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Data-independent acquisition (DIA) technology for protein identification from mass spectrometry and 
related algorithms is developing rapidly. The spectrum-centric analysis of DIA data without the use of 
spectra library from data-dependent acquisition data represents a promising direction. In this paper, we 
proposed an untargeted analysis method, Dear-DIAXMBD, for direct analysis of DIA data. Dear-DIAXMBD first 
integrates the deep variational autoencoder and triplet loss to learn the representations of the extracted 
fragment ion chromatograms, then uses the k-means clustering algorithm to aggregate fragments 
with similar representations into the same classes, and finally establishes the inverted index tables to 
determine the precursors of fragment clusters between precursors and peptides and between fragments 
and peptides. We show that Dear-DIAXMBD performs superiorly with the highly complicated DIA data of 
different species obtained by different instrument platforms. Dear-DIAXMBD is publicly available at https://
github.com/jianweishuai/Dear-DIA-XMBD.

Introduction

Mass spectrometry (MS) has long been a dominant technology 
for peptide and protein identification and quantification [1]. 
The common strategy for peptide identification is performed 
by combining the data-dependent acquisition (DDA) approach 
and database search [2]. Only the top k peptide ions with the 
highest intensity are selected in an MS scan (MS1) for isolation 
and fragmentation in serial mode for a DDA measurement. 
The detected fragment ions in MS/MS spectra (MS2) are 
compared with the theoretical spectra generated by search 

engines to identify peptides. Nevertheless, the reproducibility 
of peptides determined by the DDA method is limited 
because the top k precursors are stochastic in repeated DDA 
experiments.

Aiming to overcome the limitation of the DDA mode, the 
data-independent acquisition (DIA) strategies have emerged, 
such as AIF [3], sequential window acquisition of all theoretical 
mass spectra (SWATH-MS) [4], HDMSE [5], MSX [6], WiSIM-
DIA [7], SONAR [8], HRM [9], BoxCar DIA [10], diaPASEF 
[11], Scanning SWATH [12], and PulseDIA [13]. A common 
DIA mode is named SWATH-MS, in which all peptide ions in 
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a specified isolation window with a large mass-to-charge ratio 
(m/z) are fragmented. The mass spectrometer records all the 
fragment signals of the mixed peptides in an isolation window. 
Obviously, it is extremely difficult to directly analyze DIA data 
because the peptide and fragment signals are mixed in corre-
sponding MS and MS/MS spectra.

In recent years, a number of methods have been developed 
to process DIA data. For instance, the library-based tools 
include Spectronaut [9], OpenSWATH [14], SWATHProphet 
[15], Skyline [16], Specter [17], EncyclopeDIA [18], PIQED 
[19], DIA-NN [20], and MaxDIA [21]; the library-free tools 
include DIA-Umpire [22], Group-DIA [23], directDIA (a part 
of Spectronaut), MSPLIT-DIA [24], PECAN [25], DeepNovo-DIA 
[26], DIA-NN, and MaxDIA; and the library predicting tools 
contain DeepMass [27], pDeep [28], Prosit [29], and DeepDIA 
[30]. OpenSWATH, a prevalent library-dependent workflow 
integrated into OpenMS [31], was proposed to analyze the 
SWATH-MS data. OpenSWATH scores the peptides in 
SWATH-MS data based on the spectral library typically built 
on DDA MS [32]. To overcome the limitation of DDA library 
generation, DIA-Umpire calculates the correlation coefficient 
between precursors and fragments to generate the pseudo-DDA 
spectra. Group-DIA analyzes the multiple DIA data files simul-
taneously to determine the precursor–fragment pairs. Both 
DIA-Umpire and Group-DIA are based on the spectrum-centric 
strategy. PECAN is a peptide-centric analysis tool that 
requires a peptide-sequence-based library to directly detect 
peptides from DIA data. MSPLIT-DIA uses the peptide query 
method to analyze each DIA MS/MS spectrum. However, the 
conventional statistical algorithms used by these DIA methods 
make them insufficient for pattern recognition and classifica-
tion of extracted ion chromatograms (XICs) of fragments.

In the past 2 years, several deep-learning-based methods 
have been developed to analyze proteomic MS data [33,34]. 
DeepNovo-DIA combines the de novo peptide-sequencing 
method and deep learning to directly identify the amino 
acid sequences from DIA spectra. DIA-NN begins with 
a peptide-centric strategy based on in silico spectra libraries 
and then uses a deep neural network to calculate the q value 
of peptides. DeepDIA predicts MS/MS spectrum and the nor-
malized retention time of peptides in a protein database with 
a deep learning model and then generates in silico spectral 
libraries to analyze DIA data. Nevertheless, none of the above-
mentioned deep-learning-based methods directly analyze 
DIA data to produce tandem spectra for database searching 
and then generate the internal libraries (DIA-derived) for 
quantification. In addition, all of these methods apply super-
vised learning methods, which limits their generalization 
ability.

In this paper, we developed Dear-DIAXMBD, a spectrum-centric 
method that combines the deep variational autoencoder (VAE) 
[35] with other machine learning algorithms to detect the 
correspondence between precursors and fragments in DIA data 
without the help of DDA experiments. Dear-DIAXMBD produces 
the pseudo-tandem MS spectra to a search database and gen-
erates the internal libraries. Our approach can be easily inte-
grated into the existing workflow because the output file of 
Dear-DIAXMBD is in MGF format that can be processed by com-
mon search engines, including Comet [36], X!Tandem [37], and 
MSFragger [38]. Furthermore, benefiting from the fact that 
the autoencoder is an unsupervised deep learning model, 
Dear-DIAXMBD shows excellent performance on the DIA data 

of different species obtained by different instrument platforms. 
Because of its powerful generalization ability, we suggest that 
Dear-DIAXMBD is a valuable open-source software for DIA 
proteomics.

Results

Dear-DIAXMBD workflow
DIA data are usually visualized as 3-dimensional data contain-
ing m/z, retention time, and intensity. To correctly link the 
precursors and the ions produced, Dear-DIAXMBD first splits 
the MS1 retention time with fixed-width sliders in each isola-
tion window. Each precursor slider is treated as a minimum 
processing unit containing a series of MS1 spectra and corre-
sponding MS2 spectra (Fig. 1A).

Next, we removed the background ions with a low signal–noise 
ratio (SNR) in the slider using the peak-finding and deisotoping 
algorithms [39] to determine the candidate precursors and 
fragments. Since the point-to-point similarity calculation 
between XICs of candidate fragments is affected by noise and 
peak misalignment, we used the VAE encoder (Fig. S1) to 
extract the latent features of fragment XICs and then mapped 
these features to the Euclidean space. Then, the k-means 
clustering algorithm using a Euclidean metric is applied to 
assign the candidate fragments to k classes in the feature space 
(Fig. 1B).

Ideally, the fragments in the same cluster should be from 
the same precursor. In our model, we provide a peptide index-
ing algorithm named PIndex, which is designed for closed 
search to return the unique indexes of in silico digested pep-
tides obtained from the FASTA database to determine the 
precursor of each fragment cluster. A binary table presents the 
intersection of 2 peptide index sets, that is, the precursor index 
set obtained from the theoretical identity of the precursor query 
and the fragment index set obtained from the theoretical iden-
tity of the fragment query (Fig. 1C).

We then calculated the hyperscore and sorted the scores for 
all the in silico digested peptides based on the binary table. 
Afterward, we removed the precursor–fragment pairs with high 
scores in the clustering results and then performed k-means 
clustering again on the remaining ions (Fig. 1D). A convolu-
tional neural network (CNN) (Fig. S2) was applied to calculate 
the similarity among the sets of fragments matching the highest 
score in silico digested peptide. If the similarity exceeds a cer-
tain threshold (θ), the fragments in each cluster will be grouped 
with the corresponding precursor. We used the high score 
precursor–fragment groups as internal calibrants to recalibrate all 
the precursors m/z [40]. Finally, the calibrated precursor–fragment 
pairs were stored as the tandem spectrum (Fig. 1D).

Applications of deep VAE and inverted index
Because of the high-order complexity of DIA data, the direct 
classification of the mixed and unlabeled fragment XICs is 
extremely difficult. Therefore, we designed a VAE model com-
posed of encoder and decoder networks for classification 
(Fig. 2A). The principle of this model is that the triplet fragment 
XICs (see details in the Architecture and training process of 
VAE section) are entered into a multibranched encoder net-
work to extract the latent features of input data for cluster anal-
ysis in Euclidean space (Fig. 2A). During the training process, 
the latent features are reconstructed by a decoder network to 
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make them as close as possible to the input of the encoder 
(Fig. 2A and see the Architecture and training process of VAE 
section). We used a loss function of classical VAE with the 
triplet loss function of FaceNet [41] to improve the ability of 
the model to distinguish fragments from different precursors. 
Using a combination of the triplet loss and VAE, we can gen-
erate similar representations for fragments of the same precur-
sor and produce the dissimilar features for fragments of the 
different precursors (Fig. S1 and see the Architecture and train-
ing process of VAE section).

Next, we addressed how to precisely match the precursor 
and fragment clusters. As the narrow-window search is still the 
main strategy of a database search engine such as MSFragger, 
Comet, and X!Tandem, an indexing algorithm named PIndex 
is used to connect the clustering results with the candidate 
precursors. PIndex contains PIndex digestion and PIndex 
query algorithms. PIndex digestion begins with an in silico 
digestion of the protein database containing the series of sets 
of peptide information Sk with each Sk corresponding to a 
unique peptide index k (Fig. 2B). A peptide information set 
contains the charge of precursor, the m/z of precursor, and the 
m/z list of fragments. To determine the precursor of each frag-
ment cluster, PIndex constructed precursor query [42] and 
fragment query for in silico precursors and fragments in all 

peptide information sets, respectively. Precursor and fragment 
queries apply the m/z charge pairs and the m/z as the key for 
querying peptide indexes, respectively (Fig. 2B). With the pep-
tide indexes as relay stations, the precursor of each fragment 
cluster can be quickly inferred.

A comparison of Dear-DIAXMBD with other DIA 
analyzing software
To evaluate the performance of Dear-DIAXMBD, we make a 
comparison of Dear-DIAXMBD with the available DIA analysis 
approaches of DIA-Umpire and Spectronaut 14. First, we 
trained the autoencoder of Dear-DIAXMBD on an Escherichia 
coli SWATH dataset with 100 variable MS1 windows, which 
are acquired by TripleTOF 5600 mass spectrometer and 
TripleTOF 6600 mass spectrometer. The dataset obtained from 
TripleTOF 5600 contains 7 runs with the MS recording time 
varying from 30 to 240 min. The datasets from TripleTOF 6600 
consist of 6 runs with the MS recording time varying from 
15 min to 10 h [43]. We manually selected 97,980 E. coli peptide 
precursor ions quantified by OpenSWATH (Fig. S3B). Each 
precursor ion contains the top 6 fragment ion XICs. Then, we 
randomly picked 2 fragment XICs of the same precursor ion 
as an anchor and positive XICs and randomly selected a 

Fig. 1. The workflow of Dear-DIAXMBD. (A) A precursor slider advanced using set strides along the retention time dimension. The candidate precursors are detected by several 
SNR-dependent algorithms. (B) The candidate fragment XICs are embedded into the Euclidean space after being fed to the VAE encoder neural network and then assigned 
to k-classes using a k-means clustering algorithm. (C) Each fragment cluster is combined with the corresponding precursor based on the protein database and hyperscore. 
(D) After the high-scoring precursor fragment pairs are removed, the remaining ions are clustered again using k-means. These precursor–fragment pairs are judged using a 
CNN to calculate the similarity among fragments matching the in silico spectrum. The precursor–fragment groups with high similarity are stored as pseudo-tandem spectra 
for identification.
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fragment XIC from other precursor ions as negative XIC to 
generate a total of 2,179,590 groups of triplet data as the train-
ing dataset (see the Architecture and training process of VAE 
section). Different from the common supervised deep learning 
models, we applied the autoencoder to extract the characteris-
tics of XICs, which allows us to use only the number of quan-
tified proteins and peptides as indicators to optimize the model.

We benchmarked the performance of Dear-DIAXMBD using 
the highly complicated sample datasets, which consist of 
SWATH-MS Gold Standard (SGS) human dataset [14], L929 
mouse dataset, and HYE124 dataset [44] with 64 variable 
windows (AB Sciex TripleTOF 6600). We used Dear-DIAXMBD 
to generate pseudo-tandem spectra and then used MSFragger 
to search the protein FASTA database for peptides and protein 
identification. All identified peptides and proteins were filtered 
with a protein-level 1% false discovery rate (FDR) determined 
by Philosopher [45] to establish the spectrum libraries, and 
then DIA-NN was applied to quantify peptides and proteins 

in libraries from Dear-DIAXMBD (Fig. S3A). We applied DIA-
Umpire to generate pseudo-tandem spectra and then used the 
same software tools to process the tandem-spectra file. In addi-
tion, we also used Spectronaut 14 (directDIA 2.0) to analyze 
the benchmark datasets and set the 1% q value for filtering 
the peptides and proteins.

The SGS human dataset was generated by Röst et al. [14] 
using the separately diluted 422 stable isotope-labeled standard 
(SIS) peptides in HeLa cell lysate in 10 dilution steps (from 1× 
to 512× dilution) and then acquired as DIA data in triplicate 
with SWATH-MS. According to the quantified results of SIS 
peptides, Dear-DIAXMBD can find more synthesized peptides 
than Spectronaut 14 and DIA-Umpire in all dilution steps, indi-
cating that the sensitivity of Dear-DIAXMBD is higher than 
Spectronaut 14 and DIA-Umpire (Fig. 3A). Dear-DIAXMBD 
covers 97% and 98% (average coverage) of SIS peptides reported 
by Spectronaut 14 and DIA-Umpire, respectively. Notably, the 
number of SIS peptides uniquely discovered by Dear-DIAXMBD 

Fig. 2. The schematic diagrams of the deep learning model and PIndex querying algorithm. (A) The structure of the deep VAE. The triplet input data contains 3 components: the 
anchor (red), the positive (green), and the negative (blue) fragment XICs. The anchor and positive fragments come from the same peptide; meanwhile, the anchor and negative 
fragments belong to different peptides. The triplet data are fed to the 4-branch encoder network, which is consisted of 1-2-2-1 FC layers. The output vectors of the 4-branch 
networks are catenated by the appending operation at the end. The encoder network outputs 2 vectors of equal size, one for the variance (σ2) and the other for the mean value 
(μ). The mean vector represents the latent features of the input data. Since anchor and positive are from the same peptide but anchor and negative are from different peptides, 
the anchor fragment is closer to the positive fragment than to the negative fragment after training triplet loss (the Architecture and training process of VAE section). (B) The 
peptide indexing algorithm (PIndex). The left part shows the protein database digested into a variety of sets Sk, where k indicates the unique index of peptides. The right part 
describes the processes of precursor query and fragment query. The peptide indexes can be queried by m/z charge pairs of precursors and m/z of fragments, respectively.
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Fig. 3. Analysis results of SGS human dataset and mouse L929 dataset. (A) The number of synthesized peptides from the SGS human dataset. The horizontal axis shows the 
dilution steps from 1× dilution to 512× dilution. The light blue parts in the top and bottom histograms represent the intersection of Dear-DIAXMBD and Spectronaut 14 and the 
intersection of Dear-DIAXMBD and DIA-Umpire, respectively. The red, dark blue, and green parts show the SIS peptides uniquely found by Dear-DIAXMBD, Spectronaut 14, and 
DIA-Umpire, respectively. (B) Analysis results of all dilution steps (from 1× dilution to 512× dilution), total 30 files, in SGS human dataset. The red, dark blue, and light blue 
circles represent the results of Dear-DIAXMBD, Spectronaut 14, and DIA-Umpire, respectively. (C) Venn diagrams of peptides and proteins found using mouse L929 dataset. The 
red, dark blue, and light blue circles represent the results of Dear-DIAXMBD, Spectronaut 14, and DIA-Umpire, respectively.
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far exceeds those found by Spectronaut 14 and DIA-Umpire, 
demonstrating that Dear-DIAXMBD shows a higher confidence 
interval (Fig. 3A). In addition, Dear-DIAXMBD finds more 
human peptides and proteins than Spectronaut 14 and DIA-
Umpire when analyzing 10 dilution steps combined data. 
According to the quantified results, Dear-DIAXMBD discovered 
31,439 peptides and 2,782 proteins, while DIA-Umpire 
reported 15,784 peptides and 2,396 proteins, and Spectronaut 
14 found 17,578 peptides and 2,369 proteins (Fig. 3B and Figs. 
S4 to S8).

The mouse dataset was derived from L929 cell lysate, which 
contains triplicate samples with 100 variable MS1 windows 
measured in SWATH mode on TripleTOF 5600 mass spectrom-
eter (AB Sciex). In the quantification process, the total numbers 
of peptides found by Dear-DIAXMBD, Spectronaut 14, and DIA-
Umpire were 11,581, 8,546, and 6,604, respectively, and the total 
number of proteins found by Dear-DIAXMBD, Spectronaut 14, 
and DIA-Umpire were 2,421, 2,171, and 1,739, respectively. Dear-
DIAXMBD also covers 84.5% of peptides and 88.3% of proteins 
reported by Spectronaut 14. Dear-DIAXMBD covers 85.9% of pep-
tides and 92.4% of proteins revealed by DIA-Umpire. The wide 
coverage shows a nice reproducibility among Dear-DIAXMBD, 
DIA-Umpire, and Spectronaut 14 (Fig. 3C and Figs. S4 and S9). 
Dear-DIAXMBD discovered more low-intensity peptides than 
DIA-Umpire (Fig. S10).

Next, we compare the performances of Dear-DIAXMBD, 
DIA-Umpire, and Spectronaut 14 with the HYE124 dataset, 
which was specifically designed for checking DIA algorithms. 
The HYE124 dataset includes 2 hybrid proteome samples, A 
and B. Sample A was composed of 65% (w/w) human, 30% (w/w) 
yeast, and 5% (w/w) E. coli proteins, while sample B was com-
posed of 65% (w/w) human, 15% (w/w) yeast, and 20% (w/w) 
E. coli proteins.

Adding 2 samples of HYE124 datasets together, the total 
quantified peptides discovered by Dear-DIAXMBD, Spectronaut 
14, and DIA-Umpire are 64,576, 51,812, and 28,254, respec-
tively, and the total quantified proteins are 5,074, 5,023, and 
3,264, respectively, in which Dear-DIAXMBD covers 86.6% 
proteins and 76.3% peptides found by Spectronaut 14. Dear-
DIAXMBD also covers 91.7% proteins and 86.4% peptides found 
by DIA-Umpire (Fig. 4A). These results show quite a good 
reproducibility among Dear-DIAXMBD, Spectronaut 14, and 
DIA-Umpire. In addition, the number of identified peptides 
discovered uniquely by Dear-DIAXMBD was 12.3 times that 
found uniquely by DIA-Umpire (i.e., 43,420 versus 3,522) 
(Fig. 4A and Figs. S11 to S13). Dear-DIAXMBD can find a large 
number of proteins and peptides overlooked by DIA-Umpire in 
identification and quantification. The current Dear-DIAXMBD 
only uses the E. coli data as training data, but it shows excellent 
generalization ability.

Furthermore, it is well known that proteins and peptides 
with low abundance are hardly identified by MS analysis 
algorithms because of the interference of background noise. 
However, Dear-DIAXMBD performs much better than DIA-Umpire 
on this issue when using the same quantified software tool such 
as DIA-NN since the intensity distributions of the quantified 
proteins and peptides given by Dear-DIAXMBD are more in the 
low-density range (Fig. 4B).

We also analyzed sample A and sample B of the HYE124 
dataset separately. For sample A, the percentages of identified 
peptides given by Dear-DIAXMBD were 66.1% for humans, 
26.9% for yeast, and 7.0% for E. coli, respectively. For sample 

B, Dear-DIAXMBD found 65.6% of humans, 15.1% of yeast, and 
19.3% of E. coli-identified peptides, respectively (Fig. 4C). 
Consistently, Dear-DIAXMBD found more peptides in humans, 
yeast, and E. coli than Spectronaut 14 and DIA-Umpire (Fig. 4D). 
We manually checked the XICs of human, yeast, and E. coli 
peptides identified by Dear-DIAXMBD (but not DIA-Umpire and 
Spectronaut 14) to confirm the similarity among fragments 
(Fig. S14).

We used LFQbench [44] R package to benchmark the 
precision of quantification on the HYE124 dataset. Compared 
with Spectronaut 14 and DIA-Umpire, Dear-DIAXMBD performs 
similarly in precision for both peptides and proteins of humans, 
yeast, and E. coli (Fig. 5, Fig. S15, and Table S1). We also tested 
the performance of Dear-DIAXMBD on the HYE124 TripleTOF 
5600 dataset with 64 variable windows (Figs. S16 to S20). 
Dear-DIAXMBD discovered more peptides and proteins than 
Spectronaut 14 and DIA-Umpire.

In addition, we used Dear-DIAXMBD, Spectronaut 14, and 
DIA-Umpire to analyze the Biognosys facility (BGS) mouse 
DIA dataset [46], which was acquired from Orbitrap Fusion 
Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, 
CA) with a 2-h gradient and 40 DIA scans. The results demon-
strated that Dear-DIAXMBD could also analyze the data from 
Thermo Fisher Scientific mass spectrometer (Fig. S21). We 
conducted comparisons and performance evaluations of Dear-
DIAXMBD from various perspectives (Texts S1 to S7) and pro-
vided a detailed usage tutorial of Dear-DIAXMBD (Text S8).

We also benchmarked Dear-DIAXMBD on TNFR1 (tumor 
necrosis factor receptor 1) complex dataset [23,47–50] from 
L929 cells treated with TNF from 6 different time periods. We 
performed a comparison of DIA-NN quantified results and 
manual inspection results, showing that Dear-DIAXMBD can 
find truly regulated proteins (Fig. S22).

Discussion
In the paper, we designed a new method with neural network 
architecture, namely, Dear-DIAXMBD, to improve the feature 
extraction ability of fragment XICs, which consults to the struc-
tures of a fully connected (FC) VAE network. Moreover, we 
also implemented a high concurrency program written in C/
C++ from scratch to increase the speed of the program.

We demonstrated that Dear-DIAXMBD is a more efficient 
method than DIA-Umpire and Spectronaut 14 in directly ana-
lyzing DIA data to discover proteins and peptides. First of all, 
Dear-DIAXMBD can reproduce most of the results obtained by 
DIA-Umpire and Spectronaut 14 at identification and quan-
tification levels. Second, Dear-DIAXMBD can identify more 
low-abundance proteins and peptides, indicating that it has a 
better performance than DIA-Umpire in processing the low 
SNR signals.

Furthermore, although the training dataset is from E. coli, 
Dear-DIAXMBD shows an outstanding performance in analyzing 
datasets of different species with different instruments, indi-
cating its general recognition ability. The pseudo-tandem spec-
tra generated by Dear-DIAXMBD can be easily fed into common 
search engines for library generation. In addition, analyzing 
MS data of posttranslational modifications (PTMs) is an impor-
tant issue and challenge. Dear-DIAXMBD currently supports 
carbamidomethyl as a fixed modification and oxidation and 
n-acetylation as variable modifications. Dear-DIAXMBD does 
not work accurately enough for other modifications such as 
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Fig. 4. Analysis results of HYE124 dataset with 64 variable windows (TripleTOF 6600). (A) The comparison of numbers of identified and quantified peptides and proteins 
obtained by Dear-DIAXMBD, DIA-Umpire, and Spectronaut 14 from the HYE124 dataset with samples A and B together. The solid lines and the dashed lines show the quantified and 
identified results, respectively. The red, dark blue, and light blue circles represent the results of Dear-DIAXMBD, Spectronaut 14, and DIA-Umpire, respectively. (B) The log2-scaled 
distributions of the quantified peptide intensities were discovered from the HYE124 dataset with samples A and B together. The peptides shared jointly with DIA-Umpire and 
Dear-DIAXMBD are shown in light blue; the peptides exclusively reported by Dear-DIAXMBD and by DIA-Umpire are shown in red and dark blue, respectively. (C) The composition 
of proteins found by Dear-DIAXMBD with sample A dataset and with sample B dataset, respectively. The blue, red, and yellow colors represent human, yeast, and E. coli species, 
respectively. The smaller doughnuts represent the ground-truth composition of proteins, which are mixed in defined proportions. The larger doughnuts show the composition 
of proteins discovered by Dear-DIAXMBD. (D) The numbers of the quantified proteins found by Dear-DIAXMBD, Spectronaut 14, and DIA-Umpire with sample A dataset and sample 
B dataset, respectively. The red, dark blue, and light blue colors show the results of Dear-DIAXMBD, Spectronaut 14, and DIA-Umpire, respectively.
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phosphorylation. Since OpenSWATH IPF [51] is a powerful 
tool for processing PTMs data, we consider combining Dear-
DIAXMBD and OpenSWATH IPF to analyze PTMs DIA data in 
future work.

Collectively, Dear-DIAXMBD is an advanced software for 
processing a variety of highly complex DIA data. We believe 
that deep learning methods may play more important roles in 
the analysis of the complicated protein spectrum data.

Materials and Methods

Training data for deep learning
E. coli DH5a strain cells were washed 3 times with H2O and 
collected by centrifugation. Protein pellet was dissolved in 
1% sodium deoxycholate (SDC)/10 mM tris(2-carboxyethyl)
phosphine hydrochloride (TCEP)/40 mM 2-chloroacetamide 
(CAA)/tris-HCl (pH 8.5). Subsequently, 1% SDC was diluted 
with water to 0.5%. The protein centration was measured 

with Pierce 660-nm protein assay reagent (Thermo Fisher 
Scientific). The trypsin (Sigma-Aldrich) was added with 
the ratio of 1:100 (trypsin:protein). The tubes were kept at  
37 °C for 12 to 16 h. The peptides were desalted with poly 
(styrene-divinylbenzene)-reversed phase sulfonate (SDB-RPS) 
StageTips. Peptides were dissolved in 0.1% formic acid (FA; 
06440, Sigma-Aldrich) and analyzed by TripleTOF 5600 MS 
(AB Sciex). Peptides first bound to a 5-mm × 300-μm trap 
column packed with Zorbax C18 5-μm 300-Å resin (5065-
9913, Agilent) using 0.1% (v/v) FA/2% acetonitrile (ACN) in 
H2O at 10 μl/min for 5 min, and then separated using 30-, 45-, 
60-, 120-, 150-, 180-, or 240-min gradient from 2% to 35% 
buffer B [buffer A: 0.1% (v/v) FA and 5% dimethyl sulfoxide 
(DMSO) in H2O; buffer B: 0.1% (v/v) FA and 5% DMSO 
in acetonitrile) on a 30-cm × 75-μm in-house pulled emitter-
integrated column packed with Magic C18 AQ 3-μm 200-Å 
resin. The column temperature was kept at 50 °C by a column 
heater (PST_CHC-RC, Phoenix S&T) and a controller (PST-
BPH-20, Phoenix S&T). For SWATH-MS, MS1 scan recorded 

Fig. 5. Peptide-level and protein-level LFQbench test performance of HYE124 dataset with 64 variable windows (TripleTOF 6600). The top and bottom scatter plots represent 
the peptide ratios and the protein ratios reported by Dear-DIAXMBD and Spectronaut14, respectively. The colored dashed lines indicate the expected log2(A/B) ratios for human 
(green), yeast (orange), and E. coli (purple) species. The black dashed lines represent the local trend along the x axis of the experimental log-transformed ratios of each 
population (human, yeast, and E. coli). The horizontal axis and vertical axis of the scatter chart represent the log-transformed ratios [log2(A/B)] of the quantified intensity 
and the log-transformed intensity of sample B [log2(B)], respectively. The top and bottom box plots show the quantified performance of peptides and proteins, respectively 
(boxes, interquartile range; whiskers, 1 to 99 percentile; human, yeast, and E. coli).
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a 350 to 1,250 m/z range for 250 ms, and a 100 to 1,800 m/z range 
was recorded for 33.3 ms in the high-sensitivity mode MS2 
scan. One MS1 scan was followed by 100 MS2 scans, which 
covered a precursor m/z range from 400 to 1200.

Sample preparation and MS analysis of L929  
mouse datasets
Murine fibroblast L929 cells were harvested by scraping and 
centrifugation at 4 °C. L929 cells were lysed with 1% SDC/100 mM 
tris-HCl (pH 8.5), followed by sonication. The protein concen-
tration was assayed using the bicinchoninic acid (BCA) 
method. Ten micrograms of proteins were reduced and alky-
lated using 10 mM TCEP/40 mM CAA. One percent of 
SDC was diluted to 0.5% SDC using high-performance 
liquid chromatography H2O, and trypsin was added at the 
protein: trypsin ratio of 50:1. Digestion was performed at 37 °C 
for 12 and 16 h. The tryptic peptides were cleaned up using 
SDB-RPS StageTips before MS analysis. Peptides were dis-
solved in 0.1% FA and analyzed by MS in DDA and SWATH 
modes. MS analysis was performed on a TripleTOF 5600 (Sciex) 
MS coupled to NanoLC Ultra 2D Plus (Eksigent) high-performance 
liquid chromatography system. Peptides first bound to a 5-mm × 
500-μm trap column packed with Zorbax C18 5-μm 200-Å 
resin using 0.1% (v/v) FA/2% acetonitrile in H2O at 10 μl/min 
for 5 min and then separated from 2% to 35% buffer B (buffer 
A: 0.1% (v/v) FA and 5% DMSO in H2O; buffer B: 0.1% (v/v) 
FA and 5% DMSO in acetonitrile) on a 15-cm × 75-μm 
in-house pulled emitter-integrated column packed with Magic 
C18 AQ 3-μm 200-Å resin. For DDA, the 250-ms MS1 scan was 
performed in the range of 350 to 1,250 m/z, and up to 20 most 
intense precursors with charge states 2 to 5 were isolated for 
fragmentation. MS/MS spectra were collected in the range of 
100 to 1,800 m/z for 100 ms. For SWATH-MS, a 100-ms survey 
scan (time-of-flight MS) that was collected in 350 to 1,500 m/z 
was performed followed by 100 MS2 experiments with scan 
time of 33 ms, which were collected in 100 to 1,800 m/z. The 100 
variable isolation windows of L929 dataset were the same as 
those of E. coli dataset acquired from TripleTOF 5600.

The complete analysis workflow of Dear-DIAXMBD

The complete analysis workflow of Dear-DIAXMBD mainly con-
sists of identification and quantification processes. The work-
flow begins with a profile mzXML file and ends with a report 
file contained peptides and proteins. In the identification 
process, the raw files of MS data were converted into profile 
mzXML files using MSConvert (V.3.0.19311), which were sub-
jected to Dear-DIAXMBD for generating pseudo-DDA mgf files 
(Fig. S3A). The mgf files were converted to mzML files, which 
were analyzed with FragPipe (version 19.1) workflow. The 
mzML files were subjected to database search using MSFragger 
search engine (version 3.7) against an UniprotKB/Swiss-Prot 
database (Fig. S3A).

The pepXML search results were validated and scored using 
PeptideProphet [52], PTMProphet [53], and ProteinProphet 
[54] modules integrated into the Philosopher toolkit (version 
4.8.1). For PeptideProphet, the following parameters were 
utilized: --decoyprobs --ppm --accmass --nonparam --expectscore. 
PTMProphet used default parameters, including KEEPOLD 
STATIC EM=1 NIONS=b STY:79.966331, M:15.9949 
MINPROB=0.5. ProteinProphet was configured with the 
parameter --maxppmdiff 2000000. Subsequently, the validated 

report files were filtered at the protein-level 1% FDR using 
Philosopher filter module, with the parameters --sequential 
--prot 0.01 --tag DECOY_. The target peptide ions passing the 
1% FDR threshold were used as input for EasyPQP to generate 
a spectral library. In the library, the retention time of peptides 
was replaced with normalized retention time, and endogenous 
peptides were used for retention time normalization (Fig. S23).

For the quantification process, DIA-NN (version 1.8.1) was 
used as quantified toolkit to analyze the raw MS data. The above 
library file was used as the specific spectral library of DIA-NN 
instead of the in silico spectral library generated from FASTA 
database. The remaining parameters of DIA-NN were set to 
their default values.

Parameters of software tools
The parameters of MSFragger and DIA-NN are shown in Table 
S2 and Fig. S24. The parameters of Dear-DIAXMBD, Spectronaut 
14 (v14.10.201222.47784 and v14.9.201124.47784) and DIA-
Umpire (v2.3.2) are shown in Tables S3 to S5, respectively.

Format conversion of benchmarked datasets
The .wiff raw data files were converted into profile and cen-
troid mzML and mzXML format by msconvert.exe and 
qtofpeakpicker.exe from ProteoWizard (version 3.0.20039) 
package. The .raw files from Thermo Fisher Scientific mass 
spectrometer were converted into mzXML by msconvert.exe 
(ProteoWizard version 3.0.20039).

Data preprocessing
Usually, DIA data contain a large number of background ion 
signals, which greatly increases the data redundancy and com-
plexity. Thus, we applied several preprocessing algorithms to 
reduce the calculation consumption. In an MS1 isolation win-
dow, Dear-DIAXMBD uses a fixed-width slider in MS1 retention 
time dimension to capture the local characteristics of DIA data. 
A slider contains a series of precursor ion spectra and the cor-
responding fragment ion spectra. Alignment of fragment XICs 
can be naturally resolved by using sliders in a single run. The 
fixed width of slider was set as 20, which is the length of XIC. 
Under the parallel mode, we moved the slider of all MS1 win-
dows with stride of one and update the internal MS1 and MS2 
spectra. By setting the appropriate width of slider, we assume 
that the peptides in a slider are recorded only once, and the 
chromatographic peaks of fragments from the same peptide 
show similar shapes.

Considering that precision of MS data in profile mzXML 
file as high as 10−3, Dear-DIAXMBD applied the binning algo-
rithm to truncate the precision MS data to low-precision values 
for spectrum analysis. In detail, we split 1.0 m/z to 30 bins with 
a truncated resolution of 0.03 m/z. The number of bins is a 
configurable parameter for the users. As a result, each spectrum 
in slider is represented by a fixed-length vector after data bin-
ning. For instance, if the maximum value of m/z is specifically 
defined as 1,200, the spectrum will be represented by a vector 
of length 36,000. An index of the vector corresponds to m/z of 
an ion, and the vector value at that index is equal to the ion 
intensity. If an ion is not recorded in a spectrum, its intensity 
will be replaced by zero. The binning algorithm starts from the 
zero value of initial vector. Then, the ion intensity is accumu-
lated to the vector values of the corresponding index. Both MS1 
and MS2 spectra are handled by this binning method.
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Because the signals of precursors and fragments are 
submerged in a large number of background ion signals, the 
binned DIA data are still complicated. It is important to remove 
the background ions with an extremely low SNR. Furthermore, 
in SWTAH workflow, MS1 and MS2 scan times are configured 
to 250 and 33 ms, respectively. The difference in scan time 
causes the SNR of MS1 spectrum to be higher than that of MS2 
spectrum. Therefore, Dear-DIAXMBD adopts different methods 
to filter the background ions in MS1 and MS2 spectra.

For each MS1 spectrum, a peak-finding algorithm is applied 
to detect peaks with high SNR in m/z dimension. Those 
detected peaks are probably from the true signals of peptides, 
rather than background ions. For the detected peaks, a deiso-
toping algorithm is then used to find the isotopic clusters and 
to calculate the ion charge of the first isotopic peak. The ions 
that are able to determine the ion charges are regarded as the 
candidate precursors in a slider. Dear-DIAXMBD stores XICs, 
charges, and the binning m/z indexes of the candidate precur-
sor ions.

Furthermore, the background ions in MS2 spectra are 
handled by setting 2 filter conditions of SNR of XICs. The first 
requirement is that the number of nonzero values of XIC must 
be greater than 5. The second condition requires that the ratio 
of the maximum value to the nonzero minimum value of XIC 
should be larger than 4. All fragments satisfying these condi-
tions are treated as the candidate fragments in a slider, and their 
m/z and XICs are stored for the next processing.

Feature extraction of fragment XICs
We feed fragment XICs into the encoder network and store the 
output of encoder as the representation of XICs. The deep neu-
ral network is written by Python3.6 on MXNet deep learning 
framework and trained on NVIDIA GeForce GTX 1080Ti GPU.

Architecture and training process of VAE
Autoencoders are important unsupervised learning models for 
data dimensionality reduction and feature extraction. Their 
learning objectives perform the following mapping:

where Z represents the features of input data. The encoder net-
work ϕ maps input data X to Z, and then the decoder network 
φ reconstructs Z to X̂. The input data X is the XICs of fragments 
in a slider. The learning objective of autoencoder is to make X̂ 
as close to X as possible.

The common encoder and decoder are designed as a stack 
of fully connected (FC) neural networks, which are simple with 
high computing speed. To achieve better performance on fea-
ture extraction task, we referenced the 4-branch networks idea 
of GoogLeNet [55] structure and constructed a 4-branch of FC 
VAE neural networks. In the networks, we set the number of 
neurons of FC layers to be equal to the channel size of inception 
block.

The network structure of encoder and decoder presents 
mirror symmetry (Fig. S1). The encoder network is a 4-branch 
network, and each branch consists of FC layers. The first branch 
network contains a FC 384-dimensional layer, followed by a 
dropout layer. The second branch network includes 2 FC layers 
with the dimensions of 192 and 384 and a dropout layer. The 

third branch network includes 2 FC layers with the dimensions 
of 48 and 128, and a dropout layer. The fourth branch only 
contains an FC 128-dimensional layer (Fig. S1).

The 20-dimensional input vector of encoder network is frag-
ment XIC. The output vectors of the 4-branch networks are 
catenated by the appending operation at the end. The encoder 
network outputs two 16-dimensional vectors, one for the stand-
ard deviation (σ2) and the other for the mean value (μ). The 
mean vector represents the latent features of the input data. 
Then, Z = � + � ∗

√

�2, �∼N(0,1) is fed to the decoder net-
work, where ε is a random value sampled from Gaussian dis-
tribution (Fig. S1).

Then the 16-dimensional vector Z is fed to the decoder net-
work consisting of 4-branch network. For the decoder network, 
the first branch network contains an FC 384-dimensional layer, 
followed by a dropout layer. The second branch network includes 
2 FC layers with the dimensions of 384 and 192 and a dropout 
layer. The third branch network includes 2 FC layers with the 
dimensions of 128 and 48 and a dropout layer. The fourth branch 
only contains a FC 128-dimensional layer. The output vectors of 
the 4-branch networks are catenated by the appending operation 
at the end, and the size of catenation vector is 384 + 192 + 48 + 
128 = 752. Then, the 752-dimensional catenation vector is fed 
to a 20-dimensional FC layer. Finally, the decoder network out-
puts a 20-dimensional vector as the reconstructed data of the 
input vector (Fig. S1).

To train the VAE, we input the anchor, positive, and negative 
XICs (Xa, Xp, Xn) to the encoder network, respectively (Fig. 2A). 
The encoder network outputs the latent features (μa, μp, μn) and 
the variance values (�2a, �

2
p, �

2
n) corresponding to the anchor, 

positive, and negative XICs, respectively. Then, Za, Zp, and Zn 
[Z = � + � ∗

√

�2, �∼N(0,1)] are fed to the decoder network, 
respectively. The decoder network reconstructs Za, Zp, and Zn 
to X′

a, X
′
p, and X′

n, respectively. Here, we calculate the objective 
functions of classical VAE of anchor, positive, and negative 
XICs, respectively. The objective function of the classical VAE 
is defined by the following equations:

The LossVAE of anchor, positive, and negative XICs is defined 
toLossa

VAE
, Lossp

VAE
, and Lossn

VAE
.Then, we calculate the triplet 

loss using μa, μp, and μn. The triplet loss is defined by the fol-
lowing equation:

where α is a margin parameter which is set to 1. In addition, 
‖∗‖2 presents the square of Euclidean distance. Finally, we com-
bine the VAE loss and the triplet loss as the final optimized 
function Losstotal:
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In the above training process, the anchor, positive, and neg-
ative XICs are input to the encoder network, respectively. The 
encoder network outputs the latent features of each input frag-
ment XIC, whether it is anchor, positive, or negative. Therefore, 
when making prediction, the input data of the trained neural 
network model are all fragment XICs in a slider, rather than a 
single labeled XIC.

The training data come from the results quantified by 
OpenSWATH. We use DIA-Umpire to analyze DIA file for 
generating pseudo-DDA spectra and then use OpenSWATH 
to quantify the peptides contained in spectral library. We apply 
the information (fragment m/z and retention time of peptides) 
of the OpenSWATH output file to extract the fragment XICs 
of quantified peptide from the DIA file. Afterward, we ran-
domly choose 2 fragment XICs from the same peptide as 
anchor and positive data. The negative data are randomly 
selected from the different peptides. Finally, we combine the 
anchor, positive, and negative data as triple data.

We trained the Dear-DIAXMBD on an E. coli SWATH data-
set with 100 variable MS1 windows, which are acquired by 
TripleTOF 5600 mass spectrometer and TripleTOF 6600 mass 
spectrometer. The dataset from TripleTOF 5600 contains 7 runs 
with the MS recording time varying from 30 to 240 min. The 
dataset from TripleTOF 6600 consist of 6 runs with the MS 
recording time varying from 15 min to 10 h. We manually 
selected 97,980 E. coli peptide precursor ions quantified by 
OpenSWATH (Fig. S3B). Each precursor ion contains top 
6 fragment ion XICs. Then, we randomly picked 2 fragment 
XICs of the same precursor ion as anchor and positive XICs, 
respectively, and randomly selected a fragment XIC from other 
precursor ion as negative XIC to generate a total of 2,179,590 
groups of triplet data as the training dataset.

We employed 6 common deep learning optimizers 
(Adadelta, Adagrad, Adamax, Nadam, SGD, and Adam) to 
optimize our model. By comparing the loss function curves 
of different optimizers, we decided to use Adam (adaptive 
moment estimation) to optimize our model to find more pep-
tides. The update rules of Adam optimizer are defined by the 
following formula:

where ft(θt − 1) is the loss function, gt is the gradient of the 
parameter θ, and η is the learning rate. The default value of 
η is 0.001. β1 and β2 are the parameters in the algorithm, 
generally β1 = 0.9 and β2 = 0.999. mt and vt are the first-order 
and the second-order moment estimation of the gradient, 
respectively. m̂t and ̂vt are corrections to mt and vt, respectively, 
which can be approximated as an unbiased estimate of the 
expectation. When ε = 10−8, the zero denominator can be 
avoided.

Triplet dataset generation
When the triplet loss is introduced into the model, we need to 
generate the triplet data to train neural network. The training 
data come from the results quantified by OpenSWATH (Fig. 
S3B). We stored XICs of the first 6 high-intense fragments of 
quantified peptides. Then, we randomly chose 2 fragment XICs 
from the same peptide as anchor and positive data. The negative 
data were randomly selected from the different peptides. 
Finally, we combined the anchor, positive, and negative data 
into triple data.

Architecture and training process of CNN classifier
We applied CNN classifier to calculate the similarity of hit frag-
ments that matched in silico peptide. Since the first 6 fragment 
ions were usually selected to observe their similarity during 
manual check, we fed the XICs of first 6 ions in hit fragments 
into CNN classifier. We used 1 and 0 to label fragment 
ions belonging to the same peptide and different peptide, 
respectively.

The length of each fragment XIC is 20, so that the input 
matrix of CNN contains 6 rows and 20 columns (Fig. S2). The 
CNN classifier consists of 4-branch (1-2-2-1) convolutional 
layers, which is the same with Inception block of GoogLeNet. 
The output feature maps of the 4-branch networks are catenated 
in channel dimension. The result of catenation is flattened into 
a vector, which is fed to a 512-dimensional FC layers. The last 
layer reports the similarity score, which locates between 0 to 1 
(Fig. S2). The loss function of CNN classifier is the binary cross 
entropy (BCE) function, which is defined by the following 
equation:

where ti and yi represent the label of input data and the output 
of CNN classifier, respectively. N is the number of input 
matrixes. We used Adam optimizer with default parameters to 
train CNN classifier and treated the outputs of CNN classifier 
as the similarity scores of input fragment groups.

PIndex querying algorithm
To match fragments with precursors, we developed PIndex 
querying algorithm based on the inverted index algorithm. 
PIndex starts with in silico digestion of protein FASTA database 
and then generates the in silico digested peptide information 
sets which contain the charge of precursor, the m/z of precursor, 
and the m/z list of fragments. We allocated the unique index 
to each information set. Obviously, we can query the in silico 
precursors and fragments using the peptide indexes.

Next, we created the inverted index table between the pep-
tide indexes and the in silico digested peptides. The inverted 
querying process includes 2 parts: One is to map precursors to 
peptide indexes, and the other is map fragments to peptide 
indexes. Precursor query maps the precursor identifiers, 
including m/z and charge, to peptide index set, which is named 
Index1. Fragment query maps the fragment m/z to peptide 
index set, which is named Index2. We calculated the intersec-
tion of Index1 and Index2, and then we can obtain the peptides 
that were hit by both fragments and precursors. Querying the 
same peptide index indicates that the precursor and fragments 
come from the same peptide.

(5)
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Two-stage clustering method
In the first k-means clustering, we obtained numerous fragment 
ion combinations. These combinations were matched with 
precursors using PIndex querying. However, affected by the 
interference signal, there are still some fragment ions in the 
clustering results that did not match the precursors. Therefore, 
we removed the precursor–fragment pairs in the first cluster-
ing, and used k-means to cluster the remaining fragment ions 
again to improve the usage of fragment ions.

MS1 recalibration
When the MS is not calibrated for long, the masses will often 
exhibit systematic shifts. The proper calibration can improve 
identification, alignment, and quantification. We referenced 
mzRecal [40], a universal MS1 recalibration method using 
high confidence peptides as internal calibrants, to improve 
the performance of Dear-DIAXMBD. We selected the peptides 
with X!Tandem expected values less than 0.001 as potential 
calibrants, and then use the following mzRecal formula to 
calibrate the MS1 m/z: Orbitrap instrument: m� =

A
�√

m−B
�2, 

time-of-flight instrument: m� = Am + B
√
m + C, where m′ is 

the calibrated m/z and m is the experimental m/z. Parameters 
A, B, and C can be calculated by curve fitting method.
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Figure S20. LFQbench test performance of HYE124 Triple TOF 
5600 64var dataset.
Figure S21. Venn diagrams of peptides and proteins found from 
BGS mouse DIA dataset.
Figure S22. The heatmaps of protein intensities of Dear-DIAXMBD 
and manual analysis in TNFR1 dataset.
Figure S23. The parameters of Philosopher (v4.8.1).
Figure S24. The parameters of DIA-NN (v1.8.1).
Table S1. The LFQbench metrics of peptides and proteins found 
by Dear-DIAXMBD, Spectronaut 14, and DIA-Umpire of HYE124 
64-var dataset (TripleTOF 6600).
Table S2. The parameters of MSFragger search engines.
Table S3. The parameters of Dear-DIAXMBD.
Table S4. The parameters of Spectronaut 14.
Table S5. The parameters of DIA-Umpire.
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