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CaT: Cyclic-Accumulation Transformer for Lane
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Abstract—Lane detection is a special task in autonomous
driving. Its most prominent inherent feature is to learn the
imagination of severely occluded objects. Traditional CNN-based
networks learning the imagination tend to perform poorly.
In this work, we propose a novel architecture, called Cy-
cle_accumulation-Transformer (CaT), which is the first structure
to handle the lane detection by fusing CNN and Transformer.
In particular, Cycle_accumulation structure and Transformer
structure complement each other, and they adopt the four-
direction cyclic accumulation process of ”up to down”, down
to up”, ”left to right” and right to left” in the convolutional
mode and the self-attention mechanism of “QKV” to fuse
global information respectively. Our method is based on pixel-
level semantic segmentation with high detection accuracy while
meeting real-time requirements. Moreover, our proposed method
achieves state-of-the-art results on the Tusimple and also achieves
competitive results on the CULane.

Index Terms—lane detection, cycle_accumulation structure,
Transformer, global information,

I. INTRODUCTION

Lane line is a high-level visual language symbol defined in
human society, which specifies the basic norms for vehicles
to drive on the road. Lane detection plays an important role
in both assisted driving and automatic driving, including:
high-precision map generation, lane keeping during driving,
automatic cruise and overtaking decision-making. The task of
lane detection is to segment and detect the lane line contained
in the 2D image captured by the vehicle camera, and it
needs to meet certain accuracy and real-time requirements. The
difficulties in lane detection can be roughly divided into the
following two points: 1. Severe occlusion: Originating from
crowded traffic; 2. The characteristics of the lane line itself:
the lane line itself is a slender object, wear and tear, dotted or
solid lines, etc.
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Lane detection is a proprietary problem in a specialized
field, its development benefits from the advancement of com-
puter vision technology in a large environment. In the early
days, traditional image algorithms [36] analyzed and processed
images by finding the correlation between pixels and fusing
geometric features. Although these algorithms were simple to
implement, they were often inaccurate and could only be used
in specific occasions.

In recent years, with the substantial improvement of hard-
ware (GPU) computing power, deep learning methods have
begun to enter the stage of history. In the field of computer
vision (CV), the CNN network was first proposed in [11] in
1998, and scholars from all walks of life have successively
put forward excellent paper ideas such as AlexNet [10],
VGG [27], GoogLeNet [30], and ResNet [6]. The extremely
creative work has broken through the bottleneck of previous
traditional image algorithms, and has achieved a speed and
accuracy comparable to that of human naked eye recognition
in classification, segmentation, and detection tasks. CNN-
based lane detection also achieves unprecedented real-time and
accuracy requirements, and is applied to the complex system
engineering of autonomous driving.

Transformer [33] is widely used in the field of Natural
Language Processing (NLP), and some classic networks [2],
[23], [24] contain Transformer blocks. ViT [3] was the first
to introduce Transformer into the field of CV and achieved
the best results in the image classification task of the year.
Transformers were then applied to various fields of CV and
achieved excellent results comparable to CNN.

In this paper, we consider the lane detection task as a prior
based on weak symmetry and little change in relative position,
and then proposed Cyclic_accumulation-Transformer(CaT)
which introduced the transformer mechanism into CNN (com-
bined the idea of RESA [3] or SCNN [18]). The overall
architecture of our network refers to the Unet network [26] and
is divided into three main parts: Encoder, CaT, and Decoder.
The input image (assuming a 3-channel lane picture) goes
through Encoder part (ResNet_based backbone, lightweight
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backbone or another improved backbone) to extract high-level
semantic information, and then the CaT module’s feature_map
can learn the relative relationship between pixels and pixels
in a long distance range. At this point, CaT introduces a
large amount of redundant information, but in the subsequent
decoder module, this redundant information will be weakened,
and only information similar to the label will be retained
gradually.

In Unet networks [26] or other classical image segmentation
algorithms [12], [16], [26], skip-connection is considered as an
indispensable part, while in our proposed network structure,
skip-connection can be removed without affecting the perfor-
mance. In addition, the multi-head self-attention mechanism
in the transformer structure can be optimized to a single-head
self-attention mechanism in our CaT model.

Using the combination of transformer and CNN, our net-
work can achieve a good performance with few training cycles
on both the Tusimple and CULane without extra datasets
(96.97% accuracy on Tusimple and 75.9% F1-score on CU-
Lane).

The main contributions can be summarized as follows:

e« We propose the CaT module to obtain and integrate
global information more efficiently; The CaT module
is plug-and-play and can be easily integrated into other
networks.

e In the new design of CaT, the “multiple heads” of the
multi-headed attention mechanism can be removed and
the final performance is not affected; The skip-connection
in the classical segmentation network may not be appli-
cable in the lane detection, as we have experimentally
demonstrated.

o Our work is the first to combine Transformer and CNN
in the field of lane detection, and we get state-of-the-art
performance on the Tusimple without extra datasets.

II. RELATED WORK
A. Segmentation_based methods in lane detection

The segmentation-based approach is the most straightfor-
ward and simplest way to detect lane lines, but classical
segmentation networks that perform better in the general fields
often perform poorly on the lane detection [18], [29], [37].

To fix this problem, SCNN [18] further improves the infor-
mation flow delivery based on the idea of Markov Random
Field (MRF) or Conditional Random Field (CRF) [15]. The
feature_map that passes through the backbone firstly iterates
row-by-row in “top to bottom” and “’bottom to top”, followed
by column-by-column loop iterations of ’left-to-right”, “right-
to-left” to obtain global information and further enhance the
information of the occluded part. RESA [3] further improves
the information transmission method in SCNN [18], and
changes the information transmission from “row-by-row” and
”column-by-column” to a certain stride. The above segmen-
tation networks are often doing multi-classification tasks, that
is, the number of lane lines in a picture needs to be defined in
advance. LaneAF [1] introduced the concept of "affinity fields”

to detect any number of lane lines without prior definition . It
allows feature_map to perform binary classification tasks and
train affinity fields at the same time. In the final judgment, the
trained affinity fields are used to cluster trained binary lane
images (that is, multiple classification = binary classification
+ clustering after affinity), but this method is less effective
at the intersection of lane lines. Another usage scenario is to
use the segmention_based network as a secondary branch to
enhance the performance of the main branch network [21].

B. Other methods in lane detection

Row-wise_based approachs [13], [21] grid the image ,
converting each pixel predicted by the Segmentation_based
method into line-by-line prediction of grid position coordi-
nates containing lane line pixels, and finally mapping these
coordinates back to the original image to obtain the final lane
line coordinates.

Parameter_based approachs [14], [32], treated lane lines as
a curve defined by parameters and predicted the parameters
directly. Subsequently, LSTR [14] introduced Transformer
into parameter_based detection, further improving speed and
accuracy.

Key-point_based methods [9], [13], [32] are motivated by
the fact that lane lines are composed of points, and then
predicted the key points of lane lines directly.

C. The fusion of Transformer and CNN in deep-learning

ViT [3] was the first effort by integrating the Transformer
into CV and outperformed CNN in regards to classification
results; ConViT [4] proposed a new SA Layer (Gated Posi-
tional Self-attention (GPSA)) to replace the SA layer in ViT,
GPSA learns about gating parameters to determine whether
to behave as a convolutional layer or not; CvT [35] proposed
hierarchical multi-stage structure, each stage uses convolution
to generate tokens and reduces computational costs by using
different step sizes of convolution projection in the multi-head
self-attention. Bottleck [28] outperformed the original ResNet
in a variety of visual tasks simply by replacing the last three
bottleneck layers in ResNet with the modified Transformer;
Conformer [20] is a double parallel network: CNN Branch
captures local feature and Transformer Branch captures global
features, and the Feature Coupling Unit (FCU) is responsible
for the information fusion of the two.

III. METHODS

In this section, we illustrate the details of our proposed
scheme, a novel combination of transformer and CNN patterns
— CaT embedded in U-shape, a typical encoder-decoder
segmentation network.

A. The overall structure

The overall network structure is shown in Fig. 1(a). The
overall shape is U-Shape, assembled by three parts: Encoder,
CaT and Decoder.
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Fig. 1. Details of the proposed method. (a) Encoder module uses standard ResNet to obtain multi-scale feature_maps (E1-E4). Decoder module uses bilinear
interpolation and deconvolution to restore the intermediate feature_maps (D1-D4) to the original image size; Learnable offset maps are added one step ahead of
the output. (b) The input feature_map added with positional embedding is mapped to Q, K, V by Convolutional projection module, followed by the calculation
of self-attention, and then into the Ca model for information fusion, finally the Convolutional projection and self-attention modules are repeated.

1) Encoder: Encoder module is used to acquire high-level
semantic information, which is divided into four convolution
blocks. Given the matrix of image sizes (e.g., 3: RGB three
channels; H: the length of the image; W: the width of the
image), the image goes through four convolution layers and
its length and width are halved respectively, and along with
the increase of dimensions, the low-level semantic information
is gradually transformed into high-level semantic information.
Finally, feature_map of [C,H/8,W/8] is obtained.

2) CaT: CaT consists of two parts: Transformer and
Cyclic_accumulation, which are used to integrate feature_map
([C,H/8,W/8]) with high-level semantic information obtained
by Encoder modules. Transformer module includes position-
embedding(PE) and self-attention(SA), firstly feature_map
[C.H/8,W/8] plus position_embedding of the same size, then
after convolutional_projection mapping into Q, K, and V of
the same size. Q, K, and V calculate self-attention and input to
Cyclic_accumulation module. The Cyclic_accumulation mod-
ule first divides the input matrix into H rows, and then passes
the information cumulatively from top to bottom and bottom to
top; after that, it divides the input matrix into W columns, and
then passes the information cumulatively from left to right and
right to left. Finally, it passes a layer of self-attention module
to further fuse the information from the previous two steps.

3) Decoder: The Decoder module is used to restore fea-
ture_map to its original size, along with a shift from high-
level semantic information to low-level semantic information.
Finally, a learnable offset_map is added to fine-tune the lane
position of the network output. In the training phase, the

feature_map output from the Decoder module calculates and
minimizes the cross entropy loss with the given label during
iterations; In the test phase, the output feature_map already
shows the location of the specific lane lines and only needs to
be overlaid on the original map as the final output.

B. Details of CaT

Our proposed CaT module is used to aggregate high-
level semantic information, which is the core module of the
entire network and consists of four main parts (as shown
in Fig. 1(b)): Positional-embedding, Convolutional projection,
Self-attention, and Cyclic_accumulation(Ca).The first three
parts are basic elements for standard transformer-encoder, for
Ca module, we follow the practices of SCNN [18] and RESA
[3]. The combination of these four parts effectively solves
the problem of “’serious occlusion” in lane detection task, and
enhances the imagination of detection of network.

Assuming that the input tensor is X'W:C where H, W,
and C represent rows, columns, and channels.

1) Position embedding.: Transformer was first applied in
the field of NLP, and NLP sequence naturally has position
attributes. When it introduced into the CV field [3], we need
to carry out similar position embedding on the token (patch/
Pixel) of the image to add position information. Transformer’s
position embedding mainly includes two aspects: absolute
position embedding and relative location embedding. We use
learnable position embedding here and rely on input embed-
ding as follows:

HW,C _ v H,W,C H,W,C
X =X +P ,

(D
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Where PH:W:C indicates the added learnable position embed-
ding has the same channels, rows, and columns as the input
feature_map (X 7W:¢). PH.W.C initializes a gaussian random
distribution with mean O and variance 1. It can be seen from
the Fig. 4 (“after-pe”) that feature_map added with position
embedding looks like added Gaussian noise.

Q
(H*W*C)

(H*W*C) (H*W*C)

H*W#*C
Xi

Fig. 2. Convolutional projection module (The green shaded area) and self-
attention module (The blue shaded area).

2) Convolutional projection.: Convolutional projection
maps tokens fused with location information into three differ-
ent subspaces, namely Query, Key, and Value. Different from
Linear projection in ViT, convolutional projection does not
need to tensor 2D images into 1D as input (flatten operation).
It’s going to go straight through the trainable 1*1 convolution
and then sliding through the tensor for 2D (As shown in blue
part in Fig. 2). This computational progress can be formulated
as:

ij’,f/vf = Conv2dy.q (X)), 2)

This operation has two advantages: one is that the computa-
tional cost is saved with fewer computational parameters; the
other is that more spatial features can be retained compared
with Linear Projection [3].

3) Self-Attention: The self-attention module is used to
obtain the correlation (Attention matrix) within the data or fea-
tures, and the vector product is calculated through the Q matrix
and K matrix obtained by the convolution mapping. This
kind of correlation can be global, and this parameter weight
is dynamically changed with different input data. Finally, V
matrix and Attention matrix are computed to produce globally
dependent outputs. Our structure uses the self-attention module
in two places, on either side of the Ca module (as shown in the
green part of Fig. 2).The self-attention formulation is given as
follows:

‘ (XH,W,C)(XH,W,C)T
Attention = Softmaz(—~ 1
Vi

XHWC — (Attention)(XEW:C), )

), B3

4) Cycle_accumulation(Ca): We use the Ca module to
realize the global information fusion method of the CNN
mode. First, the feature_map tensor XiH W.C s divided into
H rows and W columns by rows and columns, and then the
information is accumulated cyclically in four directions: ”top

59 99

to bottom”, “’bottom to top”, “’left to right” and “right to left”.
The computation of Ca can be formulated as follows:

c W
H
X:,hw,c _ Xl_hﬂu,c + f(z ZXi(hiSk )modH,ern,m)7 )
m=0n=0
H H

S = W’k = 07 1, "'7l092H - 1’ (6)

C H
h,w,c h,w,c h4n,(wxs) YmodW,
Xi/ = X! +f-(z ZXZ'L v, (wEsy )mo m)7 %)

m=0n=0
W w

Sk = W7]{3:0,1,...,1092W_17 (8)

skH represents the stride of the shift, which depends on the
number of rows H and the number of columns W. f indi-
cates the one-dimensional convolution layer. / means the new
formed tensor. Eq.5 and Eq.7 represent the cyclic accumulation
process of different strides.

Tensorl_1 Tensorl_2 Tensorl_3
0 ; 0+
[ 142 .
2 + 3 243 Stride=1
3 4 3+4
4 5 445
5 0 5+0
Tensor2_1 Tensor2_2 Tensor2_3
0+1 243 0+142+3
142 3+4 1+2+3+4 .
+ 4+5 2+3+4+5 Stride=2
3+4 50 5
4+5 0+1 4+5+0+1
5+0 142 5+0+1+2
Tensor3_1 Tensor3_2 Tensor3 3
0+1+2+3 4+5+0+1 O+1+2+3+4-+5+0+1
1+2+3+4 5+H0+1+2 1+2+3+H4+5+0+1+2 .
2434445 + 0+14243 243+4+550+142+3.  Stride=4
3+4+5+0 1+243+4 3+4+5+0+1+2+3+4
2+3+4+5 4+5H0+1+2+3+4+5
5HOH1+2 3+4+5+6 SHOH1+243+4+5+6

Fig. 3. Detailed information fusion process. Now, assume that the tensor has
five rows, the first column representing the tensor to be processed, and the
second column representing the new tensor formed after the specific stride.
The number inside the tensor in the figure indicates the information contained
in a certain line at this time.

Fig. 3 shows a more intuitive information flow transfer
process, in which we take the “top to bottom™ direction of
information transfer as an example. In the formula in the
first line(Stride=1), the left side of ”+” represents the original
“Tensorl_1” to be calculated, the right side of ”+” represents
the new “Tensorl_2” formed by the original "Tensorl_1" after
stride=1, and the one on the right side of ”=" is the “Ten-
sorl_3” formed after information integration. It can be seen
that each row in “Tensorl_3” has obtained the information
of the next row. Similarly, in the second line(Stride=2), the
initial tensor is the tensor from the previous step ("Tensor2_1"
is the same as “Tensorl_3”), “Tensor2_2” is the new of
“Tensor2_1" after the stride=2, each row in the resulting
“Tensor2_3" contains 4 rows of information. Similarly, each
line in “Tensor3_3" can collects 8 lines of information after
stride=3.

In addition to the collection of global information in Ca
mode, corresponding redundant information is also added. For
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Fig. 4. Visualization of CaT (above the red dotted line) and RESA [37] (underneath the red dotted line) modules. The input of both models is the same

image, and the label is represented by different colored lines in the picture.

example, information 0 and 1 in the first line of “Tensor3_3" in
Fig. 3 are redundant information. Such aggregated redundant
information is finally refined into high-level semantic infor-
mation that can reflect lane location through the self-attention
module (see “after-ca_sa2” in Fig. 4 ). Feature_map output
from the earlier Ca module with Transformer is more chaotic
than RESA (see Fig. 4 for a comparison of feature_map “after-
ca_rl” and ”after-resa_rl”).

IV. EXPERIMENT
A. Datasets and evaluation metrics

1) Datasets: In order to verify the performance of our
method, we adopt two most authoritative public datasets in
lane detection - Tusimple and CULane.

Tusimple is a relatively old public dataset with images
collected from highways. The dataset consists of about 7,000
one-second-long video clips of 20 frames each, of which the
training set has 3626 video clips, 3626 annotated frames, and
the test set has 2782 video clips. The resolution of each image
is 720*1280 (720 means the height of the image, 1280 means
the width of the image).

CULane is a publicly available dataset from [18], which is
much larger and has more complex scenarios compared to the
Tusimple. CULane contains approximately 120,000 images,
of which 88,880 are in the training set and 34,680 in the test
set; The images were grouped into 9 scenarios: “Normal;
”Crowded”; ”Night”; "No line”; ”Shadow”; ”Arrow”; ”Dazzle
light”; ”Curve”; ”Crossroad”. The resolution of each image is
1640*590 (590 means the height of the image, 1640 means
the width of the image).

2) Evaluation Metrics: For Tusimple, three metrics are
developed officially: Accuracy; FPR(False-Positive Rate);
FNR(False-Negative Rate). The accuracy is calculated as fol-

low:
pred

zclip Py

clip

t
chip Gg

clip

)

Accuracy =

Where in each clip, Pfl:ed is the number of correctly lane

points that have been predlcted by the method (Compared with
ground truth, the distance within a certain range is judged to
be correct) and Gch is total number of ground truth points. At
the same time, lane lines with accuracy greater than 85% are
considered true positives (TP), otherwise they are considered
false positives or false negatives.

For CULane, we refer to the unified calculation method
Fl-score given by [18] to judge our method. The calculation
method of Fl-score is as follows:

Precision x Recall

F1=2x (10)

Precision + Recall’
Where Precision = W , Recall = w the calcu-
lation of TP, FP and FN are all based on the IoU (Intersection
over Union) calculated by the predicted lane lines and Ground
Truth label.

B. Implementation Details

In the data processing part: For Tusimple, we first resize the
input image to 368%640 (height * width) as the input of the
network. Similarly, for CULane, we resize the input image
to 288*800 (height * width). In particular, since Tusimple
itself does not provide segmentation annotations, we also
need to use the supplied JSON file to generate segmentation
annotations. In terms of data enhancement, we adopted the
current commonly used strategies:ColorJitter, RandomResize,
RandomCrop, RandomRotation and GroupNormalize.

In the training phase: we tried four pre-trained weight
models (ResNet18, ResNet34, ResNet50 ResNet101) as back-
bone. We trained 400, 36 epochs for Tusimple and CULane
respectively and finally obtain the best weights. Batch_size
are set to 12. For the optimizers, SGD optimizer is adopted,
in which the maximum learning rate parameter is set to 0.02,
weight_decay is set to 1E-4, momentum is set to 0.9. Further,
“LambdalLR” scheduler was used to dynamically adjust the
learning rate. For the loss function, we use “Cross_entropy”
and “Dice_loss” for Tusimple and CULane respectively.
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All our models are trained with NVIDIA GeForce RTX
3090(24G) GPU or Tesla V100 PCIE(32G) GPU based on
the Pytorch-1.10.0.

C. Result

Our method blends the advantages of Transformer and
CNN in a feasible way, and receives good performance on
both Tusimple and CULane. Our comparison method comes
from the real-time ranking of Tusimple and CULane from
the statistics above of: https://paperswithcode.com/sota, (es-
pecially FOLOLane [22], LaneAF [1], CondLane [13] are the
latest papers just published in 2021).

Table I shows the comparison between our method and the
state-of-the-art approaches in recent years on Tusimple. Our
method with ResNet34 yields a new start-of-the-art accuracy
of 96.97% with 47 FPS, while the FN is also much smaller
than the other methods. It can be seen from Fig. 5 that our
method can achieve good results in some places with serious
occlusion and where the end lane lines will converge. In
particular, our method can also achieve good generalization
in places where the ground-truth label is slightly wrong.

TABLE 1
COMPARISON AND STATE-OF-THE-ART RESULTS ON TUSIMPLE.

Methods Accuracy FP FN

PolyLaneNet [32] 93.36% 0.0942 0.0933
LaneNet [17] 93.38% 0.0780 0.0224
CondLaneNet(ResNet34) [13] 95.37%  0.0220 0.0382
CondLaneNet(ResNet18) [13] 95.48%  0.0218 0.0380
LaneATT(ResNet18) [31] 95.57% 0.0356 0.0301
LaneAF(DLA-34) [1] 95.62%  0.0280 0.0418
LaneATT(ResNet34) [31] 95.63%  0.0353 0.0292
UFAST(ResNet18) [21] 95.82%  0.1905 0.0392
UFAST(ResNet34) [21] 95.86%  0.1891 0.0375
LaneATT(ResNet122) [31] 96.10%  0.0564 0.0217
LSTR [14] 96.18%  0.0291 0.0338
SCNN [18] 96.53% 0.0617 0.0180
CondLaneNet(ResNet101) [13]  96.54%  0.0201 0.0350
ENet-SAD [7] 96.64%  0.0602 0.0205
RESA(ResNet18) [37] 96.70%  0.0395 0.0283
RESA(ResNet34) [37] 96.82%  0.0363 0.0248
FOLOLane [22] 96.92%  0.0447 0.0228
CaT (ResNet34) 96.97% 0.0654 0.0178

For CULane, Table II shows the comparison between
the results of our CaT method and the results of some
other state-of-the-art methods, where our method obtained
75.9% of the Flscore. Furthermore, our method performs
best in the three scenarios with the highest proportion (Nor-
mal(27.7%), Crowded(23.4%) and Night(20.3%)). In addition,
the FPR(False Positive Rate) value of Crossroad(9.0%) was
also the lowest(1097).

D. Ablation study of CaT

In order to see the specific role of the Transformer more
clearly, we split the components of the Transformer into PE
(Position Embedding) and SA (Self-Attention) separately , and
therefore discuss their specific performance in CaT separately,
the results of CaT’s ablation experiments are referred to
Table III. The first line in Table III shows the result of baseline.

TABLE II
COMPARISON AND STATE-OF-THE-ART RESULTS ON CULANE. ONLY
CROSSROAD IN THE TABLE SHOWS ITS PERFORMANCE IN FP.

Category ENet- SCNN UFAST ERFNet- PINet RESA CaT
(proportion) SAD [7] [18] [21] E2E[25] [9] [37] (ours)
Normal (27.7%) 90.1 90.6 90.7 91.0 903 921 927
Crowded (23.4%) 68.8 69.7 70.2 73.1 723 731 740
Night (20.3%) 66.0 66.1 66.7 67.9 677 699 705
No line (11.7%) 41.6 434 444 46.6 498 477 476
Shadow (2.7%) 65.9 66.9 69.3 74.1 684 728 696
Arrow (2.6%) 84.0 84.1 85.7 85.8 837 883 884
Dazzle light(1.4%)  60.2 58.5 59.5 64.5 663 692 647
Curve (1.2%) 65.7 64.4 69.5 71.9 656 703 688
Crossroad(9.0%) 1998 1990 2037 2022 1427 1503 1097
Total 70.8 71.6 723 74.0 744 753 759

The last line presents our final CaT scheme: PE+SA (before)
+Ca+SA (after), they are all in series.

TABLE III
THE ABLATION EXPERIMENTS OF CAT ON TUSIMPLE. THESE MODULES
ARE ALL CONNECTED IN SERIES.

Baseline PE SA(before) Ca SA(after) Accuracy
96.33
96.79(+0.46)
96.85(+0.52)
96.91(+0.58)
96.90(+0.57)
96.91(+0.58)
96.89(+0.56)
96.93(+0.60)
96.97(+0.64)

v v
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It can be seen from the comparison results of the first three
lines that Encoder-Decoder with the high-level semantic in-
formation fusion module has significantly higher performance
in the framework of semantic segmentation than that without
it, which indicates that the further global fusion of high-level
semantic information is crucial for lane detection based on
segmentation; In comparison with the third, fourth, fifth and
sixth lines, it can be seen that the global information integra-
tion of Transformer and CNN can be well complementing their
performance mutually and the performance is further improved
as a result. As can be seen from Fig. 4, the Ca module with PE
or SA is more chaotic in its high-level semantic information
and contains obscured information; By comparing the third
and seventh lines and the fourth and seventh lines, we can
see the CA+SA (after) model to do further fusion of the
chaotic information after the Ca module fusion (culling out
the information needed by the Decoder module later) would be
more desirable than letting the chaotic information go directly
to the Decoder module, and also verifies the validity of SA
(after). Finally, comparing the last row with all the above
results, we verify the Transfomer and CNN can work together
with better performance and they are more robust with this
fusion method of CaT.

E. Extra experiments

1) Removing multi-heads in Transformer: The multi-head
attention mechanism is generally considered where each head
can compute and capture different feature subspaces, and this
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Fig. 5. Visualization results on Tusimple. Different lane lines are colored differently. The red box in the last three columns represents the part where the

prediction is better than that of label.

multi-head structure is the default settings of many works
using Transformer structures in the CV domain. Here, we
experimentally observed whether this multi-head mechanism
is also applicable to our CaT model. The result (Table IV)
demonstrates that CaT model doesn’t need the current main-
stream “multi-head”, and only using “single-head” is the best
choice.

TABLE IV
THE EXPERIMENTAL RESULTS OF "MULTI/ SINGLE HEAD”(<>), "WITH/
WITHOUT SKIP-CONNECTION”(Q) AND FOUR PARALLEL FUSION
MODES(é) ON TUSIMPLE.

Methods Accuracy
CaT (with 1 head)$ 96.97 %
CaT with 2 heads<$ 96.81%
CaT with 4 heads<> 96.84%
CaT (without Skip-connection)¥  96.97 %
CaT with Skip-connection® 96.91%
Add directlyde 96.89%
Learnable « and 3 & 96.87%
Concat and FFMé&e 96.84%
Concat and CBAMé& 96.91%

2) Removing skip-connection in U-shape structure: Skip-
connection is common in full convolutional network [16]
and their variants [8], [26], [38], which can compensate the
information lost in the Encoder process during the Decoder
process. We test CaT with skip-connection, and the results
are shown in Table IV. It is the authors’ belief that the
reasons for the performance declining are as follows: The main
difficulties of lane detection comes from the cultivation of the
imagination (1. Ignore of occluding objects, 2. Imagination
of the shape of occluded objects) of the network for the
occlusion part, the imagination of this part can be obtained
from the high-level semantic information obtained by gradual
convolution, while the low-level detail information is more
about the contour information of objects (including the contour
of occluding objects). The network using skip-connection
operation also transmits the detailed contour information of
occluding objects, which could interfere with the accuracy of
the final result. It is the authors’ belief that skip-connection
operation is desirable for tasks that do not require cultivating
the network’s imagination for the occluded object, however,
the skip-connection operation is not necessary for tasks that

are seriously occluded and require the network to imagine the
occluded object (such as lane detection task).

3) Fusion of Transformer and CNN: We take the parallel
mode as the means of fusing the Transformer and CNN
together, because the parallel mode is popular in the develop-
ment of Transformer and CNN fusion [19], [20]. In details, we
tried four parallel ways of fusing Ca and Transformer modules:
Add directly, Learnable « and 3, Concat and FFM, Concat and
CBAM (shown in Fig. 6).

o
i
=}/a‘dd =ﬁadd

(a) Add directly (b) Learnable o andBB
=}i-‘ =}at-‘
(c¢) Concat and FFM (d) Concat and CBAM

Fig. 6. The four different fusion methods in parallel mode. The FFM module
is referenced from STDC network [5] and [34] for the CBAM module.

The results in Table IV show the performance of these four
fusion modes respectively. The performance of parallel fusion
mode is obviously higher than that of single Ca module and
single Transformer module. But in comparison with the serial
mode, parallel fusion mode has no absolute advantage.

CONCLUSION

In this paper, we propose a plug-and-play CaT module to
solve the lane detection task, the essence of the work is to take
advantages of the merits of CNN and Transformer respectively,
making the network more expressive and imaginative. On the
basis of CaT (a high-level semantic information fusion), our
model achieves good results on the two popular datasets, e.g.,
CULane and Tusimple. Additional experiments further prove
that Transformer and CNN can achieve better performance in
a serial manner in our model, and CaT no longer needs multi-
head self-attention mechanism and skip-connection structure
due to the characteristics of lane detection task itself.
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