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A B S T R A C T   

Organ segmentation in abdominal or thoracic computed tomography (CT) images plays a crucial role in medical 
diagnosis as it enables doctors to locate and evaluate organ abnormalities quickly, thereby guiding surgical 
planning, and aiding treatment decision-making. This paper proposes a novel and efficient medical image seg
mentation method called SUnet for multi-organ segmentation in the abdomen and thorax. SUnet is a fully 
attention-based neural network. Firstly, an efficient spatial reduction attention (ESRA) module is introduced not 
only to extract image features better, but also to reduce overall model parameters, and to alleviate overfitting. 
Secondly, SUnet’s multiple attention-based feature fusion module enables effective cross-scale feature integra
tion. Additionally, an enhanced attention gate (EAG) module is considered by using grouped convolution and 
residual connections, providing richer semantic features. We evaluate the performance of the proposed model on 
synapse multiple organ segmentation dataset and automated cardiac diagnostic challenge dataset. SUnet ach
ieves an average Dice of 84.29% and 92.25% on these two datasets, respectively, outperforming other models of 
similar complexity and size, and achieving state-of-the-art results.   

1. Introduction 

The abdomen and thorax are regions that contain a majority of 
human organs and are also prone to various diseases. Segmenting organs 
from computed tomography (CT) scans plays a crucial role in diagnosis 
and treatment. However, it is a laborious and error-prone task for doc
tors [1]. Therefore, there is an urgent need for automated organ seg
mentation methods in clinical practice to assist doctors in more efficient 
and accurate diagnosis. In recent years, although artificial intelligence 
has achieved promising results in biomedicine, such as single-cell mul
ti-omics data analysis [2,3], RNA-RNA interaction [4–6], proteomics 
research [7–10], biomarker discovery [11], gene/protein signaling 
network [12,13] and pharmacometabolomics data processing [14], 
automatic segmentation of abdominal or thoracic organs remains a 
challenging task. Numerous factors contribute to these challenges, 
including interference from surrounding tissues, organ deformation or 
displacement, and low image contrast leading to unclear boundaries. 

These challenges pose difficulties in achieving accurate and robust organ 
segmentation. 

Previously, several two-dimensional (2D) medical image segmenta
tion models based on convolutional neural networks (CNN) have been 
proposed, among which the Unet model stands as the most representa
tive one [15]. The Unet incorporates a distinctive U-shaped 
encoder-decoder structure and skip connections, resulting in improved 
performance of the model while simultaneously introducing a new 
design approach for medical image processing. The outstanding per
formance of the Unet, has subsequently inspired the development of 
several variant networks. For example, Unet++ enhances model per
formance by using nested and dense skip connections in place of the 
original ones [16]. Unet3+ is a U-shaped medical image segmentation 
model that adopts full-scale skip connections and depth supervisions 
[17]. In addition, ResUnet [18] and ResUnet++ [19] are excellent 
medical image segmentation models also based on Unet. However, 
despite their achievement, these CNN-based models encounter 
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limitations in effectively establishing long-distance dependencies due to 
the inherent constrains of convolutional operations, which restrict their 
performance. 

Hence, the Transformer [20], known for its proficient ability to 
capture long-distance dependencies effectively, has garnered attention 
from researchers in computer vision. The vision transformer (ViT) [21], 
as the first deep learning model to incorporate transformer in image 
processing, partitions the image into patches and employs self-attention 
for feature extraction. The transformer in ViT, which has demonstrated 
remarkable performance, provided researchers with a fresh approach to 
feature extraction that overcomes the inherent constraints of convolu
tion. The TransUnet [22], pioneering the integration of transformer into 
medical image segmentation, substitutes the encoder of the Unet model 
with a CNN-Transformer hybrid model. This hybrid feature extraction 
network allows for the extraction of more semantic features, conse
quently enhancing the model’s performance. Then, the Swin-Unet 
model proposed by Cao et al. [23], a fully transformer-based enco
der-decoder architecture for medical image segmentation, has achieved 
substantial performance. Similarly, several transformer-based medical 
image segmentation models have been applied to various modalities of 
medical data [24–31]. Nevertheless, these transformer-based models 
often have more significant parameter and computational requirements 
than CNN-based medical image segmentation models, posing a formi
dable challenge for practitioners with limited computing resources. 

Inspired by the pyramid vision transformer (PVT) [32], we have 
devised a novel encoder-decoder medical image segmentation network 
referred SUnet. This network uses efficient spatial reduction attention 
(ESRA), leading to improve performance and reduce model parameters. 
Furthermore, we propose an efficient multi-attention feature fusion 
module that effectively merges low-level semantic features from skip 
connections with high-level semantic features from the decoder’s 

upsampling layers. The experimental results indicate that SUnet out
performs to previous 2D medical imaging models, achieving the best 
results with equivalent model parameters. The main contributions of 
this paper are outlined as follows:  

1) We propose SUnet, a pure transformer-based U-shaped medical 
image segmentation network incorporating efficient spatial reduc
tion attention and multi-attention feature fusion.  

2) We present efficient spatial reduction attention, which allows the 
model to perform better while maintaining fewer parameters, and 
alleviates the overfitting commonly observed in transformer-based 
models.  

3) To reduce computational complexity and data dependence, and to 
extract more task-related features, we provide an enhanced attention 
gate (EAG) module based on grouped convolution and residual 
connections.  

4) We propose an efficient feature fusion (EFF) module based on multi- 
attention, which achieves better fusion between skip connections 
and decoder features in U-shaped networks. 

2. Related work 

2.1. Unet 

Unet is a deep learning model based convolutional neural network 
proposed by Ronneberger et al. in 2015 [15]. It is widely used for 
medical image segmentation tasks, such as abdominal multi-organ seg
mentation, automatic heart diagnosis, retinal vascular segmentation and 
skin cancer segmentation. The Unet model is characterized by the 
encoder-decoder structure and skip connections, which transmit 
multi-level semantic features of the encoder to the decoder. This 

Fig. 1. Overview of SUnet Architecture. (a) is a detailed frame diagram of SUnet medical image segmentation model, which mainly consists of encoder, decoder and 
EFF module. (b) is a transformer block composed of Spatial reduction attention and Mix-FFN. (c) is the internal details of the Mix-FFN structure. (d) is the 
composition diagram of the EFF module. (e) is the internal structure of EAG. 
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operation enables the integration of more low-level semantic features 
into the feature map, ensuring high accuracy in medical image seg
mentation. Because of its strong performance in image segmentation, it 
is also widely used in satellite image segmentation [33,34] and indus
trial defect detection [35]. Over time, numerous deep learning models 
have evolved from Unet [36–41]. The SUnet medical image segmenta
tion model proposed in this paper also inherits the U-shaped structure 
and skip connections of the Unet. 

2.2. Attention mechanism 

The attention mechanism is an algorithm widely used in deep 
learning, that mimics the human attention mechanism. In deep learning, 
all input features are treated equally, regardless of their relevance to the 
current task. Consequently, the model fails to allocate attention effec
tively to the task-related areas, which limits the performance of the deep 
learning model to a certain extent. In contrast, the attention mechanism 
assigns varying degrees of attention and weighting to different parts of 
the input, paying more attention to the information related to the cur
rent task. The spatial attention (SA) mechanism is a widely used tech
nique in the field of deep learning [42]. In 2018, Oktay et al. proposed 
the attention gate (AG), which can focus on the channel information in 
computer vision task [36]. It uses a learning weight coefficient to weight 
the product of the original input and the selected vector, achieving 
channel selection and weighting. The squeeze and excitation neural 
network (SENet) proposed by Hu et al. mainly learns the correlation 
between channels in the convolutional neural network, and allocates 
larger weights to channels that are useful for the current task [43]. It is 
achieved in two steps: squeeze and excitation. Wang et al. proposed an 
efficient channel attention (ECA) module [44]. The ECA network es
tablishes local contextual correlations among channels by applying a 
one-dimensional convolution operation to each channel’s feature map, 
thereby achieving adaptive calculation of channel attention. In addition 
to the attention mechanisms that focus solely on a specific dimension 
mentioned above, multi-dimensional attention mechanism has also been 
explored. For example, Wu et al. proposed a multi-dimensional mixed 
attention convolutional block attention module (CBAM) with a focus on 
channel and spatial information [45]. Unlike the SENet attention 
mechanism that exclusively considers channel dimension, CBAM con
solidates multiple dimensions of information to better focus on useful 
information. Also, for the first time, Rahman et al. proposed a hierar
chical cascaded attention-based decoder for the first time [46], which 
also provides ideas for the design of EFF module. 

2.3. Pyramid vision transformer 

The PVT is a backbone network proposed by Wang et al. [32]. The 
core module of PVT involves feature compression of the key and value in 
the multi-head self-attention (MHSA) mechanism via convolutions. This 
compression operation procedure significantly diminishes both the 
parameter and computational complexity. The reduction ratio de
termines the size of the convolutional kernels and strides. The PVT is 
widely employed as a backbone network in various visual tasks, such as 
object detection and localization, remote sensing image classification, 
and medical image analysis. The widespread adoption of PVT un
derscores its versatility and effectiveness, rendering it a research topic of 
considerable significance within the field of computer vision. 

3. Methods 

In this section, we present the model design of the proposed SUnet, 
with particular attention given to the design of the ESRA transformer 
block and EFF module. Within the EFF module, we primarily introduce 
the proposed EAG module. 

3.1. Overall architecture 

The overall architecture of the proposed SUnet model is shown in 
Fig. 1(a). SUnet follows the encoder-decoder structure of Unet and 
employs skip connections to convey low-level semantic information. The 
channel numbers, denoted as C1, C2, C3, and C4 are defined as C1 = 64, 
C2 = 128, C3 = 320, C4 = 512. The ESRA transformer block serves as the 
feature extraction module in SUnet, and we stack two ESRA transformer 
blocks in each stage. The schematic diagram of the ESRA transformer 
block is illustrated in Fig. 1(b). The Mix-FFN module within the ESRA 
transformer block is depicted in Fig. 1(c), which differs from the tradi
tional feed-forward network (FFN) via the use of depth-wise convolu
tions between the two linear layers. In the SUnet model, overlap patch 
embedding uses a convolutional layer with kernel size 7 × 7 and strides 
3 for patch embedding. Overlap patch merging employs a convolutional 
layer with kernel size 3 × 3. The overlapping properties of the embedded 
patches help to mitigate the information loss caused by conventional 
patch embedding. Fig. 1(d) demonstrates the architecture of EFF, which 
mainly consists of three sub-modules: EAG, ECA and SA. We improve the 
original AG using grouped convolution with a group number of 32 and 
residual connections. The EAG module enhances the low-level semantic 
features transmitted through skip connections by the high-level se
mantic feature obtained through upsampling. The structure of EAG is 
presented in Fig. 1(e). After concatenation, ECA and SA are primarily 
used to highlight the important channels and spatial positions of task- 
relevant areas in the feature map to improve the ability of feature 
expression. It should be noted that the bottom ECA&SA module contains 
only a single input feature, so we only use ECA and SA for feature 
emphasis. 

3.2. ESRA transformer block module 

The transformer has gained significant popularity in computer vision 
tasks owing to its strong global modeling capabilities. However, when 
trained with limited data, transformer-based models often encounter 
challenges such as high computation complexity and susceptibility to 
overfitting. In order to address these challenges, we propose an 
approach called ESRA, which is depicted in Fig. 2. 

The ESRA not only alleviates model overfitting but also reduces the 
overall parameters. Specifically, we utilize convolutional operations to 
compress the key and value in the MHSA, thereby decreasing the model 
parameters. The parameter count of the original MHSA can be expressed 
using Equation (1). 

Fig. 2. The structural comparison between self-attention and ESRA is illus
trated in the following figures. Figure (a) represents the schematic diagram of 
self-attention, while figure (b) represents the schematic diagram of ESRA with 
spatial compression and dropkey. 
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MHSAparameter = head ×H ×W × (4× dimhead +H ×W), (1)  

where H and W represent the height and width of the input feature map, 
head is the number of heads in the MHSA, and dimhead represents the 
channel dimension of each head. Here we default batch size to 1. The 
parameter calculation for ESRA follows the same principle and can be 
represented using Equation (2). 

ESRAparameter = head ×H ×W ×
2 ×

[
dimhead ×

(
R2

i + 1
)
+ H × W

]

R2
i

, (2)  

where, Ri represents the reduction ratio in the i-th stage. From Equation 
(1) and Equation (2), we can observe that when Ri > 2, the number of 
parameters of MHSA is greater than that of ESRA. 

To mitigate the overfitting problem caused by the transformer, we 
employ dropkey [47] in ESRA to implicitly assign an adaptive operator 
to each attention head. This approach helps to constrain the attention 
distribution by penalizing regions with higher attention values, pro
moting smoother attention and encouraging the model to focus on other 
places relevant to the task, capturing robust global features. Therefore, 
ESRA can be represented as follows: 

ESRA(Q,K,V)= Softmax
(

DropKey(Q ∗ SR(K)
T)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
dimhead

√ ∗ SR(V)
)

, (3)  

the SR() operation can be expressed as follows： 

SR(x)=Norm(Conv2dRi (x)), (4)  

in Equation (4), Conv2dRi represents the feature compression achieved 
through a 2D convolution operation using a kernel size of Ri and a stride 
of Ri. And the dropkey operation can be expressed as follows: 

DropKey(x) = x+ bernoulli
(
ones like(x) ∗ ratiodropkey

)
∗ − e12, (5)  

Where x represents the attention weights to be processed. The function 
bernoulli() is used to generate samples that follow a Bernoulli distribu
tion, while ones like() generates a matrix of ones with the same size as x. 

3.3. Efficient feature fusion module 

3.3.1. EAG module 
The AG module was proposed by Oktay et al. in the Attention Unet 

[36]. However, we have found that the AG module not only suffers from 
high computational complexity but also requires strong data de
pendency. When AG is applied to high-resolution images, it increases the 
computational burden significantly. Moreover, there must be a rigorous 
data reliance between the two inputs of AG for it to capture important 
features accurately. When the correlation between the inputs is weak, 
AG fails to capture the crucial features. In our work, we extend the AG by 
replacing the conventional convolution with grouped convolution to 
conduct an intra-group feature fusion, and the calculation complexity of 
grouped convolution is obviously less than that of the conventional 
convolution method. At the same time, we modify the structure of AG by 
adding a ReLU layer after convolution of input features, and carrying out 
a residual connection for low-level semantic features passed by skip 
connections. Residual connections can mitigate the influence of 
high-level semantic features on low-level semantic features when the 
correlation between the two input features is weak, thereby avoiding 
performance degradation of the overall model. The internal structure of 
EAG is shown in Fig. 1(e). EAG can be expressed as follows: 

EAG(g, x)= x ×
(
1+ Sigmoid

(
Conv1×1

(
ReLU

(
Wg +Wx

))))
, (6)  

Wg =ReLU(BN(GroupConv32(g))), (7)  

Wx =ReLU(BN(GroupConv32(x))). (8)  

Where Sigmoid and ReLU are activation functions, BN is Batch Normal
ization operation, GroupConv32 is grouped convolution with 32 groups, 
and Conv1×1 is conventional convolution with convolution kernel size of 
1 × 1. In this model, g is the semantic feature obtained by up-sampling, 
and x is a low-level semantic feature passed by the skip connections. 

3.3.2. EFF module based on multi-attention 
The structure of the EFF module is shown in Fig. 1(d). In the EFF 

module, two semantic features from different levels are first enhanced 
by EAG to weaken the influence of unrelated regions. After the concat
enation, the number of channels is double that of the original. As a large 

Fig. 3. ECA and SA structures in series. GAP is global average pooling, GMP is global maximum pooling, X is the input feature, X′ is the output feature.  
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number of image information can be lost if operated directly, we use 
ECA and SA to emphasize related features from both dimensions. 
Notably, in our model, ECA and SA are connected in series. This com
bination of channel attention and spatial attention can better achieve 
multi-attention fusion. ECA and SA are used together and the structure 
diagram is presented in Fig. 3. 

4. Experiments and results 

In this section, we will discuss the experiments and results conducted 
to evaluate the performance of the proposed SUnet model. We compared 
its performance against benchmarked models through quantitative and 
qualitative experiments. Additionally, we performed structure ablation 
experiments to further analyze the model’s architecture. These experi
ments were based on two public datasets. synapse multiple organ seg
mentation dataset (Synapse) [48] and automated cardiac diagnostic 
challenge dataset (ACDC) [49]. These datasets provided a reliable basis 
for assessing the effectiveness and generalizability of our model. 

4.1. Datasets 

Synapse Multiple Organ Segmentation Dataset (Synapse): In this 
experiment, we used 30 labeled abdominal CT scans and 3779 enhanced 
abdominal images from the MICCAI 2015 Multi-Atlas Abdominal La
beling Challenge. Each CT scan consists of 85–198 slices with a resolu
tion of the 512 by 512 pixels. We performed image segmentation on 
eight different organs: aorta, gallbladder, spleen, left kidney, right kid
ney, liver, pancreas, spleen and stomach. 

Automated Cardiac Diagnostic Challenge Dataset (ACDC): This 
dataset is widely used for cardiac magnetic resonance imaging (MRI) 
evaluation, providing a comprehensive and fully annotated collection of 
cardiac MRI scans. This dataset contained MRI scans of the hearts of 100 
different patients, with each sample containing three organ tags, known 
as the left ventricle (LV), right ventricle (RV) and myocardium (Myo). In 
Fig. 4, partial dataset images were displayed. 

4.2. Implementation details 

All experiments in this paper are based on the Pytorch 1.8.0 frame
work [50]. We used a computer with Ubuntu 18.04 operating system, 
CPU I7-12700K, Nvidia RTX 3090, and 1 TB solid state drive to carry out 
the experiment. In all experiments of SUnet, we use the AdamW opti
mizer with the learning rate and weight decay are set to 1e-4. 

For comparison purpose, we used the same hyperparameter setting 
in our model and all the benchmarked models. In the experiment of 
Synapse dataset, the data were divided into a training set consisting of 
18 sample data, and a test set, consisting of 12 sample data. And we set 
the batch size to 24, the maximum number of epochs to 150, and the 
input image size and patch size to 224 × 224 and 16, respectively. 
Random flipping and rotation were applied to enhance the data. 

In the experiment on the ACDC dataset, we use 70 scanned samples 
for training, 10 scanned samples for validation and 20 samples for 
testing. We set the batch size to 12, the epochs to 150, and patch size to 
16. We used random flipping and rotation to enhance the data. Dice loss 
and Cross Entropy loss function were used, and the overall loss of the 
model could be expressed as: 

LOSS= λ1 × DICE + λ2 × CE, (9)  

where, λ1 = 0.6, λ2 = 0.4, DICE represents dice loss function, CE is cross 
entropy loss function. 

4.3. Results on synapse and ACDC 

To verify the model performance of SUnet, 10 representative 2D 
medical image segmentation models with good performance were 
selected for comparative test on the Synapse multi-organ segmentation 
dataset. The reason for selecting these models is their representativeness 
in the field. Unet is the pioneering U-shaped medical image segmenta
tion network and forms the foundation of our model architecture. 
TransUnet is the first segmentation model that combines transformers 
with Unet. Swin Unet, on the other hand, is the first pure transformer- 
based U-shaped medical segmentation network. The remaining models 

Fig. 4. Partial dataset images. (1) and (2) are images from Synapse, (3) and (4) are images from ACDC.  

Table 1 
Comparison of different methods in Synapse.  

Methods Parameters (M) FLOPs (G) DSC↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach 

U-Net [22] - - 76.85 39.7 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58 
Att-Unet [36] 10.04 - 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75 
R50-ViT [22] - - 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95 
TransUnet [22] 105.28 24.66 77.48 31.69 87.23. 63.13 81.87 77.02 94.08 55.86 85.08 75.62 
SwinUnet [23] 27.17 5.90 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 
PVTCASCADE [46] 34.13 5.84 81.06 20.23 83.01 70.59 82.23 80.37 94.08 64.43 90.10 83.6 
MISSFormer [52] 42.46 7.21 81.96 18.2 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81 
TransCASCADE [46] 115.01 26.14 82.68 17.34 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.50 
Parallel MERIT [51] 147.86 33.31 84.22 16.51 88.38 73.48 87.21 84.31 95.06 69.97 91.21 84.15 
Cascaded MERIT [51] ★ 147.86 33.31 84.90 13.22 87.71 74.40 87.79 84.85 95.26 71.81 92.01 85.38 
SUnet (Ours) 20.90 4.58 84.29 19.46 87.29 73.92 86.85 83.44 95.35 69.7 92.54 85.24 

Where ★ represents the current method of obtaining SOTA results. Our results are shown in bold. – indicates that the corresponding content is not found in the relevant 
paper. The index of each organ was average Dice Similarity coefficient (DSC). 
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have all achieved top performance on the Synapse and ACDC datasets at 
different points in time. 

Model evaluation data for U-Net, TransUnet, SwinUnet, Trans
CASCADE and other models were derived from published papers. The 
parameters and FLOPs are both obtained by the code they publish after 
the get_model_complexity_info function in the ptflops library. It should 
be noted that we failed to obtain the exact number of parameters and 
FLOPs of TransCASCADE due to the reason of TransCASCADE codes, so 
we used the number of parameters of PVTCASCADE minus the number 
of parameters of PVT model plus the number of parameters of TransUnet 

as the number of parameters of TransCASCADE. The same way calcu
lated its FLOPs. Finally, statistical histograms and line graphs were used 
to represent the model performance visually. 

4.3.1. Result on synapse 
Table 1 presents the comparison test with ten deep learning models 

on the synapse multi-organ segmentation dataset. It is evident that the 
proposed SUnet model significantly outperforms the previous medical 
image segmentation models on the Synapse. Compared with the original 
Unet model, SUnet improved the Dice by 7.44%. Compared to the 
TransCASCADE model, it improved the Dice by 1.61% and compared to 
the PVTCASCADE model of the PVT model, it improved by 3.23%. At the 
same time, despite its superior performance, the SUnet model maintains 
a significantly smaller model scale compared to other transformer-based 
models, showcasing its efficiency and effectiveness. 

At present, the state-of-the-art (SOTA) model in the 2D medical 
image segmentation field is the MERIT model proposed by Rahman et al. 
on March 29, 2023 [51]. The paper proposed two heterogeneous 
models, Cascaded MERIT and Parallel MERIT, where Cascaded MERIT 
achieved SOTA results on the Synapse multi-organ segmentation data
set. Although the performance of this paper is 0.61% lower than that of 
the Cascaded MERIT, it is important to highlight that the parameters and 
calculation of our model are 1/7 of its model scale. This demonstrates 
that our proposed SUnet model has better adaptability and more 
impressive performance for application scenarios with insufficient 
computing resources. 

The scatter plots in Fig. 5 provide a visual comparison of 9 models, 
including Att-Unet, TransUnet, Swin-Unet, PVTCASCADE, MISSFormer, 
TransCASCADE and current SOTA models Parallel MeRIT and Cascaded 
MeRIT. The plots display the parameters and average Dice on the Syn
apse dataset. From the scatter plots, we can intuitively see that SUnet 
has fewer parameters than other models at the same level of approxi
mate accuracy. With the same number of parameters, SUnet has a 

Fig. 5. Performance of 9 semantic segmentation models on Synapse. The X-axis 
represents the number of model parameters (unit: Million), and the Y-axis is 
average Dice, representing the performance of the model on the Synapse. 

Fig. 6. Results of SUnet model on Synapse dataset.  
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significant advantage in terms of model accuracy. This proves that our 
model is well-suited for the environments with limited memory and 
computing resources. The convergence curve of the loss and the Dice 
growth curve of SUnet on the Synapse dataset are shown in Fig. 6. 

Furthermore, in Fig. 7, we provide qualitative analysis results of the 

Synapse dataset for representative models, including TransUnet, Swin- 
Unet, MISSFormer, TransCASCADE, and SUnet. We randomly selected 
four samples in the test set for comparison experiment. The qualitative 
experiment shows that the SUnet model outperforms the other four 
models regarding segmentation performance for all four samples. This 
qualitative analysis further supports the superior performance of our 
model in terms of segmentation accuracy. 

4.3.2. Result on ACDC 
Meanwhile, we conducted comparative tests on the ACDC dataset, as 

illustrated in Table 2. In the ACDC dataset comparison experiment, we 
compared the same ten medical image segmentation models as in the 
Synapse comparison experiment. Compared to TransCASCADE models, 
our model demonstrated an improvement of 0.62%. Although the per
formance improvement of SUnet on the ACDC data set for the model is 
not considerable, it is still a significant breakthrough to achieve such 
excellent results without a large increase in the parameters. The 
convergence curve of the loss and the Dice growth curve of SUnet on the 
ACDC dataset are shown in Fig. 8. The visualized result is shown in 
Fig. 9. 

Our model shows a 0.4% performance advantage over cascading 
MERIT on the ACDC dataset. However, compared to the parallel MERIT, 
SUnet was 0.07% behind in average Dice. It is important to note that the 
SUnet model is a single structural model. In contrast, the cascade MERIT 
and parallel MERIT models proposed by Rahman are two heterogeneous 

Fig. 7. Qualitative experiments of five models on the Synapse dataset. 8 different colors are used to represent the 8 labels to be divided and the segmentation results. 
We use red rectangular boxes to mark areas showing obvious differences between models. Each one lists the segmentation effect a model achieves on four random 
samples in the test set. Ground Truth is the result of expert segmentation. 

Table 2 
Comparison of different methods in ACDC.  

Methods Parameters 
(M) 

FLOPs 
(G) 

DSC↑ RV Myo LV 

U-Net [22] - - 87.55 87.10 80.63 94.92 
Att-Unet [36] 10.04 - 86.75 87.58 79.20 93.47 
R50-ViT [22] - - 87.57 86.07 81.88 94.75 
TransUnet [22] 105.28 24.66 89.71 88.86 84.53 95.73 
SwinUnet [23] 27.17 5.90 90.00 88.55 85.62 95.83 
PVTCASCADE 

[46] 
34.13 5.84 91.46 88.90 89.97 95.50 

MISSFormer 
[52] 

42.46 7.21 90.86 89.55 88.04 94.99 

TransCASCADE 
[46] 

115.01 26.14 91.63 89.14 90.25 95.50 

Parallel MERIT 
[51] 

147.86 33.31 92.32 90.87 90.00 96.08 

Cascaded MERIT 
[51] 

147.86 33.31 91.85 90.23 89.53 95.80 

SUnet (Ours) 20.90 4.58 92.25 90.69 89.95 96.09  
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medical image segmentation models. Furthermore, the SUnet model has 
significantly fewer parameters and FLOPs than the Cascade MERIT and 
Parallel MERIT models. From this point of view, our method can 
demonstrate better performance in scenarios with limited computa
tional resources. 

4.4. Ablation experiment 

The paper conducted ablation experiments to validate the effec
tiveness of the proposed ESRA and EFF modules. A series of structural 
ablations were performed on the three sub-modules in EFF to evaluate 
their individual contributions. Firstly, we conducted experiments by 
using only ESRA to construct SUnet-0 as the baseline model. SUnet-1 is 
built upon SUnet-0 by incorporating the EAG module. The remaining 

Fig. 8. Results of SUnet model on ACDC dataset.  

Fig. 9. Visualization results of SUnet model on ACDC dataset.  

Table 3 
Ablation experiment on Synapse.  

Methods ESRA EFF DSC↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach 

EAG ECA SA 

SUnet-0 ✓ x x x 82.86 20.21 87.69 73.42 86.69 81.59 95.57 65.21 91.27 81.47 
SUnet-1 ✓ ✓ x x 83.65 17.02 87.48 72.60 87.05 83.62 95.75 67.90 90.70 84.11 
SUnet-2 ✓ ✓ ✓ x 81.72 25.42 87.83 69.78 82.49 79.34 94.97 66.06 89.86 83.47 
SUnet-3 ✓ ✓ x ✓ 81.79 27.73 87.60 74.31 80.81 78.71 95.42 69.61 87.97 78.89 
SUnet-4 ✓ x ✓ ✓ 83.29 20.31 88.10 72.34 84.62 82.46 95.40 70.00 90.65 82.73 
SUnet ✓ ✓ ✓ ✓ 84.29 19.46 87.29 73.92 86.85 83.44 95.35 69.7 92.54 85.24  
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structural ablations are shown in Table 3, and all the ablation experi
ments were conducted on the abdominal multi-label dataset, while 
keeping all other aspects consistent except for the model structure. 

The results of the ablation experiments are shown in Table 3. It is 
evident that the SUnet-0, which is solely based on ESRA, achieves an 
average Dice of 82.86% on the Synapse, surpassing the performance of 
most 2D medical image segmentation models. And the performance of 
the SUnet-1 model, which incorporates the EAG module on top of SUnet- 
0, is further improved. We also observed an interesting phenomenon 
that introducing only ECA or SA on the SUnet-1 decreased model per
formance. SUnet-2 and SUnet-3 achieved average Dice of 81.72% and 
81.79%, respectively. But, when SUnet-4 utilized ESRA along with the 
concatenated ECA and SA, the model’s performance improved by 0.43% 
compared to SUnet-0. This suggests that if the model excessively em
phasizes a distinct dimension, it may become trapped in a single- 
dimensional local optimum. Consequently, we believe it is necessary 
to consider ECA for channel attention and SA for task-specific region 
attention as a unified approach. In conclusion, the results from the 
ablation experiments visually demonstrated that the proposed methods 
in this study are effective in significantly enhancing the model’s 
performance. 

5. Conclusion 

In this paper, we introduce SUnet, a novel 2D medical image seg
mentation model based on the ESRA. We propose an innovative EFF 
module that effectively fuses skip connections and decoder features 
using multiple attention mechanisms, including EAG, ECA, and SA. The 
EAG module, based on grouped convolution, enables efficient intra- 
group feature fusion. Compared to other 2D medical image segmenta
tion models, such as TransUnet and Swin Unet, our proposed SUnet 
model achieves higher accuracy with fewer parameters. It achieves an 
average Dice of 84.29% on the Synapse dataset and 92.25% on the ACDC 
dataset. SUnet demonstrates superior adaptability and parameter effi
ciency over current state-of-the-art 2D medical image segmentation 
models, making it more suitable for various tasks in 2D medical image 
segmentation, particularly in scenarios with limited computational 
resources. 

Notwithstanding the use of multiple attention mechanisms to ach
ieve feature fusion, SUnet has not effectively solved the problem of 
fusing local and global features at a fundamental level. In future 
research, we will develop a new efficient semantic segmentation model 
that integrates global and local image features to extract more effective 
image features for improved medical image segmentation. For example, 
we aim to form a new hybrid feature extraction unit that pays equal 
attention to global and local features by using CNN and transformer. The 
challenge lies in achieving this more efficient hybrid model while 
ensuring that it does not significantly increase the parameters or even 
become more lightweight. By addressing these challenges, we aspire to 
enhance the performance of medical image segmentation models and 
contribute to computer-aided diagnosis and treatment. 
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