted in pep.xml 
format. PeptideProphet [42] validated these results, followed 
by iProphet [43] probability determination using mayu 

(V1.07). We selected peptides based on a 1% protein-level 
FDR screening. SpectraST [44] generated a required library 
file (sptxt), which was then processed to normalize retention 
times using iRT peptides. Finally, the sptxt file underwent 
conversion to tsv format and was further transformed into 
TraML format for quantitative analysis in the OpenSWATH-
PyProphet-TRIC workflow.

2.4 � Dataset Composition and Preprocessing

After obtaining the output report from either DIA-NN or 
the OpenSWATH-PyProphet-TRIC workflow, we proceeded 
to extract the fragment chromatographic peak groups from 
the DIA raw data. This extraction was performed using the 
script getXIC.py (Fig. 1B). Since the number of fragment 
ions in the DIA-NN output is not fixed, we selected the six 
fragment ions with the highest intensity as members of the 
fragment ion peak group.

We extracted fragment XIC groups from the DIA raw data 
using getXIC.py (Fig. 1B). We selected the six fragment ions 
with the highest intensity from the DIA-NN output. After 
testing various curve lengths (40, 55, 70, 85, 90, 105, and 
120), we found that 85 time points yielded the best results. 
SeFilter-DIA's input data comprises 6 rows and 85 columns, 
representing six fragment ion extracted ion chromatograms 

Fig. 1   The workflow of SeFilter-DIA and the workflow of DIA-NN. 
A After analyzing DIA mass spectrometry data with DIA-NN, identi-
fied peptides are generated as output. B The left side illustrates the 
manual check stage involving manual screening for high-confidence 
peptides. The right side demonstrates our workflow: chromatographic 
peaks are extracted and automatically classified by SeFilter-DIA. This 
process assigns a label of 1 to high-confidence peptides and 0 to low-
confidence ones, aiding in identifying high-confidence peptides
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(XICs). For each XIC, we centered on the time point with 
the highest intensity and took 42-time points forward and 
backward. Normalization using sklearn's min–max scaling 
function ensured intensity values ranged between 0 and 1 
(Fig. 2).

The Minmax normalization function equation is:

Peptide data were labeled based on peak shape similarity 
after normalization: similar shapes were labeled as high-
confidence, dissimilar as low-confidence (Fig. 1B). The 
SeFilter-DIA benchmark dataset contains 86,443 peptides 
with 40,641 high-confidence and 45,802 low-confidence 
peptides. The dataset was split randomly into training, cross-
validation, and test sets in a 6:2:2 ratio.

2.5 � The Principle of SeFilter‑DIA

To address the classification problem, we developed three 
deep learning models based on the principles of the convL-
STM network [45], the residual network [46], and the com-
pressed excitation model [47] combined with the residual 
network. Through evaluation and comparison, we selected 

Xnorm =
Xi −min(Xi)

max
(

Xi

)

−min(Xi)

the deep neural network that demonstrated the best perfor-
mance as the model for SeFilter-DIA.

To evaluate the performance of the SeFilter-DIA model, 
we compared MSSort-DIAXMBD, Gradient boosting decision 
tree (GBDT), AdaBoosting, SVM, RandomForest, Pearson 
correlation coefficient and Spearman correlation coefficient 
on the test set. The parameters of the algorithms except 
MSSort-DIAXMBD are manually tuned.

The neural network of SeFilter-DIA uses a two-layer 
residual framework combined with a compression incentive 
model and self-attention mechanism, forming a three-part 
connection (Fig. 3). The model's first part includes a 1 × 1 
kernel convolutional layer with 256 channels. The second 
part, the residual structure, has two paths: one with 3 × 7 
convolutional kernels, a padding of 1, and a stride of 1, 
linked to a compressed excitation and self-attention module. 
The second path has a 3 × 7 convolutional kernel, padding 
of 1, stride of 1, and Relu activation. Both outputs merge.

The third part has a 16-neuron fully connected layer with 
Relu activation, followed by a final output layer with 1 neu-
ron activated by Sigmoid (Fig. 3). The convolutional layer 
in SeFilter-DIA is critical for processing multidimensional 
data, capturing spatial correlations, and extracting meaning-
ful features. The second route in the residual structure, akin 
to a skip connection, preserves original data information 

Fig. 2   The XICs Comparison 
for Peptides. A XICs of peptide 
PMG1_YEAST_LWIPVNR 
labeled as high-confidence. 
Intensity versus time (left) and 
normalized intensity (right) 
diagrams are shown. B XICs 
of peptide MDN1_YEAST-
TLTQLEAGGLSIVK marked 
as high-confidence. Intensity 
versus time (left) and intensity-
normalized (right) graphs 
displayed
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to counter model degradation from information loss. This 
direct path helps maintain crucial details and prevents per-
formance decline.

Furthermore, the compressive excitation module incor-
porated in the model enhances its capabilities by explicitly 
modeling the interdependencies among different channels. 
This module enables an adaptive recalibration of the chan-
nel feature responses, improving the overall representation 
power and aiding in capturing important patterns and varia-
tions within the data. (Fig. 3, where the compressive excita-
tion module is highlighted within the dashed box.)

The self-attention mechanism module incorporated in the 
SeFilter-DIA model plays a crucial role in capturing internal 
correlations within the data. By leveraging this mechanism, 
the model can effectively focus on key information and 
enhance its performance (Fig. 3). The self-attention mecha-
nism formula is:

The matrices WK , WQ , and WV represent the weights of 
Q, K, and V, respectively, which are trainable parameters. 
Here, d_k is a constant, set to the channel value, to prevent 
the softmax input from becoming too high, which could lead 
to bias and result in the gradient tending toward 0.

The deep neural network of SeFilter-DIA is trained 
using the Adam optimizer, with a training batch size of 256. 
The values of the parameters are as follows: beta1 = 0.9, 
beta2 = 0.999, epsilon = 1e-5, weight decay = 1e-5, and 
learning rate = 3e-6. The training is performed for a total 
of 100 epochs.

Attention(X) = softmax(
QKT

√

dk

)V

Q = WQX,K = WKX,V = WVX

Fig. 3   SeFilter-DIA Model Overview. Residual structure (dashed 
box), self-attention (SA_module) and squeeze-and-excitation (SE_
module) mechanisms highlighted. Legend: blue oval (256) denotes a 
fully connected layer, blue square (3 × 7)(1,1) signifies convolutional 

layer (3 × 7 kernel, padding 1, stride 1), gray square represents global 
pooling, purple square signifies complex module, plus sign for data 
matrix summing, and multiplication for data matrix operations
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2.6 � The Principle of the Comparison Methods

The ResNet-based model (Fig. 4A) takes input dimensions 
of (1 × 6 × 85). The architecture begins with a convolutional 
layer (3 × 7 kernel, padding of 3, stride of 2) followed by 
ReLU activation post BatchNorm for channel normaliza-
tion. Next, a max pooling layer (window size 3, padding 
1, stride 2) is applied. The third layer integrates a residual 
module, featuring parallel convolutional layers (3 × 7 kernel, 
padding 3, stride 1) using the sigmoid activation function. 
The outputs are combined into a global pooling layer, lead-
ing to a final fully connected output layer with one neuron, 
employing the sigmoid activation function. Training uses 
the Adam optimizer with a batch size of 512, learning rate 
of 6e-6, and 250 epochs. The chosen loss function for the 

three deep learning networks is cross-entropy loss for binary 
classification.

The convLSTM-based model, designed with an input 
dimension of (1 × 6 × 85), starts with the Conv2DLSTM-
Cell from the sklearn library. The output layer consists of 
1 neuron, and its activation function is a fully connected 
layer with a sigmoid activation (Fig. 4B). Training involves 
the Adam optimizer, a batch size of 128, a learning rate of 
0.0001, and 150 training iterations.

The input data for machine learning algorithms is one-
dimensional, with each sample having a size of 6 × 85 = 510. 
Random Forest, part of ensemble learning's bagging method, 
employs multiple unconnected decision trees for quick train-
ing and feature importance assessment (Fig. 4C). We train 
the Random Forest model using the sklearn library, choosing 

Fig. 4   Model Schematics. A 
Resnet-based deep learning 
model. B ConvLSTM-based 
deep learning algorithm. C Ran-
dom Forest (RandomForest). D 
AdaBoosting. E Gradient boost-
ing decision tree (GBDT). F 
Support Vector Machine (SVM)
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“n_estimators” as 250 after evaluating various values (50, 
100, 150, 200, 240, 250, 260, 300, and 350), while keeping 
other parameters default.

AdaBoosting, part of the boosting method, iteratively 
trains weak classifiers, adjusting sample weights based on 
learning errors to emphasize those with higher rates for 
subsequent classifiers (Fig. 4D). We train the AdaBoosting 
model using the sklearn library with a decision tree as the 
weak classifier (max_depth = 2, min_samples_split = 20, 
min_samples_leaf = 5). Parameters such as "n_estimators" 
are set to 200, "learning_rate" to 0.8, and others to their 
defaults.

Gradient Boosting, also a boosting method, combines 
weak classifiers to create a strong one using gradients in 
optimization (Fig. 4E). We use the GradientBoostingClassi-
fier module from sklearn with parameters like “max_depth” 
set to 8, “min_samples_split" to 500, “min_samples_leaf” 
to 50, “max_features" to “sqrt,” “subsample" to 0.8, “ran-
dom_state" to 10, “learning_rate” to 0.1, and “n_estimators" 
to 300 after evaluating multiple values (150, 200, 250, 300, 
and 350), while other parameters remain default.

The Support Vector Machine (SVM) algorithm maxi-
mizes the margin between training patterns and the decision 
boundary (Fig. 4F). Using sklearn, we train the sklearn.svm.
SVC model with parameters such as "kernel" set to "rbf," 
"gamma" to 1e-6, "C" to 1e-6, while keeping other param-
eters default.

We assessed data correlation using Pearson and Spear-
man correlation coefficients. Specifically, we calculated the 
mean value of correlations among peaks in six fragment ion 
chromatograms. The formula for computing the Pearson cor-
relation coefficient between two XICs is:

where N is the number of time points, xi and yi respectively 
represent the intensity value of a fragment ion.

The formula for calculating the Spearman correlation 
coefficient between two fragment ion XICs is as follows:

r =
N
∑

xiyi −
∑

xi
∑

yi
�

N
∑

x2
i
−
�
∑

xi
�2
�

N
∑

y2
i
−
�
∑

yi
�2

Among them, xi and yi represent the intensity value of the 
i-th fragment ion, and x and y represent the average value 
of x and y.

2.7 � Model Training Process of SeFilter‑DIA

The training loss functions for SeFilter-DIA, ConvLSTM, 
and ResNet deep learning models use binary classification 
cross-entropy loss combined with the Sigmoid activation 
function, formulated as:

where pred is the predicted value output by the algorithm, 
and label refers to the manually labeled label, which can take 
the values of 0 or 1.

The SeFilter-DIA model reaches a stable cross-valida-
tion set loss after 80 iterations, concluding training at 100 
iterations (Fig. 5A). The ConvLSTM-based model stabi-
lizes its cross-validation set loss after 140 iterations, con-
cluding training at 150 iterations (Fig. 5B). Similarly, the 
ResNet-based model's cross-validation set loss stabilizes 
after 200 iterations, with training concluding at 250 itera-
tions (Fig. 5C). There were no instances of overfitting or 
underfitting, indicating successful training across these three 
deep learning models.

2.8 � ROC Curves and P/R curves of Training 
and Testing Process

During the receiver operating characteristic (ROC) curve 
analysis, the area under the curve (AUC) represents the mod-
el's classification performance, with a larger AUC indicating 
better performance.

In training, the Random Forest model showed the 
highest AUC of 0.9999, outperforming other models 
(Fig. 6A, Table 2). On the cross-validation and test sets, the 

ρ =

∑

i(xi − x)(yi − y)
�

∑

i

�

xi − x
�2∑

i

�

yi − y
�2

L = −
∑

i

labeli ∗ log(predi) + (1 − labeli) ∗ log(1 − predi)

Fig. 5   Training and Cross-
validation Loss Curves of Deep 
Learning Models. (A) SeFilter-
DIA model. B ConvLSTM-
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Fig. 6   ROC and Precision/Recall curves of seven models. Different 
colors represent distinct models: red (SeFilter-DIA), blue (convL-
STM), brown (Resnet), green (AdaBoosting), purple (SVM), black 
(random forest), and black dashed line (GBDT). The black dotted line 
indicates the y = x line. The balance point, where the SeFilter-DIA 

curve intersects the y = x line, is marked. A ROC curves on the train-
ing set. B ROC curves on the cross-validation set. C ROC curves on 
the test set. D Precision/Recall curves on the training set. E Precision/
Recall curves on the cross-validation set. F Precision/Recall curves 
on the test set

Table 2   Model Performance 
Metrics

"AUC on Testing Set" signifies the AUC value on the test set. "AUC on Training Set" and "AUC on Vali-
dation Set" indicate the AUC values on training and cross-validation sets, respectively. Black bold high-
lights the highest value per metric. Precision is test set accuracy. Recall is the test-set recall rate. F1 score, 
derived from precision and recall, is the test set harmonic mean. ACC is the test set accuracy rate

Metrics\Model AUC on 
Testing Set

AUC on 
Training Set

AUC on 
Validation 
Set

Precision Recall F1 score ACC​

AdaBoosting 0.9794 0.9878 0.9764 0.944 0.9007 0.9219 0.9282
RandomForest 0.985 0.9999 0.9826 0.9544 0.9262 0.9401 0.9447
SVM 0.9161 0.9165 0.9120 0.9636 0.4044 0.5697 0.7128
GBDT 0.9882 0.9923 0.9874 0.9501 0.9467 0.9484 0.9518
MSSort-DIAXMBD 0.9593 – – 0.9775 0.7326 0.8375 0.8665
convLSTM 0.9914 0.9912 0.9909 0.9581 0.9622 0.9601 0.9624
Resnet 0.992 0.9988 0.992 0.9779 0.9143 0.9451 0.9500
SeFilter-DIA 0.9964 0.9983 0.9961 0.9709 0.987 0.9789 0.9799
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SeFilter-DIA model surpassed all others, achieving AUC 
values of 0.9964 and 0.9961 respectively (Fig. 6B and C, 
Table 2). This demonstrates the SeFilter-DIA model's better 
performance on both validation and test sets.

The precision-recall curve evaluates the classifier's per-
formance with a focus on positive samples. It emphasizes the 
balance point where the curve intersects the y = x line, with a 
larger area indicating better performance. On all sets (train-
ing, cross-validation, and test), SeFilter-DIA's balance point 
was closest to the upper right corner, showcasing its superior 
performance (Fig. 6D, E and F). This model excelled in both 
the ROC and precision-recall curves, especially crucial in 
the manual screening of protein peptides.

2.9 � Evaluation Metrics of Model Performance

Table 2 summarizes the performance metrics of eight mod-
els across training, cross-validation, and test sets. While the 
random forest achieved the highest AUC of 0.9999 on the 
training set, it showed overfitting, with smaller AUC values 
around 0.985 on the cross-validation and test sets.

The SVM model exhibited poor performance on the 
test set with recall, F1 score, and accuracy rates of 0.4044, 
0.5697, and 0.7128, respectively. In contrast, SeFilter-DIA, 
ConvLSTM, and Resnet consistently performed well across 
all metrics, surpassing 0.9. Their AUC values on all sets 
exceeded 0.99. MSSort-DIAXMBD showed comparatively 
lower performance with a test set AUC of 0.9593 and other 
metrics below 0.9.

Among the deep learning models, SeFilter-DIA stood out 
with a test set AUC of 0.9964, cross-validation set AUC of 
0.9961, and recall, F1 score, and accuracy rates of 0.9870, 
0.9789, and 0.9799, respectively. While Resnet had a slightly 
higher recall rate at 0.9779, SeFilter-DIA demonstrated 
superior overall classification performance.

2.10 � Histogram of Probability Distribution 
for Classification

In the probability distribution graph for binary classification, 
higher histograms at both ends and a lower one in the middle 
indicate better discrimination between sample types.

The test set probability histogram of MSSort-DIAXMBD 
shows a prominent distribution around 0–0.1, with a higher 
middle section compared to SeFilter-DIA (Fig. 7A). The 
Resnet-based model has a similar pattern to SeFilter-DIA 
but with slightly higher mid-histogram values (Fig. 7B). 
ConvLSTM, while mostly spread at both ends, has a more 
pronounced mid-histogram than SeFilter-DIA (Fig. 7C). 
Random forest exhibits a relatively uniform distribution 
(Fig. 7D). AdaBoosting, despite its accuracy, concentrates 
around 0.4–0.6, indicating limited discrimination (Fig. 7E). 
Gradient Boosting has higher mid-histogram values than 

SeFilter-DIA (Fig. 7F). SVM shows a step-like decline, 
implying poor resolution (Fig. 7G). In comparison, both 
Pearson and Spearman coefficients exhibit relatively uniform 
distributions (Fig. 7H and I), indicating lower discrimina-
tion power.

Among the models, SeFilter-DIA displays the least dis-
tribution in the 0.1–0.9 interval, suggesting superior dis-
crimination between sample types and overall performance.

3 � Benchmarking on Phosphorylation 
Modification Data

We applied the trained SeFilter-DIA model to classify 
peptides from phosphorylation DIA datasets. The first 
dataset, obtained from the ProteomeXchange Consortium 
(PXD014525), was analyzed using a Thermo Fisher Q 
Exactive HF-X mass spectrometer with an MS1 scan range 
of 350–1400 m/z and 64 windows in the MS2 analysis [48]. 
The second dataset, derived from Arabidopsis thaliana and 
identified by the identifier PXD027512, utilized a Thermo 
Fisher Orbitrap Fusion Lumos mass spectrometer operating 
in DIA mode, with an MS1 scan range from 350 to 1500 and 
segmented into 60 windows [49].

We performed analyses on these benchmark datasets 
using DIA-NN in library-free mode, considering phospho-
rylation modifications as variable factors. Subsequently, 
SeFilter-DIA was employed for the binary classification 
of peptides identified by DIA-NN. The classification per-
formance was assessed through probability histograms, 
revealing a predominance of low-confidence peptides in the 
phosphorylation data. This underscores SeFilter-DIA's effec-
tiveness in replacing manual screening for rapid identifica-
tion (Fig. 8A and D). Additionally, XIC similarity analysis 
highlighted SeFilter-DIA's proficiency in distinguishing 
between high- and low-confidence peptides (Fig. 8).

4 � Discussion

In this study, three deep-learning models were proposed for 
high-confidence peptide identification within DIA-NN or 
OpenSWATH-PyProphet-TRIC outputs. Among them, the 
SeFilter-DIA model, integrated a compressed excitation 
module with a residual network, displaying the most prom-
ising performance. It employed a process involving XIC 
extraction, normalization, and deep learning classification 
to discern high-confidence peptides.

Comparatively, SeFilter-DIA outperformed traditional 
machine learning algorithms like GBDT, AdaBoosting, 
SVM, Random Forest, MSSort-DIAXMBD, and scoring 
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methods based on Pearson and Spearman coefficients in 
cross-validation and test datasets. Despite its effectiveness, 
there's room for model enhancement. Addressing the com-
plexity of DIA data could involve tailored preprocessing for 
different mass spectrometers, integrating data from diverse 
manufacturers, and exploring varied network architectures. 
These improvements will boost our model's capabilities. 
Furthermore, combining proteomics analysis with network 
modeling can significantly contribute to understanding 
regulatory mechanisms and identifying potential disease-
related therapeutic targets alongside image analysis [50, 
51]. The presence of low-confidence results in proteomics 
analysis can significantly impact subsequent applications. 
Se-Filter serves as an effective alternative to manual screen-
ing, enhancing the elimination of low-confidence peptides 
and proteins. This automated refinement not only mitigates 
false positive rates but also enhances the overall efficacy of 
proteomics in downstream applications.

Fig. 7   Probability Distribution 
Histograms for Classifica-
tion. Horizontal axis: Model's 
Predicted Probability. Vertical 
axis: Relative Frequency. Red 
bars represent SeFilter-DIA 
probability distribution. A 
MSSort-DIAXMBD. B Resnet-
based Deep Learning Model. C 
ConvLSTM-based Deep Learn-
ing Model. D Random Forest. E 
AdaBoosting. F Gradient Boost-
ing Decision Tree (GBDT). 
G Support Vector Machine 
(SVM). H Pearson Correlation 
Score Distribution. I Spearman 
Correlation Score Distribution
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